Article in volume
Authors:
Title:
Nonlocal holonomy representations for Lie algebra-valued Ashtekar-Barbero connection
PDFSource:
Discussiones Mathematicae - General Algebra and Applications 45(2) (2025) 507-520
Received: 2024-12-30 , Revised: 2025-02-09 , Accepted: 2025-02-10 , Available online: 2025-10-01 , https://doi.org/10.7151/dmgaa.1494
Abstract:
Primary keywords:
gauge theory, holonomy, Lie algebra, Lie group, loop quantum gravity, nonlocality
Secondary keywords:
Wilson loops, quantization, lattice gravity
References:
- J. Alfaro, H.A. Morales-Tecotl, M. Reyes and L.F. Urrutia, On nonAbelian holonomies, J. Phys. A 36 (2003) 12097–12107.
https://doi.org/10.1088/0305-4470/36/48/012 - R.L. Arnowitt, S. Deser and C.W. Misner, Canonical variables for general relativity, Phys. Rev. 117 (1960) 1595.
https://doi.org/10.1103/PhysRev.117.1595 - A. Ashtekar, New variables for classical and quantum gravity, Phys. Rev. Lett. 57 (1986) 2244–2247.
https://doi.org/10.1103/PhysRevLett.57.2244 - A. Ashtekar and J. Lewandowski, Background independent quantum gravity: A status report, Class. Quant. Grav. 21 (2004) #R53.
https://doi.org/10.1088/0264-9381/21/15/R01 - A. Ashtekar and J. Lewandowski, Projective techniques and functional integration for gauge theories, J. Math. Phys. 36 (1995) (1995).
https://doi.org/10.1063/1.531037 - A. Ashtekar and J. Lewandowski, Differential geometry on the space of connections via graphs and projective limits, J. Geom. Phys. 17 (1995) 191.
https://doi.org/10.1016/0393-0440(95)00028-G - A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourao and T. Thiemann, Quantization of diffeomorphism invariant theories of connections with local degrees of freedom, J. Math. Phys. 36 (1995) 6456–6493.
https://doi.org/10.1063/1.531252 - J.F. Barbero G., Real Ashtekar variables for Lorentzian signature space times, Phys. Rev. D 51 (1995) 5507.
https://doi.org/10.1103/PhysRevD.51.5507 - J.F. Barbero G., Reality conditions and Ashtekar variables: A different perspective, Phys. Rev. D 51 (1995) 5498–5506.
https://doi.org/10.1103/PhysRevD.51.5498 - J.W. Barrett, Holonomy and path structures in general relativity and Yang-Mills theory, Int. J. Theor. Phys. 30 (1991) 1171–1215.
https://doi.org/10.1007/BF00671007 - J. Bilski, Continuously distributed holonomy-flux algebra, [arXiv: 2101.05295 [gr-qc]].
- J. Bilski, Implementation of the holonomy representation of the Ashtekar connection in loop quantum gravity, [arXiv: 2012.14441 [gr-qc]].
- A. Caetano and R.F. Picken, An axiomatic definition of holonomy, Int. J. Math. 5(6) (1994) 835–848.
https://doi.org/10.1142/S0129167X94000425 - B.S. DeWitt, Quantum theory of gravity $1$. The canonical theory, Phys. Rev. 160 (1967) 1113.
https://doi.org/10.1103/PhysRev.160.1113 - P.A.M. Dirac, The fundamental equations of quantum mechanics, Proc. Roy. Soc. Lond. A 109 (1925) 642–653.
https://doi.org/10.1098/rspa.1925.0150 - F.J. Dyson, Divergence of perturbation theory in quantum electrodynamics, Phys. Rev. 85 (1952) 631–632.
https://doi.org/10.1103/PhysRev.85.631 - A. Einstein, The foundation of the general theory of relativity, Annalen Phys. 49(7) (1916) 769–822.
https://doi.org/10.1002/andp.200590044 - P.M. Fishbane, S. Gasiorowicz and P. Kaus, Stokes' theorems for nonabelian fields, Phys. Rev. D 24 (1981) 2324.
https://doi.org/10.1103/PhysRevD.24.2324 - F. Frenet, Sur les courbes à double courbure, Thèse, Toulouse (1847), abstract in: J. Math. Pures Appl. 17 (1852).
- W. Heisenberg and W. Pauli, Zur Quantendynamik der Wellenfelder, Z. Phys. 56 (1929) 1–61.
https://doi.org/10.1007/BF01340129 - S. Holst, Barbero's Hamiltonian derived from a generalized Hilbert-Palatini action, Phys. Rev. D 53 (1996) 5966–5969.
https://doi.org/10.1103/PhysRevD.53.5966 - G. Immirzi, Quantum gravity and Regge calculus, Nucl. Phys. B Proc. Suppl. 57 (1997) 65–72.
https://doi.org/10.1016/S0920-5632(97)00354-X - J.A. Serret, Sur quelques formules relatives à la théorie des courbes à double courbure, J. Math. Pures Appl. 16 (1851).
- T. Thiemann, Quantum spin dynamics (QSD), Class. Quant. Grav. 15 (1998) 839–873.
https://doi.org/10.1088/0264-9381/15/4/011 - T. Thiemann, Modern Canonical Quantum General Relativity (Cambridge, UK, Cambridge Univ. Pr., 2007).
https://doi.org/10.1017/CBO9780511755682 - T. Thiemann, Reality conditions inducing transforms for quantum gauge field theory and quantum gravity, Class. Quant. Grav. 13 (1996) 1383–1404.
https://doi.org/10.1088/0264-9381/13/6/012 - S. Weinberg, The Quantum Theory of Fields Vol. 1 Foundations (Cambridge, UK, Cambridge Univ. Pr., 1995).
https://doi.org/10.1017/CBO9781139644167 - E. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren (Vieweg+Teubner Verlag, Wiesbaden, 1931).
https://doi.org/10.1007/978-3-663-02555-9 - E.P. Wigner, On unitary representations of the inhomogeneous Lorentz group, Ann. Math. 40 (1939) 149–204.
https://doi.org/10.2307/1968551 - K.G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974) 2445.
https://doi.org/10.1103/PhysRevD.10.2445 - C.N. Yang and R.L. Mills, Conservation of isotopic spin and isotopic gauge invariance, Phys. Rev. 96 (1954) 191.
https://doi.org/10.1103/PhysRev.96.191
Close
