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Abstract11

Holonomies of the Ashtekar-Barbero connection can be considered as12

abstract elements of a Lie group, exponentially mapped from their algebra13

representation. This idea allows for the definition of the states in loop quan-14

tum gravity, which preserve the group symmetry that is equivalent to the15

Ashtekar-Barbero connection symmetry of Lie algebra. The equivalence of16

the symmetries requires either the quadratic- or linear-order precision in the17

expansion of group elements either around a finite value of the expansion18

parameter or by taking the limit as this parameter approaches zero, respec-19

tively. These conditions put different constraints on the holonomy regular-20

ization method in loop quantum gravity, where holonomies are expanded21

around finite values of the related paths’ lengths. This article investigates22

the possibility of increasing the linear-order precision, postulated in canon-23

ical loop quantum gravity, into the quadratic order. It demonstrates that24

the regularization method can be defined more accurately.25
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gravity, nonlocality.27
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1. Motivation29

The Ashtekar variables [3] are the representation of the gravitational degrees of30

freedom that allow the expression of a particular action [21], leading to the Ein-31

stein field equations with time gauge [17] in the form of a gauge theory, analogous32

to the Yang-Mills model [31]. In the case of the real Ashtekar variables, they lead33

to the Hamiltonian [8, 21], which may be considered a candidate for the classical34

limit of the background-independent formulation of quantum gravity, called loop35

quantum gravity (LQG) [4, 24].36
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It is known that the symmetry transformations of operators, which preserve37

probabilities at the quantum level, are related to a Lie algebra — cf. [27]. Equal38

algebra of operators has to describe the symmetries of the classical candidates39

for field theory operators before quantization. This article analyzes the alge-40

bra of the modified candidates forming the canonical pair for a time gauge-41

fixed simplification of general relativity (GR) [2]. These variables are the real42

Ashtekar-Barbero connection and the densitized dreibein [4, 8, 25]. Their canon-43

ical quantization leads to the model analogous to the DeWitt equation [14], which44

is not background-independent. The background-independent formalism of LQG45

is constructed by introducing particular regularization procedures [24, 25], in46

which the point-located Ashtekar-Barbero connection and its curvature are re-47

placed by different functionals of path-related holonomies. This paper indicates48

the difference in these procedures that lead to the pair of quantities preserving49

Lie algebra symmetry with unequal precision. One quantity is an order below the50

standard symmetry preservation at the quantum level [27]. This article provides51

the solution to this different precision problem. It also proposes a symmetriza-52

tion method for point-located Ashtekar variables into path-related equivalents of53

these variables. These smeared equivalents undergo identical Lie algebra and can54

be used to regularize path-related canonical variables in LQG into path-related55

holonomies invariant under Lie group transformations.56

2. Gravitational Hamiltonian in the real Ashtekar variables57

The total Hamiltonian of the time gauge-fixed simplification of GR expressed58

in terms of the real Ashtekar variables consists of three terms. Two types of59

these terms are first-class constraints corresponding to the spatial diffeomorphism60

invariance and Lie algebra symmetry. The third term, called the Hamiltonian61

constraint [3, 8, 21, 24], corresponds to the abelian energy gauge and contains62

two propagating degrees of freedom. This term is Barbero’s Hamiltonian for63

the Ashtekar connection field derived from the Holst action with the momentum64

degrees of freedom removed from denominators by Thiemann’s method. It is65

defined by the following expression:66

H := −4σE
γκ2

∫
Σt

d3xN(x)ϵabc+

(
F i
ab(x)− (γ2+1)ϵijkK

j
a(x)K

k
b (x)

){
Ai

c(x),V(Σt)
}
,(1)67

where68

Kj
a(x) :=− 8σE

γ2κ3

{
Aj

a(x),

{∫
Σt

d3y ϵbcd+ F k
bc

{
Ak

d(y),V(Σt)
}
,V(Σt)

}}
,(2)69

V(Σt) :=

∫
Σt

d3x
√
|E(x)| , E :=

1

3!
ϵ−abcϵ

ijkEa
i E

b
jE

c
k ,(3)70
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and σE := sgn(E). The Poisson brackets for canonical fields are specified regard-71

ing the metric tensor variables with a time gauge [2] providing the factor −γκ/272

in front of the definition73

{X,Y } := −γκ

2

∫
d3x

(
δX

δAi
a(x)

