Article in press
Authors:
Title:
Nonlocal holonomy representations for Lie algebra-valued Ashtekar-Barbero connection
PDFSource:
Discussiones Mathematicae - General Algebra and Applications
Received: 2024-12-30 , Revised: 2025-02-09 , Accepted: 2025-02-10 , Available online: 2025-10-01 , https://doi.org/10.7151/dmgaa.1494
Abstract:
Holonomies of the Ashtekar-Barbero connection can be considered as abstract elements of a Lie group, exponentially mapped from their algebra representation. This idea allows for the definition of the states in loop quantum gravity, which preserve the group symmetry that is equivalent to the Ashtekar-Barbero connection symmetry of Lie algebra. The equivalence of the symmetries requires either the quadratic- or linear-order precision in the expansion of group elements either around a finite value of the expansion parameter or by taking the limit as this parameter approaches zero, respectively. These conditions put different constraints on the holonomy regularization method in loop quantum gravity, where holonomies are expanded around finite values of the related paths' lengths. This article investigates the possibility of increasing the linear-order precision, postulated in canonical loop quantum gravity, into the quadratic order. It demonstrates that the regularization method can be defined more accurately.
Primary keywords:
gauge theory, holonomy, Lie algebra, Lie group, loop quantum gravity, nonlocality
Secondary keywords:
Wilson loops, quantization, lattice gravity
References:
- J. Alfaro, H.A. Morales-Tecotl, M. Reyes and L.F. Urrutia, On nonAbelian holonomies, J. Phys. A 36 (2003) 12097–12107.
https://doi.org/10.1088/0305-4470/36/48/012 - R.L. Arnowitt, S. Deser and C.W. Misner, Canonical variables for general relativity, Phys. Rev. 117 (1960) 1595.
https://doi.org/10.1103/PhysRev.117.1595 - A. Ashtekar, New variables for classical and quantum gravity, Phys. Rev. Lett. 57 (1986) 2244–2247.
https://doi.org/10.1103/PhysRevLett.57.2244 - A. Ashtekar and J. Lewandowski, Background independent quantum gravity: A status report, Class. Quant. Grav. 21 (2004) #R53.
https://doi.org/10.1088/0264-9381/21/15/R01 - A. Ashtekar and J. Lewandowski, Projective techniques and functional integration for gauge theories, J. Math. Phys. 36 (1995) (1995).
https://doi.org/10.1063/1.531037 - A. Ashtekar and J. Lewandowski, Differential geometry on the space of connections via graphs and projective limits, J. Geom. Phys. 17 (1995) 191.
https://doi.org/10.1016/0393-0440(95)00028-G - A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourao and T. Thiemann, Quantization of diffeomorphism invariant theories of connections with local degrees of freedom, J. Math. Phys. 36 (1995) 6456–6493.
https://doi.org/10.1063/1.531252 - J.F. Barbero G., Real Ashtekar variables for Lorentzian signature space times, Phys. Rev. D 51 (1995) 5507.
https://doi.org/10.1103/PhysRevD.51.5507 - J.F. Barbero G., Reality conditions and Ashtekar variables: A different perspective, Phys. Rev. D 51 (1995) 5498–5506.
https://doi.org/10.1103/PhysRevD.51.5498 - J.W. Barrett, Holonomy and path structures in general relativity and Yang-Mills theory, Int. J. Theor. Phys. 30 (1991) 1171–1215.
https://doi.org/10.1007/BF00671007 - J. Bilski, Continuously distributed holonomy-flux algebra, [arXiv: 2101.05295 [gr-qc]].
- J. Bilski, Implementation of the holonomy representation of the Ashtekar connection in loop quantum gravity, [arXiv: 2012.14441 [gr-qc]].
- A. Caetano and R.F. Picken, An axiomatic definition of holonomy, Int. J. Math. 5(6) (1994) 835–848.
https://doi.org/10.1142/S0129167X94000425 - B.S. DeWitt, Quantum theory of gravity $1$. The canonical theory, Phys. Rev. 160 (1967) 1113.
https://doi.org/10.1103/PhysRev.160.1113 - P.A.M. Dirac, The fundamental equations of quantum mechanics, Proc. Roy. Soc. Lond. A 109 (1925) 642–653.
https://doi.org/10.1098/rspa.1925.0150 - F.J. Dyson, Divergence of perturbation theory in quantum electrodynamics, Phys. Rev. 85 (1952) 631–632.
https://doi.org/10.1103/PhysRev.85.631 - A. Einstein, The foundation of the general theory of relativity, Annalen Phys. 49(7) (1916) 769–822.
https://doi.org/10.1002/andp.200590044 - P.M. Fishbane, S. Gasiorowicz and P. Kaus, Stokes' theorems for nonabelian fields, Phys. Rev. D 24 (1981) 2324.
https://doi.org/10.1103/PhysRevD.24.2324 - F. Frenet, Sur les courbes à double courbure, Thèse, Toulouse (1847), abstract in: J. Math. Pures Appl. 17 (1852).
- W. Heisenberg and W. Pauli, Zur Quantendynamik der Wellenfelder, Z. Phys. 56 (1929) 1–61.
https://doi.org/10.1007/BF01340129 - S. Holst, Barbero's Hamiltonian derived from a generalized Hilbert-Palatini action, Phys. Rev. D 53 (1996) 5966–5969.
https://doi.org/10.1103/PhysRevD.53.5966 - G. Immirzi, Quantum gravity and Regge calculus, Nucl. Phys. B Proc. Suppl. 57 (1997) 65–72.
https://doi.org/10.1016/S0920-5632(97)00354-X - J.A. Serret, Sur quelques formules relatives à la théorie des courbes à double courbure, J. Math. Pures Appl. 16 (1851).
- T. Thiemann, Quantum spin dynamics (QSD), Class. Quant. Grav. 15 (1998) 839–873.
https://doi.org/10.1088/0264-9381/15/4/011 - T. Thiemann, Modern Canonical Quantum General Relativity (Cambridge, UK, Cambridge Univ. Pr., 2007).
https://doi.org/10.1017/CBO9780511755682 - T. Thiemann, Reality conditions inducing transforms for quantum gauge field theory and quantum gravity, Class. Quant. Grav. 13 (1996) 1383–1404.
https://doi.org/10.1088/0264-9381/13/6/012 - S. Weinberg, The Quantum Theory of Fields Vol. 1 Foundations (Cambridge, UK, Cambridge Univ. Pr., 1995).
https://doi.org/10.1017/CBO9781139644167 - E. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren (Vieweg+Teubner Verlag, Wiesbaden, 1931).
https://doi.org/10.1007/978-3-663-02555-9 - E.P. Wigner, On unitary representations of the inhomogeneous Lorentz group, Ann. Math. 40 (1939) 149–204.
https://doi.org/10.2307/1968551 - K.G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974) 2445.
https://doi.org/10.1103/PhysRevD.10.2445 - C.N. Yang and R.L. Mills, Conservation of isotopic spin and isotopic gauge invariance, Phys. Rev. 96 (1954) 191.
https://doi.org/10.1103/PhysRev.96.191
Close