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1. Introduction25

With an idea of bringing common abstraction to most of the existing ring theo-26

retic and lattice theoretic generalizations of a Boolean algebra, the concept of an27

Almost Distributive Lattice (ADL) was introduced by Swamy and Rao in [13].28

An Almost Distributive Lattice (ADL) is an algebra (R,∧,∨) of type (2,2) which29

1Corresponding author.
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satisfies almost all the properties of a distributive lattice except possibly the com-30

mutativity of ∧ and ∨ and the right distributivity of ∨ over ∧. It is interesting31

to note that many results which are valid for distributive lattices are also valid32

for ADLs, even though the techniques of the proofs in case of ADLs are slightly33

different, for the reason that the operations ∧ and ∨ are not commutative. The34

concept of an ideal was introduced in an ADL analogues to that in a distributive35

lattice. A study of some properties of prime ideals, minimal prime ideals and36

annihilator ideals in an ADL is carried out in [6, 9, 10, 11] and [14]. Recently37

different types of ideals in an ADL are introduced and studied in [7] and [8].38

Motivated by the characterizations of Stone lattices obtained by Gratzer and39

Schmidt [2], Cornish [1] and Pawar [4] characterized distributive lattices with40

the least element 0 in which every prime ideal contains a unique minimal prime41

ideal and called such lattices normal lattices. This work inspired Xinmin Lu et42

al. [3] to introduce the concept of decomposable lattices by replacing the word43

normality by decomposability. A distributive lattice L with the least element 044

is said to be decomposable if for any two incomparable elements a, b ∈ L, there45

exists x, y ∈ L such that a = x ∨ (a ∧ b) and b = y ∨ (a ∧ b) and x ∧ y = 0.46

Further prime, minimal prime and special ideals in decomposable lattices are47

studied explicitly in [3]. Analogues to normal distributive lattices, normal ADLs48

are defined and studied by Rao and Ravikumar [11]. Hence it worth to introduce49

decomposability in an ADL. The work of Xinmin Lu et al. [3] motivates us to50

study some more properties of prime ideals, minimal prime ideals and annihilator51

ideals in a decomposable ADL.52

In this paper we introduce decomposable ADL. Note that our definition is53

slightly different from that for lattices. Examples of decomposable ADL and non54

decomposable ADL are furnished. Various properties of prime, minimal prime55

and annihilator ideals in a decomposable ADL are proved. The concluding section56

deals with strongly decomposable ADL. Various characterizations for an ideal in57

a strongly decomposable ADL to be totally ordered are obtained.58

2. Preliminaries59

In this section we recall some definitions and results from references that we need60

for the text of this paper.61

Recall from [13], an almost distributive lattice (ADL) with 0 is an algebra62

〈R,∧,∨, 0〉 of type (2, 2, 0) satisfying the following conditions for all x, y, z ∈ R.63

(L1) x ∨ 0 = x64

(L2) 0 ∧ x = 065

(L3) (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)66

(L4) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)67



Decomposable and strongly decomposable almost ... 3

(L5) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)68

(L6) (x ∨ y) ∧ y = y.69

Throughout this paper, R stands for an ADL 〈R,∧,∨, 0〉 with zero unless70

otherwise mentioned. For any a, b ∈ R, define a ≤ b if a = a ∧ b (or equivalently71

a∨ b = b), then ≤ is a partial ordering on R. For any m ∈ L, m is maximal with72

respect to partial ordering ≤ if and only if m∨x = m for all x ∈ L. A non-empty73

subset I of R is said to be an ideal if it satisfies the conditions:74

(i) a, b ∈ I ⇒ a ∨ b ∈ I and75

(ii) a ∈ I, x ∈ R ⇒ a ∧ x ∈ I.76

The set of all ideals of R is denoted by I(R). Note that for a, b ∈ R and I ∈ I(R)77

we have a ∧ b ∈ I if and only if b ∧ a ∈ I. The set S = {a ∧ x : x ∈ R} is the78

smallest ideal of R containing a. We denote it by S = (a] and it is called the79

principal ideal generated by a. An ideal I of R is said to be proper if I 6= R. A80

proper ideal P of R is said to be prime if for any x, y ∈ R, x ∧ y ∈ P implies81

x ∈ P or y ∈ P . A prime ideal P of R is called minimal if there exists no prime82

ideal Q of R such that Q ⊂ P . Every prime ideal of R contains a minimal prime83

ideal. A proper ideal M of R is said to be maximal if it is not properly contained84

in any proper ideal of R. R is called a pm-ADL if every prime ideal is contained85

in a unique maximal of R (see [5]). For any x ∈ R, an x-maximal ideal is an86

ideal of R which is maximal with respect to not containing x. For any non-empty87

subset A of an ADL R, define A∗ = {x ∈ R : a ∧ x = 0, for all a ∈ A}. Then88

A∗ is called the annihilator of A. For any non-empty subset A of R, A∗ is an89

ideal of R and A∗ ∩ A ⊆ {0}. An ideal I of R to be aniihilator ideal if I = I∗∗.90