δY

δEa
i (x)

− δX

δEa
i (x)

δY

δAi
a(x)

)
.(4)74

The symbols ϵabc+ and ϵ−abc represent the Levi-Civita tensor density and inverse75

density, respectively. The scalar γ is the real Barbero-Immirzi parameter [8, 22],76

and κ := 16πG, where the speed of light is normalized to unity. The quantity N77

is a Lagrange multiplier, F i
ab is the curvature of the real Ashtekar-Barbero con-78

nection field Ai
a, and Ea

i is the densitized dreibein. It represents the momentum79

canonically conjugated to Ai
a. The Hamiltonian constraint in (1) is the start-80

ing point for graph regularization — the procedure directly preceding canonical81

quantization.82

It is also worth bringing up that the choice of the complex Ashtekar variables83

would lead to rather nonphysical candidates for observables — see the expansion84

in (24) in which all parameters have to be real. In this case, auxiliary effective85

methods [9, 26] of reality conditions implementation on the classical phase space86

would be needed.87

Apart from the reality of the Lie algebra-valued variables, it is required that88

the related generators are either unitary and linear or antiunitary and antilinear89

[28]. As in the case of the standard operators in quantum mechanics and quantum90

field theory, they are unitary and linear in general [27]. All of the aforementioned91

facts encouraged the investigation of the holonomy representation algebra. This92

article verifies that this regularized representation can be used to form a gauge-93

invariant equivalent of the Ashtekar-Barbero connection’s degrees of freedom. It94

is then demonstrated that the standard equivalent of the connection’s degrees95

of freedom in LQG, invariant under Lie algebra representation [24, 25], becomes96

a Lie group representation. However, in the case of the connection field, the97

invariance of the standard algebra-to-group transformation in LQG is one order98

less accurate than in the case of the connection’s curvature field.99

An alternative algebra-to-group map for the Ashtekar connection can solve100

this problem. This map, unifying the accuracy of the connection and its curvature101

regularization in LQG to higher precision, is proposed in this article. Finally,102

Wigner’s construction of operators is recalled to demonstrate the relevance of the103

accuracy of the algebra-to-group maps in quantum theories.104

3. Holonomy of the Ashtekar-Barbero connection105

Definition. The parallel transport of a vector bundle element over the manifold106

M to another bundle along a smooth oriented path ℓ(s) : [0, 1] → M is determined107
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by the expression108

h−1
[0,1][A] := P exp

(
−
∫ 1

0
ds ℓ̇a(s)Aa

(
ℓ(s)

))
.(5)109

This object is called the holonomy of the vector potential A := AItI along the110

path ℓ, where tI are the generators of a Lie algebra.111

Remark 1. The ‘inverse notation’, h−1, follows the convention established in the112

LQG-related literature [4, 25]. Consequently, h denotes the inverse holonomy.113

Remark 2. The Ashtekar-Barbero connection coefficients AI ∈ R are specified114

by the following normalization of the Lie bracket,115

[tJ , tK ] =
1

2
CI

JKtI ,(6)116

where CI
JK = −CI

KJ ∈ R are the structure constants. By definition, this117

normalization resolves the issue of reality conditions implementation.118

The formalism of LQG (cf. [4, 25]) introduces a graph structure, which al-119

lows defining the associated scalar product as a relation between the positions of120

variables on this graph, hence without using a metric. This technique is based on121

the framework constructed in [5, 6, 7]. If the real Ashtekar-Barbero connection122

fields Ai
a, theirs curvature F i

ab, and densitized dreibeins Ea
i in the Hamiltonian123

constraint in (1) can be rigorously replaced by holonomies and the fluxes of den-124

sitized dreibeinsi, then the graph is naturally introduced. Its edges are the paths125

