
Discussiones Mathematicae1

General Algebra and Applications xx (xxxx) 1–202

3

ON THE GRADING OF QUOTIENT SEMIRINGS4

Majd Eddin Darwish5

Department of Mathematics, Andhra University6

Visakhapatnam, Andhra Pradesh7

India-5300038

e-mail: majdeddindarwish@gmail.com9

and10

G. Nanaji Rao11

Department of Mathematics, Andhra University12

Visakhapatnam, Andhra Pradesh13

India-53000314

e-mail: dr.gnanajirao@andhrauniversity.edu.in15

Abstract16

This paper investigates the grading of a quotient semiring of a graded17

semiring and explores many relationships between the homogeneous compo-18

nents of both gradings. Furthermore, the relationship between the supports19

of the original and induced gradings is established.20

Keywords: Semiring, Graded Semiring, Quotient Semiring.21

2020 Mathematics Subject Classification: 16Y60, 16W50.22

1. Introduction23

The concept of semirings was first introduced by H. S. Vandiver in 1935 [25],24

and it has since garnered considerable attention from researchers across various25

fields of mathematics. Semirings naturally arise in numerous mathematical areas26

due to their versatile structure. In 2008, Sharma and Joseph [23] introduced27

the notion of grading of a semiring by a finite group and investigated several28

properties related to such gradings. Earlier, in 1969, P. J. Allen [2] introduced29

the concepts of Q-ideals and the quotient semirings of a semiring. The quotient30

semiring has the greatest importance, as there are many studies that explain its31
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importance. Next, the grading of semiring plays an important role in studying its32

properties, as it saves us effort and time to obtain the results, as we do not need33

to deal with the semiring to study its properties. Rather, it is only sufficient to34

deal with one or more subsets of it (homogeneous components) to judge whether35

that semiring checks this property or not. But the problem was how we would36

grade the quotient semiring.37

In this research paper, we solved that problem by grading the quotient semir-38

ing of a graded semiring. We demonstrate how there are relationships between39

the homogeneous components of the original graded semiring and those of the40

quotient semiring. To this end, we investigate several properties that help to41

clarify how such connections can be established. Particularly, when the semiring42

is assumed to be E-inversive [1], yoked [10, 23], inverse [12], additively regular43

[12], additively idempotent [1], additively cancellative [18], M -divisible [15, 16],44

divisible [15, 16], almost-divisible [15], or zero sum free [14] and when an element45

in the semiring is assumed to be infinite [7],M -divisible [15, 16], divisible [15, 16],46

almost-divisible [15], or additively idempotent [1]. Moreover, we explore the rela-47

tionship between the zeroids [18] of both the semiring and its quotient semiring.48

As a future idea, we will extend our research on studying as many properties49

and relations between the semiring and the quotient semiring as possible. The50

problem of the grading of a quotient semiring has already been solved in this51

research paper.52

2. preliminaries53

This section introduces key definitions concerning semirings and quotient54

semirings, which will be frequently referenced throughout the text [1, 3, 5, 7, 8,55

10, 12, 14, 15, 16, 17, 18, 19, 22, 23, 24].56

Note that by a group (monoid, semigroup) we mean a multiplicative group57

(multiplicative monoid, multiplicative semigroup) unless otherwise specified. For58

the definition of commutative cancellative monoid, see [4, 21], and for the defini-59

tion of yoked semigroup, see [20].60

Definition 2.1 [3, 19]. A semiring is a nonempty set R with two associative61

operations (+) and (.) for which (+) is commutative and there exists 0 ∈ R such62

that for each α ∈ R, we get α0 = 0α = 0 and α + 0 = α, and the multiplication63

operation is distributive over addition on both sides.64

If (.) is commutative, then R is called commutative. A subsemiring S of a65

semiring R with zero 0 is a nonempty subset of the semring R satisfies α+β, αβ ∈66

S for all α, β ∈ S and 0 ∈ S.67

Definition 2.2 [18, 22]. A semiring R is said to be additively cancellative if for68

all a, b, c ∈ R, a+ b = a+ c implies that b = c.69
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Definition 2.3 [18]. The zeroid Zr(R) of a semiring R is the set70

Zr(R) = {x ∈ R|∃y ∈ R, x+ y = y}71

Definition 2.4 [1]. Denote by E+(R) the set of all additive idempotent elements72

in a semiring R where an additive idempotent element in R is such an element73

ζ for which ζ = ζ + ζ, and if all elements in R are additive idempotent, then R74

is called additively idempotent. Now, if for each κ ∈ R there exists an element75

ψ ∈ R for which κ+ ψ ∈ E+(R), then R is called E-inversive.76

Definition 2.5 [10, 23]. In a semiring R if for every ζ, κ ∈ R, there exists ψ ∈ R77

for which ζ + ψ = ζ or κ+ ψ = ζ, then R is called yoked.78

Definition 2.6 [14]. A semiring R is said to be zero-sum free if for all ζ, κ ∈ R,79

ζ + κ = 0 implies that ζ = κ = 0.80

Definition 2.7 [12]. An element ζ in a semiring R is called additively regular if81

there exists unique element κ ∈ R such that ζ = ζ + κ+ ζ. If every element in R82

is additively regular, then R is called additively regular.83

Definition 2.8 [12]. An element ζ in a semiring R is called inverse if there exists84

unique element κ ∈ R such that ζ = ζ+κ+ ζ and κ = κ+ ζ+κ. If every element85

in R is inverse, then R is called inverse.86

Definition 2.9 [7]. an element ζ in a semiring R is called infinite if ζ + κ = ζ87

for all κ ∈ R.88

Definition 2.10 [15, 16]. Let (R,+) be a semigroup. Suppose ϕ ̸= M ⊆ Z+.89

An element α ∈ R is said to be M -divisible in R if for each n ∈ M there exists90