For x ∈ R, the annulet {x}∗ of x is defined as {x}∗ = {y ∈ R : x ∧ y = 0}. An91

element x ∈ R is said to be dense in R if, {x}∗ = {0}. Two distinct ideals I and92

J in R are said to be co-maximal if I ∨ J = R. Dually we can define filter, prime93

filter, minimal prime filter and maximal filter. Let R be an ADL with maximal94

elements and A be the set of all maximal elements in R. An element x ∈ R is95

said to be dual dense if {x}+ = A, where {x}+ = {y ∈ R : x ∨ y = m for some96

m ∈ A}. Any two distinct filters F,G in R are said to be weakly co-maximal, if97

F ∨ G contains a dual dense element in R. An ADL, R with maximal elements98

is called a dually semi-complemented if, for each non zero element x ∈ R there99

exists a non-maximal element y ∈ R such that x∨ y is maximal. For an ADL R,100

let M(R) denotes the set of all minimal prime ideals of R.101

Proposition 1 [13]. For a, b ∈ R we have, (a∧b] = (a]∩(b] and (a∨b] = (a]∨(b].102

Proposition 2 [13]. The set I(R) of all ideals of R is a complete distributive103

lattice with the least elements {0} and the greatest element R under set inclusion,104

in which for any I, J ∈ I(R), I ∩ J is the infimum of I and J and the supremum105

is given by I ∨ J = {i ∨ j : i ∈ I, j ∈ J}.106
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Proposition 3 [6]. Let X be a non-empty subset of R such that 0 /∈ X. Then107 ⋃
{{a}∗ : a ∈ X} =

⋂
{M ∈ M(R) : M ∩X = φ}.108

Proposition 4 [9]. For any nonempty subset of A of R, A∗ is an ideal of R.109

Proposition 5 [9]. For any nonempty subset I of R we have I∗ ∩ I∗∗ = (0].110

Proposition 6 [9]. The set of all annihilator ideal of R forms a complete Boolean111

algebra.112

Proposition 7 [12]. P is a minimal prime ideal of R if and only if R \ P is a113

maximal prime filter of R.114

Proposition 8 [12]. Every prime ideal of R contains a minimal prime ideal.115

Proposition 9 [6]. For a ∈ R, any a-maximal ideal in R is prime.116

Proposition 10 [6]. For any subset A of R, A∗ =
⋂
{M ∈ M(R) : A * M}.117

3. Decomposable ADL118

For I, J ∈ I(R) we write I ‖ J when the ideals I and J are incomparable in the119

poset (I(R),⊆). At the outset we define a decomposable ADL.120

Definition. An ADL R is said to be decomposable if for any I ‖ J , where121

I, J ∈ I(R), there exists x ∈ I \ J and y ∈ J \ I such that x ∧ y = 0.122
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Figure 1. Decomposable ADL.
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Figure 2. Non Decomposable ADL.

Example 11. An ADL represented by the Hasse Digramme as in Figure 1 is123

decomposable while an ADL represented in by the Hasse Digramme as in Figure124

2 is not decomposable.125

Example 12. Let X be any non-empty set. Fix x0 ∈ X. For any x, y ∈ X,126

define ∧ and ∨ on X by x∧y = y, x∨y = x if x 6= x0 and x0∧x = x0, x0∨x = x.127

Then (X,∧,∨, x0) is an ADL with x0 as its zero element (see [13]). It can be128

verified that this ADL is decomposable.129
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A necessary and sufficient condition for a proper ideal to be prime in a130

decomposable ADL is proved in the following theorem.131

Theorem 13. In a decomposable ADL R, a proper ideal P is prime if and only132

if the set {I ∈ I(R) : I ⊇ P} is totally ordered.133

Proof. Let a proper ideal P of R be such that the set {I ∈ I(R)|I ⊇ P} is a134

totally ordered subset of I(R). Let P be not prime. Then there exist a, b ∈ R135

such that a ∧ b ∈ P with a /∈ P and b /∈ P . As P ∨ (a] ⊃ P and P ∨ (b] ⊃ P , by136

assumption P ∨ (a] ⊆ P ∨ (b] or P ∨ (b] ⊆ P ∨ (a]. Assume P ∨ (a] ⊆ P ∨ (b]. As137

a ∧ b ∈ P , we get138

P ∨ (a ∧ b] = P ∨ [(a] ∩ (b]], (by Result 1)

