Article in press
Authors:
Title:
On the grading of quotient semirings
PDFSource:
Discussiones Mathematicae - General Algebra and Applications
Received: 2025-06-02 , Revised: 2025-08-26 , Accepted: 2025-09-01 , Available online: 2025-09-05 , https://doi.org/10.7151/dmgaa.1489
Abstract:
This paper investigates the grading of the quotient semiring of a graded semiring and explores many relationships between the homogeneous components of both gradings. Furthermore, the relationship between the supports of the original and induced gradings is established.
Keywords:
simiring,, graded semiring, quotient semiring
References:
- M. Abu Shamla, On Some Types of Ideals in Semirings, M. Sc. Thesis (The Islamic University of Gaza, Palestine, 2008).
- P.J. Allen, A fundamental theorem of homomorphisms for semirings, Proc. Amer. Math. Soc. 21(2)(1969) 412–416.
https://doi.org/10.2307/2037016 - P.J. Allen, H.S. Kim and J. Neggers, Ideal theory in graded semirings, Appl. Math. Inform. Sci. 7(2013) 87–91. https://digitalcommons.aaru.edu.jo/amis/vol07/iss1/9
- H. Chen, Characterizations of normal cancellative monoids, AIMS Math. 9(1)(2024) 302–318.
https://doi.org/10.3934/math.2024018 - M.E. Darwish, N. Alnader and H. Qrewi, On the Augmented Graduation for Some of Semirings and its Rings of Differences, University of Aleppo Research Journal (Basic Sciences Series, 2021) No. 149.
- M.E. Darwish, A Study on the Graduation of Semirings and about Graded Semirings, M. Sc. Thesis (Aleppo University, Aleppo, Syria, 2022).
- T.K. Dutta, S.K. Sardar and S. Goswami, Operations on Fuzzy Ideals of $Γ$-semirings, arXiv preprint arXiv:1101.4791 (2011).
https://doi.org/10.48550/arXiv.1101.4791 - A.S. Ebrahimi, The ideal theory in quotients of commutative semirings, Glas. Math. 42(2007) 301–308.
https://doi.org/10.3336/gm.42.2.05 - C. Faith, Algebra: rings, modules and categories I, Vol. 190 (Springer Science & Business Media, 2012).
- J.S. Golan, Semirings and their Applications (Springer Science & Business Media, 2013).
- U. Hebisch and H.J. Weinert, Semirings without zero divisors, Math. Pannon 1(1990) 73–94.
- M.A. Javed, M. Aslam and M. Hussain, On condition $(A2)$ of Bandlet and Petrich for inverse semirings, Int. Math. Forum 7(59) (2012) 2903–2914.
- N. Kimura, The Structure of Idempotent Semigroups. I, Pacific J. Math. 8(2) (1958) 257–275.
- D. Kirsten, The support of a recognizable series over a zero-sum free, commutative semiring is recognizable, Developments in Language Theory: 13th International Conference, DLT 2009, Stuttgart, Germany, June 30–July 3, 2009, Proceedings 13, Springer Berlin Heidelberg (2009) 326–333.
https://doi.org/10.1007/978-3-642-02737-6_26 - M. Korbelář, Torsion and divisibility in finitely generated commutative semirings, Semigroup Forum 95(2) (2017) 293–302.
https://doi.org/10.1007/s00233-016-9827-4 - M. Korbelář and G. Landsmann, One-generated semirings and additive divisibility, J. Algebra and Its Appl. 16(2) (2017) 1750038.
https://doi.org/10.1142/S0219498817500384 - D.R. LaTorre, A note on quotient semirings, Proc. Amer. Math. Soc. 24(3) (1970) 463–465.
https://doi.org/10.2307/2037388 - I. Melnyk, On quasi-prime differential semiring ideals, Nauk. Visnyk Uzhgorod. Univ. Ser. Math. and informat. 37(2) (2020) 63–69.
https://doi.org/10.24144/2616-7700.2020.2 - R.R. Nazari and S. Ghalandarzadeh, Multiplication semimodules, Acta Univ. Sapientiae, Mathematica 11(1) (2019) 172–185.
https://doi.org/10.2478/ausm-2019-0014 - V. Ponomarenko, Arithmetic of semigroup semirings, Ukrainskyi Matematychnyi Zhurnal 67(2) (2015) 213–229.
- K. Saito, Inversion formula for the growth function of a cancellative monoid, J. Algebra 385 (2013) 314–332.
https://doi.org/10.1016/j.jalgebra.2013.01.037 - R.P. Sharma and T.R. Sharma, G-prime ideals in semirings and their skew group semirings, Commun. Algebra 34(12) (2006) 4459–4465.
https://doi.org/10.1080/00927870600938738 - R.P. Sharma and R. Joseph, Prime ideals of group graded semirings and their smash products, Vietnam J. Math. 36(4) (2008) 415–426.
- R.P. Sharma, M. Dadhwal and R. Sharma, Relationships between a semiring R and quotient semiring $R_Q (I)$, J. Combin., Inform. & System Sci. 41(4) (2016).
- H.S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40(12) (1934) 914–920.
Close