β ∈ R such that α = nβ.91

A semigroup (R,+) is said to beM -divisible (divisible, resp.) if every element92

of R is M - divisible (Z+-divisible, resp.) in R.93

A semiring R is said to be additively M -divisible (additively divisible, resp.)94

if (R,+) is an M -divisible semigroup (a divisible semigroup, resp.).95

Definition 2.11 [15]. Let (R,+) be a semigroup. An element α ∈ R is said to96

be almost-divisible in R if there is β ∈ Z+a such that β is P -divisible in R for97

some infinite set of prime numbers P .98

A semigroup (R,+) is said to be almost-divisible if every element of R is99

almost- divisible in R.100

A semiring R is said to be additively almost-divisible if (R,+) is an almost-101

divisible semigroup.102

Definition 2.12 [8, 17, 24]. A partitioning ideal (also called a Q-ideal) of a103

semiring R is an ideal I in R for which there exists a subset Q of the semiring R104

for which R = ∪
ζ∈Q

(ζ + I), and (ζ1+ I)∩ (ζ2+ I) ̸= ϕ iff ζ1 = ζ2 for all ζ1, ζ2 ∈ Q.105
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Define R/I = {ζ + I | ζ ∈ Q} and define on R/I an operation (+) and an106

operation (.) such that (ζ1+ I)+(ζ2+ I) = ζ3+ I where the element ζ3 is unique107

element in Q for which (ζ1+ ζ2)+ I ⊆ ζ3+ I, and (ζ1+ I)(ζ2+ I) = ζ4+ I where108

the element ζ4 is unique element in Q for which (ζ1ζ2) + I ⊆ ζ4 + I, then we get109

that (R/I,+, .) is the quotient semiring of R, and the zero element in (R/I) is110

unique element ζ ′ + I for which 0 + I ⊆ ζ ′ + I. Note that if Q is an additive111

submonoid of R, then ζ ′ = 0.112

Definition 2.13 [5, 23]. A graded semiring R by a group (a semigroup, a monoid)113

G is a semiring in which R = ⊕
t∈G

Rt where Rt is an additive submonoid of R and114

RtRs ⊆ Rts for all t, s ∈ G.115

Denote (R,G) the grading of the semiring R byG. The support of the grading116

(R,G) is a subset of G denoted by Supp(R,G) defined as follows {t ∈ G|Rt ̸=117

{0}}. For each t ∈ G, Rt is called a homogeneous component of the grading118

(R,G). Also, if R is graded by a group or a monoid G with identity e, then Re119

is a subsemiring of R.120

Example 2.14. Let S be a semiring, G be a left zero semigroup with at least121

two elements g1, g2. Suppose R is the set of all 3 × 3 diagonal matrices over S.122

Then R with two binary operations (+), the addition of matrices, and (.), the123

multiplication of matrices, is a semiring. Now, Suppose124

Rg1 =


a 0 0
0 b 0
0 0 0

∣∣∣∣∣∣ a, b ∈ S


Rg2 =


0 0 0
0 0 0
0 0 c

∣∣∣∣∣∣ c ∈ S


Rg =


0 0 0
0 0 0
0 0 0

∀g ∈ G− {g1, g2}.

Then the family {Rt}t∈G forms a grading of R by G.125

Example 2.15 [6]. Suppose G = {0, 1}. Then (G,min) is a monoid with identity126

element where all of its elements are idempotent and has an absorbing element127

0. Now, let R be a semiring with unity 1R. Define on A = {(a, b); a, b ∈ R} two128

operations (+) and (.) as follows129

(a, b) + (c, d) = (a+ c, b+ d)
(a, b)(c, d) = (ac+ ad+ bc, bd)
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for all (a, b), (c, d) ∈ A, Then it can be easily seen that (A,+, .) is a semiring with130

unity (0R, 1R) and zero (0R, 0R). Define131

A0 = {(x, 0R);x ∈ R}
A1 = {(0R, x);x ∈ R}.

Then it can be easily seen that the family {A0, A1} forms a grading of A by G.132

3. The Grading of the Quotient Semiring R/I by a Grading of R133

In this section, we prove the grading of a quotient semiring R/I where R is a134

graded semiring and I is a Q-ideal in R. Also, we give an example to support135

this theorem.136

Theorem 3.1. Suppose G is a left zero semigroup and suppose Q = ⊕
g∈G

Qg is an137

additive submonoid of a semiring R in which Qg is an additive submonoid of Q138

for all g ∈ G. Assume that I is a Q-ideal in R and the quotient semiring of R is139

R/I. Suppose for each element g ∈ G, the following condition140

rg ∈ Rg =⇒ ∃αg ∈ Qg; rg + I ⊆ αg + I(∀rg ∈ Rg). (1)

If R = ⊕
g∈G

Rg is graded by G, then the family {(R/I)g}g∈G forms a grading of141

R/I, such that142

(R/I)g = {αg + I ∈ R/I|∃rg ∈ Rg; rg + I ⊆ αg + I & αg ∈ Qg}143

for all g ∈ G.144

Proof. We have (R/I)g ⊆ R/I. Let g be an element in G. Since 0 + I ⊆ 0 + I,145

0 ∈ Rg and 0 ∈ Qg, then 0 + I ∈ (R/I)g. Therefore (R/I)g ̸= ϕ. Now, suppose146

ζ + I, β + I are elements in (R/I)g. Then ζ, β ∈ Qg and there exist ψg and λg147

in Rg such that ψg + I ⊆ ζ + I and λg + I ⊆ β + I, also ψg ∈ ψg + I ⊆ ζ + I,148

ψg + λg ∈ Rg, and ζ + β ∈ Qg. Therefore (ψg + λg) + I ⊆ ((ψg + I) + λg) + I ⊆149

(ψg+I)+(λg+I) ⊆ (ζ+I)+(β+I) = (ζ+β)+I, ψg+λg ∈ Rg, and ζ+β ∈ Qg150

follow that (R/I)g is an additive submonoid of R/I. Let g, h be two elements in151