ℓ in the holonomy definition (5). Hence, the graph’s introduction technique is re-126

duced to the inversion of the holonomy-to-connection map in the just mentioned127

definition.128

Theorem 3. Let the quantity L0 denote a fiducial length scale. Let also the129

indices p, q, r, . . . do not indicate any spatial directions but enumerate edges, so130

the Einstein summation convention is not applied to these edge indices. The131

holonomy h−1
p = P exp

(
−
∫
lp
A
)
, adjusted to a particular graph’s edge (of length132

lp := L0εp), can be expanded around the infinitesimal value of the dimensionless133

regularization parameter εp := εlp ∈ (0, 1),134

h∓1
p [A] = 1∓ L0εpAa(0)ℓ̇

a
p

∣∣
εp=0

+
1

2

(
L0εp

)2
Aa(0)Ab(0)ℓ̇

a
p

∣∣
εp=0

ℓ̇bp
∣∣
εp=0

∓ 1

2

(
L0εp

)2
∂aAb(0)ℓ̇

a
p

∣∣
εp=0

ℓ̇bp
∣∣
εp=0

+O
(
ε3
)
.

(7)135

Proof. See [1, 16, 18].136

iTheir construction (see e.g. [4, 25]) is not relevant to the analysis presented in this article.
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Remark 4. It is worth emphasizing that all the elements in (7) are oriented in137

the same direction, ℓ̇p
∣∣
εp=0

, tangent to ℓp(s) at the point where the edge of a zeroth138

length is localized. This tangent direction determines a one-dimensional system139

and defines the spatial basis for the expansion in (7). For instance, the term140

∂aAb(0) in the lower line of this expression is the coefficient of the directional141

derivative of a one-form, where both quantities are oriented toward the direction142

of ℓ̇p
∣∣
εp=0

. This tangent can be easily completed to the orthonormal Euclidean143

basis defined by the Frenet-Serret frame [19, 23].144

Remark 5. The left-hand side of (7) is a non-local, path-related (edge-related)145

object, while the right-hand side is a local point-related (vertex-related) expres-146

sion.147

Remark 6. The quadratic terms in the expansion on the right-hand side of (7)148

contain derivatives of connections, neither being fields nor holonomies. These149

terms have to be removed to find a connection-to-holonomy map.150

Theorem 7. The equivalent of the expansion on the right-hand side of (7), which151

is as nonlocal as the holonomy and does not contain derivatives of connections,152

equals153

h∓1
p [A] = 1∓ 1

2
L0εp

(
Apinit(ℓinit)+Apfin(ℓfin)

)
+

1

2

(
L0εpApinit(ℓinit)

)2
+O

(
ε3
)
.(8)154

Proof. In order to remove the problematic derivatives in (7), the following ap-155

proximation of the directional derivative along the curve ℓp has been applied:156

L0εp∂aAb(0)ℓ̇
a
p

∣∣
εp=0

ℓ̇bp
∣∣
εp=0

= Aa(1)ℓ̇
a
p

∣∣
εp=1

−Aa(0)ℓ̇
a
p

∣∣
εp=0

+O
(
ε2
)
.(9)157

Its welcome side effect is the invariance of the right-hand side of (8) under the158

operation h∓1
p [A] → h±1

p−1[A], which replaces the ℓinit := ℓ(0) point with ℓfin :=159

ℓ(1).160

Analogously, one can expand the loop holonomy h−1
qr defined around the161

parallelepiped-like loop composed of two pairs of identical opposite edges, ℓq162

and ℓr.163

Theorem 8. Let the loop initiate along the outgoing edge ℓq, hence along the164

path cooriented with ℓq and let it return along the outgoing edge ℓr, hence along165

the path cooriented with ℓ−1
q . As a result, the loop holonomy, describing the paral-166

lel transport of a vector, factorizes into the following composition of holonomies,167

h−1
qr = h−1

q h−1
r hqhr (the ‘inverse notation’ holds in the whole article). The out-168

come of the expansion of the parallelepiped-like loop holonomy around the in-169

finitesimal value of regularization parameters εq and εr is170
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h∓1
□qr[A] = 1∓ L2

