DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in press


Authors:

M.E. Darwish

Majd Eddin Darwish

Department of Mathematics
Andhra University
Visakhapatnam, Andhra Pradesh
India-530003

email: majdeddindarwish@gmail.com

0009-0003-6174-0547

G.N. Rao

G.Nanaji Rao

Department of Mathematics
Andhra University
Visakhapatnam, Andhra Pradesh
India-530003

email: dr.gnanajirao@andhrauniversity.edu.in

0000-0002-0375-5834

Title:

On the grading of quotient semirings

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications

Received: 2025-06-02 , Revised: 2025-08-26 , Accepted: 2025-09-01 , Available online: 2025-09-05 , https://doi.org/10.7151/dmgaa.1489

Abstract:

This paper investigates the grading of the quotient semiring of a graded semiring and explores many relationships between the homogeneous components of both gradings. Furthermore, the relationship between the supports of the original and induced gradings is established.

Keywords:

simiring,, graded semiring, quotient semiring

References:

  1. M. Abu Shamla, On Some Types of Ideals in Semirings, M. Sc. Thesis (The Islamic University of Gaza, Palestine, 2008).
  2. P.J. Allen, A fundamental theorem of homomorphisms for semirings, Proc. Amer. Math. Soc. 21(2)(1969) 412–416.
    https://doi.org/10.2307/2037016
  3. P.J. Allen, H.S. Kim and J. Neggers, Ideal theory in graded semirings, Appl. Math. Inform. Sci. 7(2013) 87–91. https://digitalcommons.aaru.edu.jo/amis/vol07/iss1/9
  4. H. Chen, Characterizations of normal cancellative monoids, AIMS Math. 9(1)(2024) 302–318.
    https://doi.org/10.3934/math.2024018
  5. M.E. Darwish, N. Alnader and H. Qrewi, On the Augmented Graduation for Some of Semirings and its Rings of Differences, University of Aleppo Research Journal (Basic Sciences Series, 2021) No. 149.
  6. M.E. Darwish, A Study on the Graduation of Semirings and about Graded Semirings, M. Sc. Thesis (Aleppo University, Aleppo, Syria, 2022).
  7. T.K. Dutta, S.K. Sardar and S. Goswami, Operations on Fuzzy Ideals of $Γ$-semirings, arXiv preprint arXiv:1101.4791 (2011).
    https://doi.org/10.48550/arXiv.1101.4791
  8. A.S. Ebrahimi, The ideal theory in quotients of commutative semirings, Glas. Math. 42(2007) 301–308.
    https://doi.org/10.3336/gm.42.2.05
  9. C. Faith, Algebra: rings, modules and categories I, Vol. 190 (Springer Science & Business Media, 2012).
  10. J.S. Golan, Semirings and their Applications (Springer Science & Business Media, 2013).
  11. U. Hebisch and H.J. Weinert, Semirings without zero divisors, Math. Pannon 1(1990) 73–94.
  12. M.A. Javed, M. Aslam and M. Hussain, On condition $(A2)$ of Bandlet and Petrich for inverse semirings, Int. Math. Forum 7(59) (2012) 2903–2914.
  13. N. Kimura, The Structure of Idempotent Semigroups. I, Pacific J. Math. 8(2) (1958) 257–275.
  14. D. Kirsten, The support of a recognizable series over a zero-sum free, commutative semiring is recognizable, Developments in Language Theory: 13th International Conference, DLT 2009, Stuttgart, Germany, June 30–July 3, 2009, Proceedings 13, Springer Berlin Heidelberg (2009) 326–333.
    https://doi.org/10.1007/978-3-642-02737-6_26
  15. M. Korbelář, Torsion and divisibility in finitely generated commutative semirings, Semigroup Forum 95(2) (2017) 293–302.
    https://doi.org/10.1007/s00233-016-9827-4
  16. M. Korbelář and G. Landsmann, One-generated semirings and additive divisibility, J. Algebra and Its Appl. 16(2) (2017) 1750038.
    https://doi.org/10.1142/S0219498817500384
  17. D.R. LaTorre, A note on quotient semirings, Proc. Amer. Math. Soc. 24(3) (1970) 463–465.
    https://doi.org/10.2307/2037388
  18. I. Melnyk, On quasi-prime differential semiring ideals, Nauk. Visnyk Uzhgorod. Univ. Ser. Math. and informat. 37(2) (2020) 63–69.
    https://doi.org/10.24144/2616-7700.2020.2
  19. R.R. Nazari and S. Ghalandarzadeh, Multiplication semimodules, Acta Univ. Sapientiae, Mathematica 11(1) (2019) 172–185.
    https://doi.org/10.2478/ausm-2019-0014
  20. V. Ponomarenko, Arithmetic of semigroup semirings, Ukrainskyi Matematychnyi Zhurnal 67(2) (2015) 213–229.
  21. K. Saito, Inversion formula for the growth function of a cancellative monoid, J. Algebra 385 (2013) 314–332.
    https://doi.org/10.1016/j.jalgebra.2013.01.037
  22. R.P. Sharma and T.R. Sharma, G-prime ideals in semirings and their skew group semirings, Commun. Algebra 34(12) (2006) 4459–4465.
    https://doi.org/10.1080/00927870600938738
  23. R.P. Sharma and R. Joseph, Prime ideals of group graded semirings and their smash products, Vietnam J. Math. 36(4) (2008) 415–426.
  24. R.P. Sharma, M. Dadhwal and R. Sharma, Relationships between a semiring R and quotient semiring $R_Q (I)$, J. Combin., Inform. & System Sci. 41(4) (2016).
  25. H.S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40(12) (1934) 914–920.

Close