G and let η be an element in (R/I)g(R/I)h. Then there exists u + I ∈ (R/I)g152

and there exists v + I ∈ (R/I)h for which η = (u+ I)(v + I) . Now, we have153

• u+ I ∈ (R/I)g =⇒ ∃xg ∈ Rg ; xg + I ⊆ u+ I.154

• v + I ∈ (R/I)h =⇒ ∃yh ∈ Rh ; yh + I ⊆ v + I.155
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And also, we have η = (u+ I)(v+ I) = κ+ I where κ is unique element in Q for156

which uv + I ⊆ κ + I (see [17, 24]). Now, we have xgyh + I ⊆ (u + I)yh + I ⊆157

uyh + Iyh + I ⊆ uyh + I ⊆ u(v + I) + I ⊆ uv + uI + I ⊆ uv + I ⊆ κ + I and158

xgyh ∈ RgRh ⊆ Rgh. Now, since xgyh ∈ Rgh, then by condition (1), there exists159

an element µ ∈ Qgh for which xgyh + I ⊆ µ + I. Since xgyh + I ⊆ κ + I = η,160

xgyh + I ⊆ µ+ I, and since I is a Q-ideal in R, we get κ = µ, hence κ ∈ Qgh and161

η ∈ (R/I)gh. Therefore (R/I)g(R/I)h ⊆ (R/I)gh.162

Now, we shall prove that R/I = ⊕
g∈G

(R/I)g. Let θ be an element in R/I.163

Then there exists ζ ∈ Q such that θ = ζ + I. Since ζ ∈ Q ⊆ R = ⊕
g∈G

Rg, we can164

write ζ =
∑
g∈G

γg such that γg ∈ Rg. Thus θ = ζ + I =
∑
g∈G

γg + I. On the other165

hand, for every g ∈ G, we have γg ∈ Rg implies there exists ζg ∈ Qg such that166

γg ∈ γg + I ⊆ ζg + I (Condition (1)). Therefore ζg + I ∈ (R/I)g for all g ∈ G and167

θ = ζ + I =
∑
g∈G

γg + I ⊆
∑
g∈G

(ζg + I) + I ⊆
∑
g∈G

(ζg + I) =
∑
g∈G

ζg + I. Since I is a168

Q-ideal in R, and since ζ,
∑
g∈G

ζg are elements in Q such that ζ + I ⊆ ζ + I and169

ζ + I ⊆
∑
g∈G

ζg + I, we get θ = ζ + I =
∑
g∈G

ζg + I =
∑
g∈G

(ζg + I). Therefore R/I =170 ∑
g∈G

(R/I)g. We have θ = ζ + I =
∑
g∈G

γg + I =
∑
g∈G

ζg + I. Since
∑
g∈G

γg,
∑
g∈G

ζg ∈ Q171

and I is a Q-ideal, we get
∑
g∈G

γg =
∑
g∈G

ζg. Assume that θ can also be written as172

follows θ =
∑
g∈G

(βg + I) =
∑
g∈G

βg + I such that βg + I ∈ (R/I)g for all g ∈ G.173

Therefore θ =
∑
g∈G

γg + I =
∑
g∈G

βg + I. Since both
∑
g∈G

γg,
∑
g∈G

βg are elements in Q174

and I is Q-ideal, we get
∑
g∈G

γg =
∑
g∈G

βg, hence
∑
g∈G

ζg =
∑
g∈G

βg where ζg, βg ∈ Qg175

for all g ∈ G. It follows that ζg = βg for all g ∈ G (since Q = ⊕
g∈G

Qg). Therefore176

ζg + I = βg + I for all g ∈ G.177

In the following, we give an example to support the above theorem.178

Example 3.2. Suppose R′ = ⊕
g∈G

R′
g is a graded semiring by a left zero semigroup179

G. Assume that180

R =

{(
a b
0 c

)∣∣∣∣ a, b, c ∈ R′
}

Rg =

{(
a b
0 c

)∣∣∣∣ a, b, c ∈ R′
g

}
∀g ∈ G

Q =

{(
a 0
0 0

)∣∣∣∣ a ∈ R′
}



On the Grading of Quotient Semirings 7

181

Qg =

{(
a 0
0 0

)∣∣∣∣ a ∈ R′
g

}
∀g ∈ G

I =

{(
0 a
0 b

)∣∣∣∣ a, b ∈ R′
}

1. (R,+, .) is a graded semiring by G where R = ⊕
g∈G

Rg.182

2. Q = ⊕
g∈G

Qg is an additive submonoid of the semiring R where for each183

g ∈ G, Qg is an additive submonoid of Q, and I is a Q-ideal in R.184

3. Assume that g is an element in G. For each rg ∈ Rg, there exists αg ∈ Qg185

such that rg + I ⊆ αg + I.186

4. Homogeneous Components and Support Relations in a Graded187

Semiring and Its Graded Quotient Semiring188

In this section, we examine several properties of the homogeneous components189

in the gradings of both the semiring and its quotient semiring. Also, we explore190

the relationship between the supports of these gradings. First, we begin this191

section with the following theorem.192

Theorem 4.1. Let Q = ⊕
g∈G

Qg be an additive submonoid of a graded semiring193

R = ⊕
g∈G

Rg by a left zero semigroup G where Qg is an additive submonoid of Q194

for all g ∈ G. Suppose I is a Q-ideal in R and R/I is the quotient semiring of195

R. Suppose for each g ∈ G the following condition holds:196

rg ∈ Rg =⇒ ∃αg ∈ Qg; rg + I ⊆ αg + I(∀rg ∈ Rg). (2)

By Theorem 3.1, the family {(R/I)g}g∈G forms a grading of R/I such that197

(R/I)g = {αg + I ∈ R/I|∃rg ∈ Rg; rg + I ⊆ αg + I & αg ∈ Qg}198

for all g ∈ G. Then we have the following:199

1. For each g ∈ G.200

(a) Rg is E-inversive =⇒ (R/I)g is E-inversive.201

(b) Rg is yoked =⇒ (R/I)g is yoked.202

2. Suppose Rg ⊈ I for all g ∈ Supp(R,G). Then Supp(R,G) = Supp(R/I,G).203
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3. Let g be an element in G. Suppose Qg is additively cancellative. Then204