= [P ∨ (a]] ∩ [P ∨ (b]], (by Result 2)

= P ∨ (a]. (since P ∨ (a] ⊆ P ∨ (b]).

This shows that a ∈ P ; a contradiction. Hence P must be a prime ideal.139

For converse, let {I ∈ I(R) : I ⊇ P} be not totally ordered. Then there140

exists I, J ∈ I(R) containing P and I ‖ J . As R is a decomposable ADL there141

exist x ∈ I \ J and y ∈ J \ I with x ∧ y = 0. As x ∧ y = 0 ∈ P and P is a142

prime ideal, we get x ∈ P or y ∈ P . But then x ∈ J or y ∈ I leading to the143

contradiction. Hence {I ∈ I(R) : I ⊇ P} must be a totally ordered set.144

Note that {0} need not be a prime ideal in R (e.g. an ADL R represented in145

Figure 1). But if R is a decomposable ADL then following is a direct consequence146

of Theorem 13.147

Corollary 14. In a decomposable ADL R, {0} is a prime ideal in R if and only148

if R is totally ordered.149

From Theorem 13 and from the fact that no two maximal ideals in R are150

comparable we have the following consequence.151

Corollary 15. Any decomposable ADL is a pm-ADL.152

For a prime ideal P of R define SP =
⋂
{M ∈ M(R) : M ⊆ P}. Nec-153

essary and sufficient condition for any two prime ideals to be comparable in a154

decomposable ADL is proved in the following theorem.155

Theorem 16. In a decomposable ADL R, two prime ideals P and Q are com-156

parable if and only if SP ⊆ Q or SQ ⊆ P .157

Proof. The proof of only if part being obvious, we prove if part only. Let SP ⊆ Q158

and P ‖ Q. As R is decomposable, there exists x ∈ P \ Q and y ∈ Q \ P such159

that x ∧ y = 0. As for M ∈ M(R) contained in P , 0 = x ∧ y ∈ M implies160
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x ∈ M as y /∈ P . But then x ∈ ∩{M ∈ M(R)|M ⊆ P} = SP implies x ∈ Q;161

a contradiction. Hence P and Q must be comparable. Similarly we prove if162

SQ ⊆ P , then prime ideals P and Q are comparable.163

In the following theorem we prove a property of finite number of mutually164

incomparable prime ideals of a decomposable ADL.165

Theorem 17. Let R be a decomposable ADL and 0 < a ∈ R. If P1, P2, P3, . . . , Pn166

are mutually incomparable prime ideals of R and a /∈
⋃n

i=1
Pi. Then there exist167

ai ∈
⋂n

i 6=j Pj \ Pi such that 0 < ai < a and ai ∧ aj = 0 for i 6= j, 1 ≤ i, j ≤ n.168

Proof. We prove this theorem by induction on n ≥ 2.169

Step 1. n = 2. Let P1 ‖ P2 and a /∈ P1 ∪P2. As R is decomposable, there exists170

x1 ∈ P2 \ P1 and x2 ∈ P1 \ P2 such that x1 ∧ x2 = 0. Define a1 = a ∧ x1 and171

a2 = a ∧ x2. Then a /∈ P1 and x1 /∈ P1 imply a ∧ x1 = a1 /∈ P1. Again a /∈ P2172

and x2 /∈ P2 give a ∧ x2 = a2 /∈ P2. Clearly 0 < a1 and 0 < a2. If a1 = a,173

then a ∧ x1 = a which implies a ≤ x1 ∈ P2 which means a ∈ P2; a contradiction.174