0εqεrFab(0)ℓ̇
a
q

∣∣
εq=0

ℓ̇br
∣∣
εr=0

+O
(
ε3
)
,(10)171

where Fab :=F I
abtI are the spatial coefficients of the curvature of A.172

Proof. See [1, 18]i.173

Instead of quadrilateral loops, the LQG model requires the analogous expan-174

sion for triangular loops [4, 25].175

Theorem 9. Let the neighboring pair of edges ℓq and ℓr be the part of a triangular176

loop. The expansion analogous to (8) leads to the expression similar to (10),177

h∓1
△qr[A] = 1∓ 1

2
L2
0εqεrFab(0)ℓ̇

a
q

∣∣
εq=0

ℓ̇br
∣∣
εr=0

+O
(
ε3
)
.(11)178

Proof. See [1, 18] or simply consider the triangular path formed of the neigh-179

boring pair of edges in some parallelepiped-like quadrilateral and the diagonal of180

this quadrilateral.181

Corollary 10. These formulas can be simplified into a single expression analo-182

gous to (8),183

h∓1
qr [A] = 1∓ λL2

0εqεrFqinitrinit(ℓinit) +O
(
ε3
)
.(12)184

Parameter λ takes value 1/2 in the case of a triangular loop and 1 in the case of185

a parallelepiped-like quadrilateral.186

Remark 11. It is worth emphasizing that formulas (10) and (11) require the187

approximation in (9) of the directional derivative along a curve. It is also worth188

indicating that the closure of the path in the definition of the loop holonomy189

entails the identification F(ℓinit) = F(ℓfin). Therefore, the formula in (12) is already190

invariant under the simultaneous inverse of both the holonomy and the loop191

encircling direction, analogous to the one discussed below expression (9).192

All these results naturally lead to the relations between differences of recip-193

rocal pairs of holonomies and vector or tensor fields located at specific points,194

namely195

hp− h−1
p = L0εp

(
Apinit(ℓinit)+Apfin(ℓfin)

)
+O

(
ε3
)
,(13a)196

hqr − h−1
qr = 2λL2

0εqεrFqinitrinit(ℓinit) +O
(
ε3
)
.(13b)197

iIt is worth noting that the relation between h−1
loop and F is not calculated according to

the standard formalism of differential geometry as in [10, 13]. Instead, the method in [1, 18],
explicitly indicating the location and directions of the curvature regarding the loop, is applied.
This transforms the problem of the h−1

loop expansion into the multiplication of expansions of the
holonomies at vertices of quadrilateral loops accordingly to the formula in (7).
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The left-hand sides of these relations depend on specific lattice structures. The198

equally-accurate expansions on the right-hand sides should correspond to the199

symmetries of these structures. It is the case regarding the expression in (13a)200

but the right-hand side of (13b) is not invariant under cyclic permutations of201

edges because F(ℓinit) is assigned to a particular vertex.202

Theorem 12. The invariance under the cyclic permutations of edges is restored203

by replacing the point-related field Fqinitrinit(ℓinit) in (13b) with the arithmetical mean204

F̄qr of the point-related fields assigned to all the vertices in a considered loop.205

Proof. Consider the consecutive expansion of the same loop holonomy, with206

the loop each time initiated at a different vertex. For instance, regarding the207

parallelepiped-like quadrilateral loop, compositions of holonomies: h−1
q h−1

r hqhr,208

h−1
r hqhrh

−1
q , hqhrh

−1
q h−1

r , and hrh
−1
q h−1

r hq are the same object, but the vector209

potential Fab(0)ℓ̇
a
q

∣∣
εq=0

ℓ̇br
∣∣
εr=0

in (10) is consecutively related to a different vertex210

each time. The arithmetical mean of four holonomy compositions is the loop211

holonomy h−1
qr . However, the quarter of the sum of different point-related fields212

is none of these fields. Instead, it is a definition of the arithmetical mean F̄qr.213

The proof regarding a triangular loop is analogous.214

Remark 13. The sum of differently localized vertices in (13a) can be analogously215

replaced by 2Āp :=Apinit(ℓinit)+Apfin(ℓfin).216

4. Linear and surface symmetrization of the Ashtekar variables217

At this point, one should recognize the problem with the unsymmetrical outcomes218

of holonomies’ expansions in (13). The expansion in (13b) provides the object219

which lacks either a triangular or quadrilateral loop symmetry. This object can220

be easily symmetrized by the arithmetic mean F̄qr of the consecutive expansions221

at different vertices. As a result, the right-hand sides of (13) become expressed222

in terms of the nonlocal combinations Āp and F̄qr of vector potentials and their223

curvatures, respectively. However, the Hamiltonian in (1) is written in terms224

of point-related quantities, not their sums. This difference between local and225

nonlocal objects is the source of the gap in the regularization procedure in LQG.226