(a) Rg is inverse =⇒ (R/I)g is inverse.205

(b) Rg is additively regular =⇒ (R/I)g is additively regular.206

4. Let g be an element in G. Suppose Rg ∩ I − {0}. Then207

Rg is zero-sum free ⇐⇒ (R/I)g is zero-sum free.208

5. Let g be an element in G. Suppose I is additively cancellative and suppose209

α+ i = α+ j implies i = j for all α ∈ Qg and for all i, j ∈ I. Then210

(R/I)g is additively cancellative =⇒ Rg is additively cancellative.211

6. Let g be an element in G and r be an infinite element in Rg. Then there212

exists an infinite element a+ I ∈ (R/I)g such that r + I ⊆ a+ I.213

7. Let g be an element in G and r be an element in Zr(Rg). Then there exists214

an element a+ I ∈ Zr((R/I)g) such that r + I ⊆ a+ I.215

8. Let g be an element in G and r be an element in E+(Rg). Then there exists216

an element a+ I ∈ E+((R/I)g) such that r + I ⊆ a+ I.217

9. Let g be an element in G. Then218

Rg is additively idempotent =⇒ (R/I)g is additively idempotent.219

10. Suppose ϕ ̸=M ⊆ Z+. Then we have the following:220

(a) Let g be an element in G and let r be an M -divisible element in Rg.221

Then there exists an M -divisible element a + I ∈ (R/I)g such that222

r + I ⊆ a+ I.223

(b) Let g be an element in G. Then224

Rg is M -divisible =⇒ (R/I)g is M -divisible.225

(c) Let g be an element in G and let r be a divisible element in Rg. Then226

there exists a divisible element a+ I ∈ (R/I)g such that r+ I ⊆ a+ I.227

(d) Let g be an element in G. Then228

Rg is divisible =⇒ (R/I)g is divisible.229

11. Let g be an element in G and let r be an almost-divisible element in Rg.230

Then there exists n ∈ Z+ and there exists a P -divisibl element a + I ∈231

(R/I)g such that nr+ I ⊆ a+ I for some infinite set of prime numbers P .232
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12. Let g be an element in G and let r be an almost-divisible element in Rg.233

Then there exists almost-divisibl element a+ I ∈ (R/I)g such that r + I ⊆234

a+ I.235

13. Let g be an element in G. Then236

Rg is almost-divisible =⇒ (R/I)g is almost-divisible.237

Proof. First, we shall prove that Rg is a subsemiring of R and (R/I)g is a238

subsemiring of (R/I) for all g ∈ G. Suppose g is an element in G. Since R is239

graded by G, RgRg ⊆ Rgg = Rg. Since R is graded by G, Rg is an additive240

submonoid of R. Therefore Rg is a subsemiring of R. Similarly, we can prove241

that (R/I)g is a subsemiring of (R/I).242

1. Suppose g is an element in G.243

(a) Suppose Rg is E-inversive, and ψ + I is an element in (R/I)g. Then244

ψ ∈ Qg and there exists rg ∈ Rg such that rg ∈ rg + I ⊆ ψ + I. Now,245

since rg ∈ Rg and Rg is E-inversive, there exists γ ∈ Rg such that246

γ + rg ∈ E+(Rg). Also, since γ ∈ Rg, there exists λ ∈ Qg such that247

γ ∈ γ+I ⊆ λ+I (by Condition (2)). Therefore γ+rg ∈ (γ+rg)+I ⊆248

(λ + ψ) + I. On the other hand, since γ + rg ∈ E+(Rg), we have249

(γ+ rg)+ I = [(γ+ rg)+(γ+ rg)]+ I = [(γ+ rg)+ I]+ [(γ+ rg)+ I] ⊆250

[(λ+ψ)+I]+[(λ+ψ)+I] = [(λ+ψ)+(λ+ψ)]+I. Since (γ+rg) ∈ Rg,251

by condition (2), there exists ηg ∈ Qg such that (γ + rg) + I ⊆ ηg + I.252

Hence253

λ+ ψ ∈ Qg ⊆ Q & (γ + rg) + I ⊆ (λ+ ψ) + I (3)

254

and

255

(λ+ ψ) + (λ+ ψ) ∈ Qg ⊆ Q & (γ + rg) + I ⊆ [(λ+ ψ) + (λ+ ψ)] + I.
(4)

Now, from (3), (4) and since I is Q-ideal in R, we get (λ + ψ) + I =256

[(λ + ψ) + (λ + α)] + I. Since (λ + ψ) + I = (λ + I) + (ψ + I) and257

[(λ+ψ) + (λ+ψ)] + I = [(λ+ I) + (ψ+ I)] + [(λ+ I) + (ψ+ I)], then258

(λ+ I)+ (ψ+ I) = [(λ+ I)+ (ψ+ I)]+ [(λ+ I)+ (ψ+ I)]. Finally, we259

have γ+I ⊆ λ+I, γ ∈ Rg, and λ ∈ Qg. It follows that λ+I ∈ (R/I)g.260

Therefore (R/I)g is E-inversive.261

(b) Let ψ+ I, λ+ I be two elements in (R/I)g. Suppose that Rg is yoked.262

Then263
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• ψ + I ∈ (R/I)g =⇒ ψ ∈ Qg and ∃γg ∈ Rg ; γg + I ⊆ ψ + I264