Therefore a1 < a. Similarly, we get a2 < a. Thus 0 < a1 < a and 0 < a2 < a.175

Further a1 ∧ a2 = (a ∧ x1) ∧ (a ∧ x2) = a ∧ (x1 ∧ a ∧ x2) = a ∧ (a ∧ x1 ∧ x2) =176

a ∧ (a ∧ 0) = a ∧ 0 = 0. This shows that the result is true for n = 2.177

Step 2. Now assume that the result is true for any (n− 1) prime ideals.178

Step 3. We prove that the result holds for n. Let P1 ‖ P2 ‖ P3 · · · ‖ Pn179

and a /∈
⋃n

i=1
Pi. Then P1 ‖ P2 ‖ P3 · · · ‖ Pn−1 and a /∈

⋃n−1

i=1
Pi. By induction180

hypothesis, there exist bi /∈ Pi such that 0 < bi < a and bi∧bj = 0 for i 6= j where181

i, j ∈ {1, 2, 3, . . . , n − 1}. Also we have P2 ‖ P3 ‖ P4 · · · ‖ Pn and a /∈
⋃n

i=2
Pi.182

Therefore again by induction hypothesis, there exist ci /∈ Pi such that 0 < ci < a183

and ci ∧ cj = 0 for i 6= j, where i, j ∈ {2, 3, . . . , n}. Further P1 ‖ Pn and184

a /∈ P1 ∪ Pn. Therefore by step 1, there exist d1 /∈ P1, dn /∈ Pn such that185

0 < d1 < a and 0 < dn < a and d1 ∧ dn = 0. Since bi /∈ Pi and ci /∈ Pi, we186

get fi = bi ∧ ci /∈ Pi for i ∈ {2, 3, . . . , n − 1}. It is easy to verify that fi < a187

and fi ∧ fj = 0 for i 6= j. If fi = bi ∧ ci = 0, then bi ∈ Pi or ci ∈ Pi, which is188

not true. Therefore we must have fi > 0. Let f1 = b1 ∧ d1 and fn = cn ∧ dn.189

Since b1 /∈ P1 and d1 /∈ P1 we get f1 = b1 ∧ d1 /∈ P1. Also 0 < f1 < a.190

Similarly cn /∈ Pn and dn /∈ Pn ⇒ fn = cn ∧ dn /∈ Pn. Further 0 < fn < a and191

f1 ∧ fn = b1 ∧ d1 ∧ cn ∧ dn = b1 ∧ cn ∧ d1 ∧ dn = b1 ∧ cn ∧ 0 = 0. This shows that192

there exist f1, f2, . . . , fn in R such that fi /∈ Pi, 0 < fi < a and fi ∧ fj = 0 for193

i, j ∈ {1, 2, . . . , n}. This shows that the result is true for n.194

Hence by the principal of induction, the result is true for all n ≥ 2.195

Let Ñ(R) denote the set of all annihilator ideal in R i.e., Ñ(R) = {I ∈196

I(R) : I = I∗∗}. We know that Ñ(R) forms a complete Boolean algebra (by197
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Proposition 6). In the view of definition of decomposable ADL, Theorem 6 in [6]198

can be restated as follows.199

Theorem 18. In a decomposable ADL R, for any prime ideal P in R, the fol-200

lowing statements are equivalent.201

(i) For any I ∈ I(R), I and P are comparable.202

(ii) For any N ∈ Ñ(R) \R,N ⊆ P .203

(iii) For any M ∈ M(R),M ⊆ P .204

(iv) For any a /∈ P, {a}∗ = {0}. (i.e., each element of (R \ P ) is dense in R).205

Proof. By Theorem 5 in [6], we have (i) ⇒ (ii) ⇒ (iii) ⇒ (iv). Therefore it is206

sufficient to prove (iv) ⇒ (i).207

Suppose, if possible, that there is an ideal I of R such that I ‖ P . Since R208

is decomposable, there exist x ∈ I \ P and y ∈ P \ I such that x ∧ y = 0. Then209

x > 0, y > 0 and y ∈ {x}∗. Also by assumption, x /∈ P implies {x}∗ = {0}. Thus210

y ∈ {x}∗ = {0} gives y = 0; a contradiction. Hence I and P must be comparable.211

This proves (iv) ⇒ (i).212

4. Strongly Decomposable ADL213

In this section we introduce strongly decomposable ADL and prove some char-214

acterizations for an ideal in a strongly decomposable ADL to be totally ordered.215

For a, b ∈ R, we write a ‖ b, when a, b are incomparable in (R,≤).216

Definition. An ADL R is said to be strongly decomposable if for a ‖ b, a, b ∈ R,217

there exist x, y ∈ R such that a = x ∨ (a ∧ b) and b = y ∨ (a ∧ b) and x ∧ y = 0.218

