DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in press


Authors:

S.S. Khopade

Santaji Shrikant Khopade

Karmaveer Hire Arts
Science, Commerce and Education College
Gargoti, Maharashtra, India – 416209

email: santajikhopade@gmail.com

0009-0004-5445-6844

D.R. Phadatare

Dadasaheb Rajaram Phadatare

Balasaheb Desai College
Patan Maharashtra, India – 415206

email: phadatare1969@gmail.com

0000-0002-1448-6115

Title:

Decomposable and strongly decomposable almost distributive lattices

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications

Received: 2024-09-15 , Revised: 2025-01-14 , Accepted: 2025-01-14 , Available online: 2025-10-01 , https://doi.org/10.7151/dmgaa.1492

Abstract:

The concepts of Decomposable and Strongly decomposable almost distributive lattices are introduced. Various properties of prime, minimal prime and annihilator ideals of a decomposable ADL are furnished. Some characterizations for an ideal in a strongly decomposable ADL to be totally ordered are provided.

Keywords:

Almost Distributive Lattice (ADL), prime ideal, minimal prime ideal, maximal ideal, annihilator ideal, Decomposable ADL, Strongly decomposable ADL

References:

  1. W.H. Cornish, Normal lattices, J. Australian Math. Soc. 14(2) (1972) 200–215.
    https://doi.org/10.1017/S1446788700010041
  2. G. Gratzer and E.T. Schmidt, Characterizations of relatively complemented distributive lattices, Publ. Math. (Debrecen) 5 (1958) 275–287.
    https://doi.org/10.5486/PMD.1958.5.3-4.11
  3. X. M. Lu, D.S. Liu, Z.N. Qi and H.R. Qin, Prime ideals in decomposable lattices (2010).
    arXiv: 1006.3850
  4. Y.S. Pawar, Characterizations of normal lattices, Indian J. Pure Appl. Math. 24 (1993) 651–656.
  5. Y.S. Pawar and I.A. Shaikh, The space of maximal ideals in an almost distributive lattice, Int. Math. Forum 6 (2011) 1387–1396.
  6. Y.S. Pawar and I.A. Shaikh, On prime, minimal prime and annihilator ideals in an almost distributive lattice, Eur. J Pure Appl. Math. 6(1) (2013) 107–118.
  7. N. Rafi, Ravi Kumar Bandaru and M. Srujana, $\mathcal{N}$-prime spectrum of Stone almost distributive lattices, Discuss. Math. Gen. Algebra Appl. 41(2) (2021) 299–320.
    https://doi.org/10.7151/dmgaa.1370
  8. N. Rafi, T.S. Rao and M. Srujana, Disjunctive ideals of almost distributive lattices, Discuss. Math. Gen. Algebra Appl. 42(1) (2022) 159–178.
    https://doi.org/10.7151/dmgaa.1384
  9. G.C. Rao and M. Sambasiva Rao, Annihilator ideals in almost distributive lattices, Int. Math. Forum 4 (2009) 733–746.
  10. G.C. Rao and M. Sambasiva Rao, $\alpha$-ideals and prime ideals in ADL, Int. J. Algebra 3 (2009) 221–229.
  11. G.C. Rao and S. Ravikumar, Normal almost distributive lattices, Soutest Asian Bull. Math. 32 (2008) 831–841.
  12. G.C. Rao and S. Ravikumar, Minimal prime ideals in almost distributive lattices, Int. J. Math. Sciences 4 (2009) 475–484.
  13. U.M. Swamy and G.C. Rao, Almost distributive lattices, J. Austral. Math. Soc. 31 (1981) 77–91.
    https://doi.org/10.1017/S1446788700018498
  14. U.M. Swamy, S. Ramesh and Ch. Shanti Sundar Raj, Prime Ideal Characterization of stone ADLS, Asian Eur. J. Math. 3(2) (2010) 357–367.
    https://doi.org/10.1142/S179355711000026X

Close