• λ+ I ∈ (R/I)g =⇒ p ∈ Qg and ∃θg ∈ Rg ; θg + I ⊆ λ+ I265

• Rg is yoked and γg, θg ∈ Rg =⇒ ∃rg ∈ Rg ; γg + rg = θg or266

θg + rg = γg267

If γg + rg = θg, then θg + I ⊆ λ+ I implies (γg + rg)+ I ⊆ λ+ I. Since268

rg ∈ Rg, there exists an element ηg ∈ Qg such that rg + I ⊆ ηg + I269

(by Condition (2)). Therefore (γg + I) + (rg + I) ⊆ (ψ+ I) + (ηg + I).270

Hence (γg + rg) + I ⊆ (ψ + ηg) + I. Since (γg + rg) + I ⊆ λ + I,271

(γg + rg) + I ⊆ (ψ+ ηg) + I, and I is a Q-ideal, we get (ψ+ ηg) + I =272

(ψ + I) + (ηg + I) = λ+ I. Again, if θg + rg = γg, then in the similar273

way, we can find that (λ + I) + (ηg + I) = ψ + I such that ηg ∈ Qg274

satisfies rg + I ⊆ ηg + I. Finally, since rg + I ⊆ ηg + I, ηg ∈ Qg ,and275

rg ∈ Rg, we get ηg + I ∈ (R/I)g. Hence ηg + I ∈ (R/I)g for which276

(λ + I) + (ηg + I) = ψ + I or (ψ + I) + (ηg + I) = λ + I. Therefore277

(R/I)g is yoked.278

2. Assume that Rg ⊈ I. Suppose g is an element in Supp(R/I,G). Then279

(R/I)g ̸= {0R/I}. This implies that there exists 0R/I ̸= ψ + I ∈ (R/I)g.280

Since ψ+I ̸= 0+I, ψ ̸= 0. Again, since ψ+I ∈ R/I)g, there exists rg ∈ Rg281

such that rg + I ⊆ ψ + I and ψ ∈ Qg. We claim that rg ̸= 0. Suppose, to282

the contrary, that rg = 0. Then 0 + I ⊆ ψ + I. Now, since 0 + I ⊆ 0 + I,283

0 + I ⊆ ψ + I, and I is a Q-ideal, we get ψ = 0, which contradicts the fact284

that ψ ̸= 0. Hence Rg ̸= {0}. Therefore g ∈ Supp(R,G). Thus285

Supp(R/I,G) ⊆ Supp(R,G). (5)

Conversely, let g be an element in Supp(R,G). Then Rg ̸= {0}. On the286

other hand, let rg ∈ Rg −{0}. Then there exists tg ∈ Qg such that rg + I ⊆287

tg + I (by Condition (2)). Hence tg + I ∈ (R/I)g, rg ∈ rg + I ⊆ tg + I, and288

rg ̸= 0. Suppose (R/I)g = {0+ I}. Since rg ∈ tg + I and tg + I ∈ (R/I)g =289

{0 + I}, rg ∈ I. Therefore Rg ⊆ I, which contradicts the assumption that290

Rg ⊈ I. Therefore (R/I)g ̸= {0 + I}. Hence g ∈ Supp(R/I,G). Therefore291

Supp(R,G) ⊆ Supp(R/I,G) (6)

Thus from (5) and (6), we get Supp(R,G) = Supp(R/I,G).292

3. (a) Suppose Rg is inversive and suppose κg + I is an element in (R/I)g.293

Since κg + I ∈ (R/I)g, κg ∈ Qg and there exists rg ∈ Rg such that294

rg + I ⊆ κg + I. Since rg ∈ Rg and Rg is inverse, there exists unique295

element ag ∈ Rg such that rg = rg + ag + rg and ag = ag + rg + ag.296

Hence (rg + ag + rg) + I ⊆ κg + I. Now, since ag ∈ Rg, there exists an297

element ζg ∈ Qg such that ag + I ⊆ ζg + I (by Condition (2)). Hence298
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(rg+ag+rg)+I ⊆ (κg+ζg+κg)+I. Since (rg+ag+rg)+I ⊆ κg+I,299