Let < R,∧,∨, 0 > be an ADL where R = {0, a, b, c} and ∧ and ∨ defined on219

R as shown by the following tables220

∨ 0 a b c

0 0 a b c

a a a b b

b b b b b

c c b b c

∧ 0 a b c

0 0 0 0 0

a 0 a a 0

b 0 a b c

c 0 0 c c

The ADL < R,∧,∨, 0 > is strongly decomposable.221

Naturally, we have the relation between strongly decomposable ADL and222

decomposable ADL as given below.223

Theorem 19. Everly strongly decomposable ADL is decomposable.224
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Proof. Let R be strongly decomposable. Let I ‖ J in I(R). Therefore there225

exist x ∈ I \ J and y ∈ J \ I such that x ‖ y. Since R is strongly decomposable,226

there exist a, b ∈ R such that x = a ∨ (x ∧ y) and y = b ∨ (x ∧ y), with a∧ b = 0.227

Now a ≤ x gives a = x ∧ a ∈ I (as x ∈ I). Thus a ∈ I. As y ∈ J we have228

x ∧ y ∈ J . If a ∈ J we will have a ∨ (x ∧ y) ∈ J i.e., x ∈ J ; a contradiction.229

Therefore a /∈ J . Thus a ∈ I \ J . Similarly, b ∈ J \ I. Thus for I ‖ J in I(R)230

there exist a ∈ I \ J and b ∈ J \ I such that a ∧ b = 0. This proves that R is231

decomposable.232

A sufficient condition for I∗∗ to be be totally ordered is proved in the following233

theorem, where I 6= {0} is an ideal of a strongly decomposable ADL R.234

Theorem 20. Let R be a strongly decomposable ADL and I 6= {0} be an ideal235

of R. Then I∗∗ is a totally ordered ideal, if I∗ is a prime ideal of R.236

Proof. By Proposition 4, we have I∗∗ is an ideal in R. Assume, if possible, that237

I∗∗ is not totally ordered. Then there exist x, y ∈ I∗∗ such that x ‖ y. As R238

is strongly decomposable, there exist a, b ∈ R such that x = a ∨ (x ∧ y) and239

y = b ∨ (x ∧ y) with a ∧ b = 0. Therefore a ≤ x and b ≤ y which imply a = a ∧ x240

and b = b ∧ y. Since x ∈ I∗∗ and I∗∗ is an ideal of R, we get a ∧ x ∈ I∗∗ which241

means a ∈ I∗∗. Similarly we obtain b ∈ I∗∗. Since I∗ is a prime ideal of R and242

a ∧ b = 0 ∈ I∗ we get a ∈ I∗ or b ∈ I∗. If a ∈ I∗, then a ∈ I∗ ∩ I∗∗ = (0] which243

means a = 0. But then x = a ∨ (x ∧ y) = 0 ∨ (x ∧ y) = x ∧ y. This gives x ≤ y;244

which is not possible (as x ‖ y). Similarly b ∈ I∗ implies b = 0 and consequently245

y ≤ x; which is again absurd. Hence I∗∗ must be a totally ordered ideal.246

We characterize non-zero, totally ordered ideal in a strongly decomposable247

ADL R in the following theorem.248

Theorem 21. In a strongly decomposable ADL R, following statements are equiv-249

alent for any ideal I 6= {0} in R.250

(i) I is totally ordered.251

(ii) For any 0 < a ∈ I, {a}∗ = I∗.252

(iii) I∗ is a prime ideal of R.253

(iv) I∗ is a minimal prime ideal of R.254

(v) I∗∗ is a maximal totally ordered ideal of R.255

(vi) I∗∗ is a minimal annihilator ideal of R.256

(vii) I∗ is a maximal annihilator ideal of R.257

(viii) For any 0 < x ∈ I, x-maximal ideal is unique.258

(ix) Each 0 < z ∈ I is contained in a unique maximal filter of R.259
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Proof. (i) ⇒ (ii) Let 0 < a ∈ I. Then clearly I∗ ⊆ {a}∗. Let, if possible,260