To fill this gap and to make the regularization in LQG more similar to the227

canonical quantization in established field theories, one should define a diffeomor-228

phism-invariant and spatially-symmetric smearing of the connection’s degrees of229

freedom, generalizing the arithmetic means Āp and F̄qr.230

Theorem 14. The path-smeared connection’s degrees of freedom [11]:231
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αp :=

∫ L0εp

0
ds ℓ̇a(s)Aa

(
ℓ(s)

)
(14a)232

φqr :=

∫ L0εq

0
ds

∫ L0εr

0
dt ℓ̇a(s)ℓ̇b(t)Fab

(
ℓ(s, t)

)
.(14b)233

are spatially-symmetric and diffeomorphism-invariant along the paths in their234

definitions.235

Proof. The spatial symmetry is evident due to the uniform path-smearing. Any236

diffeomorphism transformation of these definitions changes only the structure237

of paths, along which the line integrals are defined, adjusting the connection’s238

degrees of freedom to the transformed geometry.239

The symmetric path averaging method in (14a) requires to locate the path’s240

midpoint at the position of the vector potential, and the symmetric surface aver-241

aging in (14b) should position the surface’s centroid at the curvature’s location.242

Consequently, the point-related connections and curvatures in (1) would be con-243

sidered as the objects in the middle of spatially-extended structures.244

Definition. The symmetric and diffeomorphism-invariant link holonomy repre-245

sentation of A = A
(
ℓ(L0εp/2)

)
and the loop holonomy representation of F =246

F
(
ℓ(L0εq/2,L0εr/2)

)
are defined by the relations [11]:247

Ap(lp) :=
hp− h−1

p

2L0εp
≈ αp

L0εp
,(15a)248

Fqr

(
lq, lr

)
:=

hqr − h−1
qr

2λL2
0εqεr

≈ φqr

L2
0εqεr

.(15b)249

Theorem 15. Both definitions of the group representations on the left-hand250

sides approximate the algebra representations on the right-hand sides with the251

quadratic-order precision for a sufficiently small value of ε.252

Proof. By construction, the approximations in these definitions have quadratic-253

order precision in the case of the holonomies and curvatures that are constant254

along the paths of integration in (14). To preserve this precision in the general255

case, it is enough to consider ε sufficiently small that within a ball of radius256

L0ε/2, the means of fields along paths in (14) are approximable with ε2 precision257

by the arithmetical means of these fields at vertices located along considered258

paths, namely,259

αp = L0εpĀp+O
(
ε3
)
,(16a)260

φqr = L2
0εqεrF̄qr +O

(
ε3
)
.(16b)261
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The existence of a sufficiently small ε is easily demonstrable, for instance, by262

choosing the following value of this regulator,263

ε =
√
max

s

∣∣A(
ℓ(s)

)
− Ā

∣∣ (example of a possible choice) .(17)264
265

5. Wigner’s construction of operators266

The connection coefficient Apinit(ℓinit) = AI
pinit

(ℓinit)tI is the Lie algebra element,267

specified by the relation in (6). Corollary, Āp and αp are also the elements of268

the same Lie algebra. The idea to replace these gauge fields with the related269

holonomies is inspired by the Wilson loop representation [30] constructed on a270

piecewise linear lattice. LQG postulates the construction of the combination of271

links-located Hilbert spaces for the Ashtekar connection operators Â that are272

the gauge algebra representations of the symmetry determined by holonomies273

[4, 24, 25]. However, in this construction, the Hilbert spaces are located regarding274

non-linear links.275

Theorem 16 (Wigner). Let U(θ) denote a representation of a connected Lie276

group described by a finite set of real continuous parameters θI and Hermitian277

generators sI . Any representation of a symmetry transformation of a ray space278

is either a unitary and linear or else antiunitary and antilinear transformation279

of a Hilbert space.280

Proof of Wigner’s theorem. See [28, 29].281

By expanding U(θ) around a trivial transformation, i.e., the identity, one can282

focus only on the unitary generators [27]. Consequently, in a finite neighborhood283

of the identity, one obtains the expansion284

U(θ) = 1+ iθIsI −
1

2
θJθKsJsK − i

2
θJθKCI

JKsI +O
(
θ3
)
.(18)285

Assuming the representation of the same Lie group as in Section 3, CI
JK are the286

same real structure constants, resulting from the following Lie bracket,287

[sJ , sK ] = iCI
JKsI .(19)288

By comparing the expressions in (6) and (19), one finds the explicit form of the289

internal representation generators of A,290

tI = − i

2
sI ,(20)291

where sI is Hermitian and unitary.292
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The next natural question is whether it is possible to compare the formula in293