(rg + ag + rg) + I ⊆ (κg + ζg + κg) + I, and I is Q-ideal, we get300

κg = κg + ζg + κg. Therefore κg + I = (κg + I) + (ζg + I) + (κg + I).301

Again, since ag = ag + rg + ag, then ag + I ⊆ ζg + I implies (ag + rg +302

ag) + I ⊆ ζg + I. Also, since (ag + rg + ag) + I ⊆ (ζg + κg + ζg) + I,303

(ag+rg+ag)+I ⊆ ζg+I, and since I is Q-ideal, we get ζg+κg+ζg = ζg.304

Therefore (ζg + I) + (κg + I) + (ζg + I) = ζg + I. Now, assume that305

sg + I ∈ (R/I)g such that κg + I = (κg + I) + (sg + I) + (κg + I)306

and sg + I = (sg + I) + (κg + I) + (sg + I). Then κg + I = (κg +307

sg + κg) + I and sg + I = (sg + κg + sg) + I. Since I is Q-ideal,308

we get κg = κg + sg + κg and sg = sg + κg + sg. Finally, we have309

κg + I = (κg + sg + κg) + I = (κg + ζg + κg) + I. Since I is Q-ideal,310

we get κg + sg + κg = κg + ζg + κg. Again, since Qg is additively311

cancellative, we get sg = ζg. Thus sg + I = ζg + I. Therefore (R/I)g312

is inverse. Similarly, we can prove (b).313

4. Suppose Rg is zero-sum free. Let a + I, b + I be two elements in (R/I)g314

such that (a + I) + (b + I) = 0 + I. Since a + I, b + I ∈ (R/I)g, there315

exist ag, bg ∈ Rg such that ag + I ⊆ a + I and bg + I ⊆ b + I. Therefore316

(ag+I)+(bg+I) ⊆ (a+I)+(b+I). Hence (ag+bg)+I ⊆ (a+b)+I. Now,317

since (a+ b) + I = (a+ I) + (b+ I) = 0 + I, we get (ag + bg) + I ⊆ 0 + I.318

Hence ag + bg ∈ Rg ∩ I = {0}. Therefore ag + bg = 0. Since Rg is zero-sum319

free, we get ag = bg = 0. Therefore 0 + I ⊆ a+ I and 0 + I ⊆ b+ I. Now,320

since I is Q-ideal, we get a+ I = 0 + I and b+ I = 0 + I. Thus (R/I)g is321

zero-sum free.322

Conversely, suppose (R/I)g is zero-sum free. Let ag, bg be two elements in323

Rg such that ag+ bg = 0. Sincce ag, bg ∈ Rg, there exist a, b ∈ Qg such that324

ag+I ⊆ a+I and bg+I ⊆ b+I. Therefore there exist a+I, b+I ∈ (R/I)g325

such that ag+I ⊆ a+I and bg+I ⊆ b+I. Thus (ag+ bg)+I ⊆ (a+ b)+I,326

which implies 0+I ⊆ (a+b)+I. Since I is Q-ideal, we get (a+b)+I = 0+I.327

Therefore (a + I) + (b + I) = 0 + I. Now, since (R/I)g is zero-sum free,328

we get a + I = 0 + I and b + I = 0 + I. Therefore ag ∈ ag + I ⊆ I and329

bg ∈ bg + I ⊆ I. Since Rg ∩ I = {0}, we get ag = bg = 0. Thus Rg is330

zero-sum free.331

5. Suppose (R/I)g is additively cancellative. Let ag, bg, cg be elements in Rg332

such that ag + bg = ag + cg. Since ag, bg, cg ∈ Rg, there exist a, b, c ∈ Qg333

such that ag + I ⊆ a+ I, bg + I ⊆ b+ I, and cg + I ⊆ c+ I. Therefore there334

exist a + I, b + I, c + I ∈ (R/I)g such that ag + I ⊆ a + I, bg + I ⊆ b + I,335

and cg + I ⊆ c + I. Since (ag + bg) + I ⊆ (a + b) + I, (ag + bg) + I =336

(ag + cg)+ I ⊆ (a+ c)+ I, and I is Q-ideal, we get (a+ b)+ I = (a+ c)+ I.337

It follows that (a+ I)+ (b+ I) = (a+ I)+ (c+ I). Therefore b+ I = c+ I,338
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since (R/I)g is additively cancellative. Now, since bg ∈ bg + I ⊆ b+ I and339

cg ∈ cg + I ⊆ c + I = b + I, there exist i, j ∈ I such that bg = b + i and340

cg = b+ j. Since ag ∈ a+ I, there exists k ∈ I such that ag = a+ k. Hence341

ag+bg = ag+b+i = ((a+k)+b)+i and ag+cg = ag+c+i = ((a+k)+c)+j.342

Therefore ag + bg = a + b + i + k and ag + cg = a + c + j + k. Since343

ag+ bg = ag+ cg and since α+ i = α+ j implies i = j for all α ∈ Qg and for344

all i, j ∈ I, we get i+ k = j + k. It follows that i = j (since I is additively345

cancellative). Now, since i = j, bg = b+ i, and cg = b+ j, we get bg = cg.346

Thus Rg is additively cancellative.347

6. Since r ∈ Rg, there exists an element a ∈ Qg such that r + I ⊆ a+ I. Let348

b+ I be an element in (R/I)g. Since b ∈ Qg, there exists t ∈ Rg such that349

t+ I ⊆ b+ I. Therefore (r + t) + I ⊆ (a+ b) + I. Now, since r is infinite,350

r + I ⊆ (a + b) + I. Therefore r + I ⊆ ((a + b) + I) ∩ (a + I). It follows351

that a+ I = (a+ I) + (b+ I) (since I is Q-ideal). Thus a+ I ∈ (R/I)g is352

infinite.353

7. Since r ∈ Zr(Rg), there exists an element t ∈ Rg such that r+ t = t. Again,354

since r, t ∈ Rg, there exist a, b ∈ Qg such that r+I ⊆ a+I and t+I ⊆ b+I.355

Therefore (r + t) + I ⊆ (a + b) + I. Hence t + I ⊆ (a + b) + I. Now, we356

have t+ I ⊆ ((a+ b) + I) ∩ (b+ I). Thus (a+ I) + (b+ I) = b+ I (since I357

is Q-ideal). Therefore a+ I ∈ Zr((R/I)g) and r + I ⊆ a+ I.358

8. Since r ∈ E+(Rg) ⊆ Rg, r+ r = r and there exists an element a ∈ Qg such359

that r + I ⊆ a + I. Therefore (r + r) + I = r + I ⊆ (a + a) + I. Hence360

r + I ⊆ (a + I) ∩ ((a + a) + I). It follows that a + I = (a + I) + (a + I)361

(since I is Q-ideal). Thus a+ I ∈ E+((R/I)g) and r + I ⊆ a+ I.362

9. Suppose Rg is additively idempotent. Let a + I be an element in (R/I)g.363

Since a+I ∈ (R/I)g, there exists an element r ∈ Rg such that r+I ⊆ a+I.364

Now, since r ∈ Rg and Rg is additively idempotent, we get r + r = r.365

Therefore (r+r)+I = r+I ⊆ (a+a)+I. Hence r+I ⊆ (a+I)∩((a+a)+I).366

It follows that a+ I = (a+ I) + (a+ I) (since I is Q-ideal). Thus a+ I ∈367

E+((R/I)g). Therefore (R/I)g is additively idempotent.368

10. (a) Let n be an element in M . Since r is M -divisible in Rg, there exists369

t ∈ Rg such that r = nt. Again, since r, t ∈ Rg, there exist a, b ∈ Qg370

such that r+I ⊆ a+I and t+I ⊆ b+I. Therefore a+I, b+I ∈ (R/I)g,371

n(t+ I) = nt+ I ⊆ a+ I, and nt+ I = n(t+ I) ⊆ n(b+ I) = nb+ I.372

Since I is Q-ideal, we get a+ I = n(b+ I). Thus a+ I is M -divisible373

in (R/I)g and r + I ⊆ a+ I.374

(b) Suppose Rg is M -divisible. Let g be an element in G and a + I be375

an in (R/I)g. Since a + I ∈ (R/I)g, there exists r ∈ Rg such that376
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r + I ⊆ a + I. Now, let n be an element in M . Since r ∈ Rg and377

