DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in press


Authors:

N. Tiprachot

Nuchanat Tiprachot

Department of Mathematics, Faculty of Science, Khon Kaen 40002, Thailand

email: nuchanatt@kkumail.com

0000-0002-0311-2409

B. Pibaljommee

Bundit Pibaljommee

Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand, 40002

email: banpib@kku.ac.th

0000-0001-8263-715X

N. Lekkoksung

Nareupanat Lekkoksung

Division of Mathematics, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand

email: nareupanat.le@rmuti.ac.th

0000-0002-0026-8387

Title:

On the purities of one-sided ideals in ordered semigroups

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications

Received: 2022-11-20 , Revised: 2025-02-10 , Accepted: 2025-02-10 , Available online: 2025-10-01 , https://doi.org/10.7151/dmgaa.1493

Abstract:

One of the important principles for characterizing ordered semigroups into classes is the purities of ideals. It was Changphas, and Sanborisoot studied this concept in ordered semigroups. They described left (resp., right) weakly regular ordered semigroups using left (resp., right) pure of two-sided ideals. Our work weakens their study by introducing new kinds of purities for one-sided ideals. We characterize our new version of purities; moreover, a class of ordered semigroups is characterized by this concept.

Keywords:

α-ideal, β-pure, pure ideal, ordered semigroup, regularities

References:

  1. J. Ahsan and M. Takahashi, Pure spectrum of a monoid with zero, Kobe J. Math. 6 (1989) 163–181.
  2. Y. Cao, Characterizations of regular ordered semigroups by strong quasi-ideals, Vietnam J. Math. 30 (2002) 239–250.
  3. T. Changphas and B. Davvaz, On pure hyperideals in ordered semihypergroups, Bol. Soc. Mat. 27 (2020) 63–75.
  4. T. Changphas and J. Sanborisoot, Pure ideals in ordered semigroups, Kyungpook Math. J. 54 (2014) 123–129.
    https://doi.org/10.5666/KMJ.2014.54.1.123
  5. R.D. Jagatap, Right $k$-weakly regular $Γ$-semirings, Algebra 2014 (2014) Article ID 948032, 5 pages.
    https://doi.org/10.1155/2014/948032
  6. N. Kehayopulu, On weakly prime ideals of ordered semigroups, Math. Japon. 35 (1990) 1051–1056.
  7. D.M. Lee and S.K. Lee, On intra-regular ordered semigroups, Kangwon-Kyungki Math. Jour. 14 (2006) 95–100.
  8. M.M. Miccoli and B. Pondělíček, On $\alpha $-ideals and generalized $\alpha$-ideals in semigroups, Czechoslov. Math. J. 39 (1989) 522–527.
    https://doi.org/10.21136/CMJ.1989.102324
  9. S. Omidi, B. Davvaz and J.M. Zhan, An investigation on ordered algebraic hyperstructures, Acta Math. Sin. Engl. Ser. 33 (2017) 1107–1124.
    https://doi.org/10.1007/s10114-017-6093-7
  10. P. Palakawong na Ayutthaya and B. Pibaljommee, Purities of ordered ideals of ordered semirings, Kyungpook Math. J. 60 (2020) 455–465.
    https://doi.org/10.5666/KMJ.2020.60.3.455
  11. P. Palakawong na Ayutthaya and B. Pibaljommee, Characterizations of ordered $k$-regularities on ordered semirings, Quasigroups Related Systems 29 (2021) 107–121.
  12. B. Pibaljommee and P. Palakawong na Ayutthaya, Characterizations of weakly ordered $k$-regular hemirings by $k$-ideals, Discuss. Math. Gen. Algebra Appl. 39 (2019) 289–301.
    https://doi.org/10.7151/dmgaa.1315
  13. J. Sanborisoot and T. Changphas, On pure ideals in ordered ternary semigroups, Thai J. Math. 12 (2014) 455–464.
  14. S. Bashir and M. Shabir, Pure ideals in ternary semigroups, Quasigroups Related Systems 17 (2009) 149–160.
  15. M. Shabir and R. Anjum, Right $k$-weakly regular hemirings, Quasigroups Related Systems 20 (2012) 97–112.
  16. Z. Shao, X. Chen, S. Kosari and S. Omidi, On some properties of right pure (bi-quasi-) hyperideals in ordered semihyperrings, UPB Sci. Bull. A: Appl. Math. Phys. 83 (2021) 95–104.
  17. N. Tiprachot, N. Lekkoksung and B. Pibaljommee, On regularities of ordered semigroups, Asian-Eur. J. Math. 15 (2022) 2250207.
    https://doi.org/10.1142/S1793557122502072
  18. P. Towwun and T. Changphas, On complete $\alpha$-ideals in ordered semigroups, Int. J. Pure Appl. Math. 86 (2013) 465–470.
    https://doi.org/10.12732/ijpam.v86i3.1

Close