(8) with (18). The comparison requires to postulate the following identification,294

U(θ) = h−1
p [A] .(21)295

Theorem 17. The holonomy of the vector potential A := AItI is a Lie group296

element.297

Proof. Let A, A′, and so (A+A′) be gauge algebra representations. The Lie298

group element must be the exponential map from the related representation. The299

explicit calculation of the product300

h−1
p [A]h−1

p [A′ ] = 1− L0εp
(
Apinit(ℓinit)+A′

pinit
(ℓinit)

)
− 1

2

(
L0εp

)2
∂pinit

(
Apinit(ℓinit)+A′

pinit
(ℓinit)

)
+

1

2

(
L0εp

)2(
Apinit(ℓinit)+A′

pinit
(ℓinit)

)2
+O

(
ε3
)

= h−1
p [A+A′ ] ,

(22)301

demonstrates that the holonomy is a group element.302

The application of the holonomy representation to the Hamiltonian in (1)303

aims to construct a quantum theory on the graph, the edges of which have fi-304

nite length, linearly dependent on the value of the regularization parameter ε [6].305

Therefore, the quadratic-order precision presumed in this article is not postulated306

only to increase the accuracy of the model assumed in LQG [4, 25]. It seems307

inevitable for the precise gauge symmetry transformation of the connection alge-308

bra representation into the holonomy group representation. This quadratic-order309

precision is required in the standard construction of states in noncommutative310

quantum field theories [27].311

Theorem 18. The formula in (8) is equivalent to the expression312

h−1
p [α] = 1−αp+

1

2
αpαp +O

(
ε3
)

313

= 1−L0εpA
(
ℓ(L0εp/2)

)
+

1

2

(
L0εp

)2
A
(
ℓ(L0εp/2)

)
A
(
ℓ(L0εp/2)

)
+O

(
ε3
)
.(23)314

Moreover, all the terms on the right-hand side have their equivalents in (18).315

Proof. Expression (23) is derived by applying the definition in (14a) to (8).316

Using then the identification of algebra generators in (20), the expansion of the317

group element U(θ) around the identity in (18), takes the form:318

U(α) = 1− αItI +
1

2
αJαKtJtK +

1

2
αJαK [tJ , tK ] +O

(
α3

)
,(24)319
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where the αI = 2θI normalization of parameters were applied to identify the320

linear terms in (18) and (23). The cubic corrections in (23) and (24) are both321

of order ε3, which is evident from (16a). The same formula can be used to322

demonstrate that the term with Lie brackets is approximately equal to zero,323

αJαK [tJ , tK ] =
(
L0εp

)2[
Ā, Ā

]
+O

(
ε3
)
= O

(
ε3
)
.(25)324

325

This result verifies that the holonomy expansion in (8) coincides with the326

group expansion around identity in (24) up to the terms of order ε2. It also327

confirms the internal consistency concerning the equal orientation of both factors328

in the quadratic term in the holonomy expansion in (8). This orientation along329

the same link provides the symmetry of the elements inside the Lie brackets in330

(25), so they are vanishing.331

Finally, the arithmetic mean Āp corresponds to the abstract representation332

αp by the formula (16a) under the short link’s length (small ε) constraint, e.g.333

(17). Therefore, both Āp and αp/L0εp are the properly symmetrized candidates334

for the link-related object that is quantizable into the operator representation335

of the point-related connection A
(
ℓ(L0εp/2)