Rg is M -divisible, there exists t ∈ Rg such that r = nt. Again, since378

t ∈ Rg, there exists b ∈ Qg such that t + I ⊆ b + I. It follows379

that b + I ∈ (R/I)g. Now, we have n(t + I) = nt + I ⊆ a + I and380

nt + I = n(t + I) ⊆ n(b + I) = nb + I. Since I is Q-ideal, we get381

a+ I = n(b+ I). Thus a+ I is M -divisible in (R/I)g. Thus (R/I)g is382

M -divisible. Similarly, we can prove (c) and (d).383

11. Since r is almost-divisible in Rg, there exists n ∈ Z+ such that nr is P -384

divisible in Rg for some infinite set of prime numbers P . Now, since nr is385

P -divisible in Rg, there exists a P -divisible element a + I ∈ (R/I)g such386

that nr + I ⊆ a+ I (see (10) of Theorem 4.1).387

12. By (11) of Theorem 4.1 and since r is almost-divisible, there exists n ∈ Z+
388

and there exists a P -divisible element b+I ∈ (R/I)g such that nr+I ⊆ b+I389

for some infinite set of prime numbers P . Again, since r ∈ Rg, there exists390

a+I ∈ (R/I)g such that r+I ⊆ a+I. Therefore nr+I ⊆ na+I = n(a+I).391

Since I is Q-ideal and a, b ∈ Qg, we get n(a+I) = b+I. Therefore n(a+I)392

is P -divisible for some infinite set of prime numbers P . Thus a + I is393

almost-divisible in (R/I)g and r + I ⊆ a+ I.394

13. Suppose Rg is almost-divisible. Let a + I be an element in (R/I)g. Then395

a ∈ Qg and there exists r ∈ Rg such that r+ I ⊆ a+ I. Since Rg is almost-396

divisible, there exists an almost divisible element b+ I ∈ (R/I)g such that397

r + I ⊆ b + I (by (12) of Theorem 4.1). Since I is Q-ideal and a, b ∈ Qg,398

we get a + I = b + I. Therefore b + I is almost-divisible in (R/I)g. Thus399

(R/I)g is almost-divisible.400

401

Theorem 4.2. Let Q = ⊕
g∈G

Qg be an additive submonoid of a graded semiring402

R = ⊕
g∈G

Rg by a left zero semigroup G, where Qg is an additive submonoid of Q403

for all g ∈ G. Suppose I is a Q-ideal in R and R/I is the quotient semiring of404

R and suppose for each g ∈ G the following condition405

rg ∈ Rg =⇒ ∃αg ∈ Qg; rg + I ⊆ αg + I(∀rg ∈ Rg). (7)

By Theorem 3.1, the family {(R/I)g}g∈G forms a grading of R/I such that406

(R/I)g = {αg + I ∈ R/I|∃rg ∈ Rg; rg + I ⊆ αg + I & αg ∈ Qg}407

for all g ∈ G. Define the set Q′
g = {αg ∈ Qg |∃rg ∈ Rg ; rg + I ⊆ αg + I} for all408

g ∈ G. Let g be an element in G. Then we have the following:409



14 Darwish, M. E. and Rao, G. N.

1. (Q′
g,+) is a submonoid of the monoid (Qg,+).410

2. ζ+κ = 0 implies ζ = κ = 0 for all ζ, κ ∈ Q′
g ⇐⇒ (R/I)g is zero-sum free.411

3. (Q′
g,+) is yoked ⇐⇒ (R/I)g is yoked.412

4. (Q′
g,+) is an idempotent semigroup ⇐⇒ (R/I)g = E+((R/I)g).413

5. Suppose ϕ ̸=M ⊆ Z+. Then we have the following:414

(a) (Q′
g,+) is an M -divisible semigroup ⇐⇒ (R/I)g is M -divisible.415

(b) (Q′
g,+) is a divisible semigroup ⇐⇒ (R/I)g is divisible.416

6. (Q′
g,+) is an almost-divisible semigroup ⇐⇒ (R/I)g is almost-divisible.417

Proof. First, we have Rg is a subsemiring of R and (R/I)g is a subsemiring of418

(R/I) for all g ∈ G (see the proof of Theorem 4.1).419

1. We have Q′
g ⊆ Qg. Since 0 + I = 0 + I where 0 ∈ Qg and 0 ∈ Rg, we420

get 0 ∈ Q′
g. Hence Q′

g ̸= ϕ. Now, let γ, θ be two elements of Q′
g. Since421

γ, θ ∈ Q′
g, then γ, θ ∈ Qg and there exist ψ, λ ∈ Rg such that ψ+ I ⊆ γ+ I422

and λ+I ⊆ θ+I. Which implies (ψ+λ)+I ⊆ (γ+θ)+I, where ψ+λ ∈ Rg423

and γ + θ ∈ Qg. Therefore γ + θ ∈ Q′
g. Thus Q

′
g is an additive submonoid424

of (Qg,+).425

2. Suppose γ + θ = 0 implies γ = θ = 0 for all γ, θ ∈ Q′
g. Assume that β + I426

and α+I are two elements in (R/I)g, where (β+I)+(α+I) = 0+I. Then427

(β + α) + I = 0 + I. This implies β + α = 0 (Since 0, β + α ∈ Qg ⊆ Q and428

I is a Q-ideal of R). Since 0+ I = (β+α)+ I where β, α ∈ Qg, 0 ∈ Rg and429

β+α = 0, we get β+α ∈ Q′
g and β = α = 0. Hence β+ I = α+ I = 0+ I.430

Therefore (R/I)g is a zero-sum free semiring.431

Conversely, suppose (R/I)g is a zero-sum free semiring. Let γ, θ be two432

elements of Q′
g such that γ + θ = 0. Since Q′

g is an additive submonoid of433

Qg, we get γ+θ ∈ Q′
g ⊆ Qg. Now, since γ+θ = 0, we get (γ+θ)+I = 0+I.434

Hence (γ+ I)+ (θ+ I) = 0+ I. Also, since γ, θ ∈ Q′
g, we get γ, θ ∈ Qg and435

there exist ψ, λ ∈ Rg such that ψ + I ⊆ γ + I and λ + I ⊆ θ + I. Hence436

γ+I, θ+I ∈ (R/I)g. Thus γ+I, θ+I ∈ (R/I)g, (γ+I)+(θ+I) = 0+I, and437

(R/I)g is zero-sum free. Therefore γ + I = θ + I = 0 + I. Thus γ = θ = 0.438

3. Suppose (Q′
g,+) is yoked. Let γ+ I, θ+ I be two elements of (R/I)g. Then439

γ, θ ∈ Qg and there exist x, y ∈ Rg such that x+I ⊆ γ+I and y+I ⊆ θ+I.440

Hence γ, θ ∈ Q′
g. Since γ, θ ∈ Q′

g and Q′
g is yoked, there exists κ ∈ Q′

g such441

that γ + κ = θ or θ + κ = γ. Therefore (γ + I) + (κ + I) = θ + I or442

(θ + I) + (κ + I) = γ + I. Since κ ∈ Q′
g, κ + I ∈ (R/I)g. Thus (R/I)g is443

yoked.444
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Conversely, suppose (R/I)g is yoked. Let γ, θ be two elements of Q′
g. Then445