I∗ ⊂ {a}∗. Select x ∈ {a}∗ \ I∗. Then x > 0, x ∧ a = 0 and x ∧ b 6= 0 for some261

b ∈ I. As I is totally ordered, either x ∧ b ≤ a or a ≤ x ∧ b. If x ∧ b ≤ a, then262

x∧b = x∧b∧a = x∧a∧b = (x∧a)∧b = 0∧b = 0. Thus x∧b = 0; a contradiction.263

If a ≤ x∧ b, then a = a∧x∧ b = x∧ a∧ b = 0∧ b = 0; a contradiction. Therefore264

we must have I∗ = {a}∗ for 0 < a ∈ I.265

(ii) ⇒ (iii) By Proposition 4, I∗ is an ideal in R. On contrary assume that I∗ is266

not prime. Then there exist a, b ∈ R such that a /∈ I∗ and b /∈ I∗ but a ∧ b ∈ I∗.267

Then a ∧ x > 0 for some x ∈ I. For, if a ∧ x = 0 for all x ∈ I, then a ∈ I∗ which268

is not possible. Similarly b ∧ y > 0 for some y ∈ I.269

Now, (a∧x)∧ (b∧y) = a∧ (x∧b∧y) = a∧ (b∧x∧y) = (a∧b)∧ (x∧y). Since270

x∧y ∈ I and a∧b ∈ I∗, we have (a∧b)∧(x∧y) = 0. Therefore (a∧x)∧(b∧y) = 0271

which means b∧y ∈ {a∧x}∗. As 0 < a∧x ∈ I, by hypothesis we get {a∧x}∗ = I∗.272

Therefore b∧ y ∈ I ∩ I∗ = {0} which yields b∧ y = 0; a contradiction. Therefore273

I∗ is a prime ideal in R.274

(iii) ⇒ (iv) If possible assume that the prime ideal I∗ is not a minimal prime275

ideal of R. By Proposition 8, there exists a minimal prime ideal M of R such276

that M ⊂ I∗. If I * M , then I∗ ⊆ M (since from Proposition 10 we have277

I∗ = ∩{M ∈ M(R) : I * M}); which contradicts to the fact that M is a minimal278

prime ideal of R. Therefore I ⊆ M . Thus I = I ∩M ⊆ I ∩ I∗ = {0} which means279

I = {0}; a contradiction. Therefore I∗ must be a minimal prime ideal of R.280

(iv) ⇒ (v) By Theorem 20, we have I∗∗ is a totally ordered ideal. We need to281

prove that I∗∗ is a maximal totally ordered ideal of R. Let if possible there exists282

a totally ordered proper ideal J of R containing I∗∗ properly. Select x ∈ J \ I∗∗.283

Then x > 0 and x ∧ y > 0 for some y ∈ I∗. But then x ∧ y ∈ I∗. Also x ∈ J and284

J is an ideal imply x ∧ y ∈ J . Pick up any 0 < a ∈ I. Then a ∈ I ⊆ I∗∗ ⊂ J285

i.e., a ∈ J . Since J is totally ordered and a, x ∧ y ∈ J , we have a ≤ x ∧ y286

or x ∧ y ≤ a. If a ≤ x ∧ y, then a = a ∧ (x ∧ y) = 0 and if x ∧ y ≤ a, then287

x ∧ y = (x ∧ y) ∧ a = 0 (since x ∧ y ∈ I∗ and a ∈ I). Thus in either case we288

get a contradiction. Therefore our assumption is wrong. This shows that I∗∗ is289

a maximal totally ordered ideal of R.290

(v) ⇒ (vi) Obviously I∗∗ is an annihilator ideal. Let T be a non zero annihilator291

ideal of R contained in I∗∗. Since I∗∗ is totally ordered (by assumption), we get292

T is also totally ordered ideal of R. From previously established parts of this293

theorem we have (i) ⇒ (v), therefore we get T ∗∗ is a maximal totally ordered294

ideal of R. As T = T ∗∗ we get T = I∗∗. This shows that no non-zero annihilator295

ideal is contained in I∗∗ properly. Hence I∗∗ is a minimal annihilator ideal of R.296

(vi) ⇒ (vii) We have Ñ(R), the set of all annihilator ideal of R, is a Boolean297

algebra (from Proposition 6). Define a mapping θ : Ñ(R) → Ñ(R) by θ(I) = I∗.298

Then θ is a dual isomorphism. Therefore if I∗∗ is a minimal element in Ñ(R), then299
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θ(I∗∗) = I∗ is a maximal element in Ñ(R). Hence I∗ is a maximal annihilator300

ideal of R.301

(vii) ⇒ (viii) Suppose there exists some 0 < x ∈ I which has two distinct x-302

maximal ideals say M1 and M2. x /∈ M1 and M1 is prime imply I∗ ⊆ M1.303

Similarly x /∈ M2 and M2 is prime gives I∗ ⊆ M2. Thus I∗ ⊆ M1 ∩ M2. As304

M1 ‖ M2, there exist s ∈ M1 \ M2 and t ∈ M2 \ M1 such that s ∧ t = 0 (by305

Theorem 19). Since s ∧ t = 0 we have t ∧ s = 0 which implies a ∧ (t ∧ s) = 0.306

Therefore (t ∧ a) ∧ s = 0 i.e., s ∧ (t ∧ a) = 0 which yields s ∈ {t ∧ a}∗ = {a ∧ t}∗.307