)
. Its corresponding holonomy repre-336

sentation Ap(lp), is given by formula (15a).337

6. Conclusions338

Demonstrating that the holonomy expansion around a short length of links equals339

the expansion around identity proves that the links-located Hilbert spaces in LQG340

satisfy Wigner’s theorem [28, 29]. Thus, this quantum theory on a lattice can341

be defined by the standard Dirac-Heisenberg-DeWitt [14, 15, 20] construction of342

operators, known as the canonical representation (in quantum mechanics).343

Moreover, the equality of the analyzed expansions is an alternative demon-344

stration for the reality requirement of the Ashtekar variables. If the Ashtekar con-345

nection was imaginary, the related parameter would also be imaginary, εp ∈ (0, i).346

The complex connection, composed of real and imaginary terms, is excluded. The347

imaginary Ashtekar connection would lead to the imaginary length of the graph’s348

edges, hence to a non-physical model.349

Considering then the real Ashtekar variables, the Ashtekar-Barbero-Holst-350

Thiemann Hamiltonian [3, 8, 21, 24] in (1) is the correct candidate for quanti-351

zation after the improved lattice regularization method described in this article.352

The increased precision in the construction of the lattice-smeared analog (cf. [12])353

of the Hamiltonian constraint in (1) guarantees that the accuracy of the model354

after quantization will be comparable with standard quantum field theories.355



518 J. Bilski

References356

[1] J. Alfaro, H.A. Morales-Tecotl, M. Reyes and L.F. Urrutia, On nonAbelian357

holonomies, J. Phys. A 36 (2003) 12097–12107.358

https://doi.org/10.1088/0305-4470/36/48/012359

[2] R.L. Arnowitt, S. Deser and C.W. Misner, Canonical variables for general relativity,360

Phys. Rev. 117 (1960) 1595.361

https://doi.org/10.1103/PhysRev.117.1595362

[3] A. Ashtekar, New variables for classical and quantum gravity, Phys. Rev. Lett. 57363

(1986) 2244–2247.364

https://doi.org/10.1103/PhysRevLett.57.2244365

[4] A. Ashtekar and J. Lewandowski, Background independent quantum gravity: A sta-366

tus report, Class. Quant. Grav. 21 (2004) #R53.367

https://doi.org/10.1088/0264-9381/21/15/R01368

[5] A. Ashtekar and J. Lewandowski, Projective techniques and functional integration369

for gauge theories, J. Math. Phys. 36 (1995) (1995).370

https://doi.org/10.1063/1.531037371

[6] A. Ashtekar and J. Lewandowski, Differential geometry on the space of connections372

via graphs and projective limits, J. Geom. Phys. 17 (1995) 191.373

https://doi.org/10.1016/0393-0440(95)00028-G374

[7] A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourao and T. Thiemann, Quantization375

of diffeomorphism invariant theories of connections with local degrees of freedom, J.376

Math. Phys. 36 (1995) 6456–6493.377

https://doi.org/10.1063/1.531252378

[8] J.F. Barbero G., Real Ashtekar variables for Lorentzian signature space times, Phys.379

Rev. D 51 (1995) 5507.380

https://doi.org/10.1103/PhysRevD.51.5507381

[9] J.F. Barbero G., Reality conditions and Ashtekar variables: A different perspective,382

Phys. Rev. D 51 (1995) 5498–5506.383

https://doi.org/10.1103/PhysRevD.51.5498384

[10] J.W. Barrett, Holonomy and path structures in general relativity and Yang-Mills385

theory, Int. J. Theor. Phys. 30 (1991) 1171–1215.386

https://doi.org/10.1007/BF00671007387

[11] J. Bilski, Continuously distributed holonomy-flux algebra, [arXiv: 2101.05295 [gr-qc]].388

[12] J. Bilski, Implementation of the holonomy representation of the Ashtekar connection389

in loop quantum gravity, [arXiv: 2012.14441 [gr-qc]].390

[13] A. Caetano and R.F. Picken, An axiomatic definition of holonomy, Int. J. Math.391

5(6) (1994) 835–848.392

https://doi.org/10.1142/S0129167X94000425393

[14] B.S. DeWitt, Quantum theory of gravity 1. The canonical theory, Phys. Rev. 160394