Also as a ∈ I we have a ∧ t ∈ I. This gives {a ∧ t}∗ ⊇ I∗. Since I∗ is a maximal308

annihilator ideal of R we get {a ∧ t}∗ = I∗. Thus s ∈ I∗ and hence s ∈ M2; a309

contradiction. Hence for each 0 < x ∈ I, there exist only one x-maximal ideal310

of R.311

(viii) ⇒ (i) Assume, if possible, that I is not totally ordered. Then there exist x, y312

in I such that x ‖ y. Since R is strongly decomposable, there exist a, b ∈ R such313

that x = a∨ (x∧ y) and y = b∨ (x∧ y) with a∧ b = 0. As x, y ∈ I we get a, b ∈ I314

and a 6= b. Let M1 denote a-maximal ideal and M2 denote b-maximal ideal of R.315

Therefore M1 6= M2. For, if M1 = M2, then Proposition 9 and a ∧ b = 0 ∈ M1316

imply a ∈ M1 or b ∈ M1. As M1 is a-maximal ideal, we have b ∈ M1 = M2 i.e.,317

b ∈ M2; which contradicts to the fact that M2 is b-maximal ideal. Now a /∈ M1318

implies a∨b /∈ M1. Therefore M1 is a a∨b-maximal ideal. Similarly b /∈ M2 gives319

a ∨ b /∈ M2. Therefore M2 is a a ∨ b-maximal ideal. Thus 0 < a ∨ b ∈ I has two320

distinct a ∨ b-maximal ideals. This contradicts to our hypothesis (viii). Hence I321

must be a totally ordered ideal.322

(vii) ⇒ (ix) Let there exist some 0 < z ∈ I such that it is contained in two distinct323

maximal filters say F1 and F2 of R. Define Q1 = R \ F1 and Q2 = R \ F2. Then324

by Proposition 7, Q1 and Q2 are distict minimal prime ideals of R and hence they325

are incomparable. R being a decomposable ADL (by Theorem 19), there exist326

x ∈ Q1 \Q2, y ∈ Q2 \Q1 such that x ∧ y = 0. Now z /∈ Q1 implies I∗ ⊆ Q1 and327

z /∈ Q2 implies I∗ ⊆ Q2. Thus I
∗ ⊆ Q1 ∩Q2. Also z ∧ y ∈ I gives {z ∧ y}∗ ⊇ I∗.328

By hypothesis (vii) we get {z ∧ y}∗ = I∗. Now x ∧ z ∧ y = z ∧ x ∧ y = z ∧ 0 = 0.329

Therefore x ∈ {z ∧ y}∗ = I∗. This in turn gives x ∈ Q1 ∩ Q2; which is absurd.330

This shows that each 0 < z ∈ I must be contained in a unique maximal filter.331

(ix) ⇒ (i) Assume, if possible, that I is not totally ordered. Therefore there exist332

x, y ∈ I such that x ‖ y. As R is strongly decomposable, there exist a, b ∈ R such333

that x = a ∨ (x ∧ y), y = b ∨ (x ∧ y) with a ∧ b = 0. Now, a ≤ a ∨ (x ∧ y) = x334

and b ≤ b ∨ (x ∧ y) = y. Therefore a = a ∧ x and b = b ∧ y. As x ∈ I we have335

a ∧ x ∈ I which means a ∈ I. Similarly, y ∈ I gives b ∈ I. As 0 < a ∈ I, a must336

be contained in a unique maximal filter say M1 of R. Also 0 < b ∈ I implies b337

must be contained in a unique maximal filter say M2 of R. Further a∧ b = 0 will338

give M1 6= M2. Since a ∈ M1 and as b ∈ M2 we have a∨ b ∈ M1 and a∨ b ∈ M2.339
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Thus 0 < a ∨ b ∈ I and a ∨ b is contained in two distinct maximal filter M1 and340