(1967) 1113.395

https://doi.org/10.1103/PhysRev.160.1113396

https://doi.org/10.1088/0305-4470/36/48/012
https://doi.org/10.1103/PhysRev.117.1595
https://doi.org/10.1103/PhysRevLett.57.2244
https://doi.org/10.1088/0264-9381/21/15/R01
https://doi.org/10.1063/1.531037
https://doi.org/10.1016/0393-0440(95)00028-G
https://doi.org/10.1063/1.531252
https://doi.org/10.1103/PhysRevD.51.5507
https://doi.org/10.1103/PhysRevD.51.5498
https://doi.org/10.1007/BF00671007
https://doi.org/10.1142/S0129167X94000425
https://doi.org/10.1103/PhysRev.160.1113


Nonlocal holonomy representations for Lie algebra-valued . . . 519

[15] P.A.M. Dirac, The fundamental equations of quantum mechanics, Proc. Roy. Soc.397

Lond. A 109 (1925) 642–653.398

https://doi.org/10.1098/rspa.1925.0150399

[16] F.J. Dyson, Divergence of perturbation theory in quantum electrodynamics, Phys.400

Rev. 85 (1952) 631–632.401

https://doi.org/10.1103/PhysRev.85.631402

[17] A. Einstein, The foundation of the general theory of relativity, Annalen Phys. 49(7)403

(1916) 769–822.404

https://doi.org/10.1002/andp.200590044405

[18] P.M. Fishbane, S. Gasiorowicz and P. Kaus, Stokes’ theorems for nonabelian fields,406

Phys. Rev. D 24 (1981) 2324.407

https://doi.org/10.1103/PhysRevD.24.2324408

[19] F. Frenet, Sur les courbes à double courbure, Thèse, Toulouse (1847), abstract in:409
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bure, J. Math. Pures Appl. 16 (1851).421

[24] T. Thiemann, Quantum spin dynamics (QSD), Class. Quant. Grav. 15 (1998) 839–422

873.423

https://doi.org/10.1088/0264-9381/15/4/011424

[25] T. Thiemann, Modern Canonical Quantum General Relativity (Cambridge, UK,425

Cambridge Univ. Pr., 2007).426

https://doi.org/10.1017/CBO9780511755682427

[26] T. Thiemann, Reality conditions inducing transforms for quantum gauge field theory428

and quantum gravity, Class. Quant. Grav. 13 (1996) 1383–1404.429

https://doi.org/10.1088/0264-9381/13/6/012430

[27] S. Weinberg, The Quantum Theory of Fields Vol. 1 Foundations (Cambridge, UK,431

Cambridge Univ. Pr., 1995).432

https://doi.org/10.1017/CBO9781139644167433

[28] E. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der434

Atomspektren (Vieweg+Teubner Verlag, Wiesbaden, 1931).435

https://doi.org/10.1007/978-3-663-02555-9436

https://doi.org/10.1098/rspa.1925.0150
https://doi.org/10.1103/PhysRev.85.631
https://doi.org/10.1002/andp.200590044
https://doi.org/10.1103/PhysRevD.24.2324
https://doi.org/10.1007/BF01340129
https://doi.org/10.1103/PhysRevD.53.5966
https://doi.org/10.1016/S0920-5632(97)00354-X
https://doi.org/10.1088/0264-9381/15/4/011
https://doi.org/10.1017/CBO9780511755682
https://doi.org/10.1088/0264-9381/13/6/012
https://doi.org/10.1017/CBO9781139644167
https://doi.org/10.1007/978-3-663-02555-9


520 J. Bilski

[29] E.P. Wigner, On unitary representations of the inhomogeneous Lorentz group, Ann.437

Math. 40 (1939) 149–204.438

https://doi.org/10.2307/1968551439

[30] K.G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974) 2445.440

https://doi.org/10.1103/PhysRevD.10.2445441

[31] C.N. Yang and R.L. Mills, Conservation of isotopic spin and isotopic gauge invari-442

ance, Phys. Rev. 96 (1954) 191.443

https://doi.org/10.1103/PhysRev.96.191444

Received 30 December 2025445

Revised 9 February 2025446

Accepted 10 February 2025447

This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License https://creativecommons.org/licenses/by/4.0/

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.2307/1968551
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1103/PhysRev.96.191
https://creativecommons.org/licenses/by/4.0/
http://www.tcpdf.org