M2; a contradiction. Hence I must be a totally ordered ideal.341

Hence all the statements are equivalent.342

A sufficient condition for a non-zero, proper annihilator ideal of R to be343

a minimal prime ideal of a strongly decomposable ADL R is furnished in the344

following theorem.345

Theorem 22. Let N be a non-zero, proper annihilator ideal of a strongly decom-346

posable ADL R i.e., N ∈ Ñ(R) \ {R, {0}}. If any two annihilator ideals of R are347

either comparable or co-maximal then N is minimal prime ideal of R.348

Proof. Let R be strongly decomposable ADL such that any two annihilator349

ideals of R are either comparable or co-maximal. Let N ∈ Ñ(R) \ {R, {0}}.350

Assume that N is not a minimal prime ideal of R. Let us denote N∗ = A. Then351

A is an ideal of R. As N is an annihilator ideal we have N = N∗∗ and therefore352

N = A∗. Thus N = A∗ is not a minimal prime ideal in R. But then A is not a353

totally ordered ideal (by Theorem 21). Hence there exist x, y ∈ A such that x ‖ y.354

As R is strongly decomposable, there exist a, b ∈ R such that x = a ∨ (x ∧ y)355

and y = b ∨ (x ∧ y) with a ∧ b = 0. Then a, b ∈ A and 0 < a and 0 < b. As356

{a}∗ and {b}∗ are annihilator ideals of R, by hypothesis they are co-maximal or357

comparable.358

Case 1. Let {a}∗ and {b}∗ be co-maximal i.e., {a}∗ ∨ {b}∗ = R. Then using359

Proposition 2 and Proposition 5 we have360

{a}∗∗ = {a}∗∗ ∩ R = {a}∗∗ ∩ [{a}∗ ∨ {b}∗] = [{a}∗∗ ∩ {a}∗] ∨ [{a}∗∗ ∩ {b}∗]361

= {0} ∨ [{a}∗∗ ∩ {b}∗] = {a}∗∗ ∩ {b}∗. Therefore {a}∗∗ ⊆ {b}∗ · · · (I)362

Again by hypothesis the annihilator ideals {a}∗∗ and {b}∗∗ are co-maximal or363

comparable.364

Subcase 1. Suppose {a}∗∗ and {b}∗∗ are co-maximal i.e., {a}∗∗ ∨ {b}∗∗ = R.365

Then {a}∗ = {a}∗ ∩R = {a}∗ ∩ [{a}∗∗ ∨ {b}∗∗] = [{a}∗ ∩ {a}∗∗] ∨ [{a}∗ ∩ {b}∗∗]366

= {0} ∨ [{a}∗ ∩ {b}∗∗] = {a}∗ ∩ {b}∗∗.367

Thus {a}∗ ⊆ {b}∗∗ which means {b}∗ ⊆ {a}∗∗ · · · (II).368

Combining the inclusions from (I) and (II) we get {b}∗ = {a}∗∗. As a, b ∈ A369

we have {a}∗ ⊇ A∗ and {b}∗ ⊇ A∗. Therefore {a}∗ ∩ {b}∗ ⊇ A∗ which gives370

{a}∗ ∩ {a}∗∗ ⊇ A∗ i.e., A∗ = {0} (by Proposition 5). Therefore N = A∗ = {0}; a371

contradiction.372

Subcase 2. Suppose {a}∗∗ and {b}∗∗ are comparable. Then either {a}∗∗ ⊆373

{b}∗∗ or {b}∗∗ ⊆ {a}∗∗. If {a}∗∗ ⊆ {b}∗∗ then {a}∗∗ ⊆ {a}∗ (using (I)). Therefore374

{a}∗∗ = {a}∗∗ ∩ {a}∗ = {0} which yields {a}∗ = R. This is impossible. Similarly375

{b}∗∗ ⊆ {a}∗∗ leads us to {b}∗ = R which is again impossible.376
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Case 2. Let {a}∗ and {b}∗ be comparable. Then either either {a}∗ ⊆ {b}∗ or377

{b}∗ ⊆ {a}∗. If {a}∗ ⊆ {b}∗ then as a∧ b = 0 we get b ∈ {a}∗ ⊆ {b}∗. This gives378

b = 0, which is absurd. Similarly {b}∗ ⊆ {a}∗ gives a ∈ {a}∗ which means a = 0;379

a contradiction. Thus from Case 1 and Case 2 it follows that our assumption is380

wrong. Hence any non-zero, proper annihilator ideal N is minimal prime ideal381

of R.382
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