γ, θ ∈ Qg and there exist x, y ∈ Rg such that x+I ⊆ γ+I and y+I ⊆ θ+I.446

Hence γ+ I, θ+ I ∈ (R/I)g. Since (R/I)g is yoked, there exists an element447

κ+I ∈ (R/I)g such that (γ+I)+(κ+I) = θ+I or (θ+I)+(κ+I) = γ+I.448

Hence (γ + κ) + I = θ+ I or (θ+ κ) + I = γ + I. Since I is Q-ideal, we get449

γ+κ = θ or θ+κ = γ. Also, since κ+ I ∈ (R/I)g, we get κ ∈ Qg and there450

exists an element z ∈ Rg such that z + I ⊆ κ+ I. Thus κ ∈ Q′
g. Therefore451

(Q′
g,+) is yoked.452

4. Suppose (Q′
g,+) is idempotent. Let ψ + I be an element in (R/I)g. Then453

ψ ∈ Qg and there exists r ∈ Rg such that r + I ⊆ ψ + I. Hence ψ ∈ Q′
g.454

Since Q′
g is idempotent, we get ψ + ψ = ψ. Hence (ψ + I) + (ψ + I) =455

ψ + I. Thus ψ + I ∈ E+((R/I)g). Therefore (R/I)g ⊆ E+((R/I)g). Since456

E+((R/I)g) ⊆ (R/I)g, we get (R/I)g = E+((R/I)g).457

Conversely, suppose (R/I)g = E+((R/I)g). Let ψ be an element in Q′
g.458

Then ψ ∈ Qg and there exists an element r ∈ Rg such that r + I ⊆ ψ + I.459

Hence ψ+ I ∈ (R/I)g = E+((R/I)g). Therefore (ψ+ I)+ (ψ+ I) = ψ+ I.460

Thus (ψ+ψ) + I = ψ+ I. Since I is Q-ideal, we get ψ+ψ = ψ. Therefore461

(Q′
g,+) is idempotent.462

5. (a) Suppose (Q′
g,+) is M -divisible. Let ψ + I be an element in (R/I)g.463

Then ψ ∈ Qg and there exists r ∈ Rg such that r + I ⊆ ψ + I. Hence464

ψ ∈ Q′
g. Let n be an element in M . Since Q′

g is M -divisible and465

ψ ∈ Q′
g, there exists ζ ∈ Q′

g such that ψ = nζ. Hence ψ + I = nζ + I.466

Thus (ψ + I) = n(ζ + I). Now, since ζ ∈ Q′
g, ζ + I ∈ (R/I)g. Again,467

since ζ + I ∈ (R/I)g and (ψ + I) = n(ζ + I), ψ + I is M -divisible in468

(R/I)g. Therefore (R/I)g is M -divisible.469

Conversely, suppose (R/I)g isM -divisible. Let ψ be an element in Q′
g.470

Then ψ ∈ Qg and there exists an element r ∈ Rg such that r+I ⊆ ψ+I.471

Therefore ψ+I ∈ (R/I)g. Now, let n be an element inM . Since (R/I)g472

is M -divisible and ψ + I ∈ (R/I)g, there exists ζ + I ∈ (R/I)g such473

that ψ + I = n(ζ + I) = nζ + I. Since ζ + I ∈ (R/I)g, we get ζ ∈ Qg474

and there exists t ∈ Rg such that t + I ⊆ ζ + I. Therefore ζ ∈ Q′
g.475

Again, since I is Q-ideal, ψ, nζ ∈ Qg, and ψ + I = n(ζ + I) = nζ + I,476

we get ψ = nζ. Hence ψ is M -divisible in (Q′
g,+). Thus (Q′

g,+) is477

M -divisible. Similarly, we can prove (b).478

6. Suppose (Q′
g,+) is almost-divisible. Let ψ + I be an element in (R/I)g.479

Then ψ ∈ Qg and there exists r ∈ Rg such that r + I ⊆ ψ + I. Hence480

ψ ∈ Q′
g. Since (Q

′
g,+) is almost-divisible, there exists n ∈ Z+ such that nψ481

is P -divisible in Q′
g for some infinite set of prime numbers P . Now, let p is482

an element in P . Since nψ is P -divisible in Q′
g, there exists ζ ∈ Q′

g such that483
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nψ = pζ. Therefore ζ+I ∈ (R/I)g and n(ψ+I) = p(ζ+I). Hence n(ψ+I)484

is P -divisible in (R/I)g for some infinite set of prime numbers P . Thus ψ+I485

is almost-divisible in (R/I)g. Therefore (R/I)g is almost-divisible.486

Conversely, suppose (R/I)g is almost-divisible. Let ψ be an element in Q′
g.487

Then ψ ∈ Qg and there exists an element r ∈ Rg such that r + I ⊆ ψ + I.488

Therefore ψ + I ∈ (R/I)g. Since (R/I)g is almost-divisible, there exists489

n ∈ Z+ such that n(ψ + I) is P -divisible in (R/I)g for some infinite set of490

prime numbers P . Now. let p be an element in P . Since n(ψ + I) is P -491

divisible in (R/I)g, there exists ζ+I ∈ (R/I)g such that n(ψ+I) = p(ζ+I).492

Therefore nψ+I = pζ+I. Since ζ+I ∈ (R/I)g, we get ζ ∈ Q′
g. Again, since493

I is Q-ideal, nψ+I = pζ+I, and nψ, pζ ∈ Qg, we get nψ = pζ. Hence nψ is494

P -divisible in (Q′
g,+) for some infinite set of prime numbers P . Therefore495

ψ is almost-divisible in (Q′
g,+). Thus (Q′

g,+) is almost-divisible.496

497

Finally, we prove the following theorem.498

Theorem 4.3. Let Q = ⊕
g∈G

Qg be an additive submonoid of a graded semiring499

R = ⊕
g∈G

Rg by a left zero semigroup G, such that Qg is an additive submonoid of500

Q for each g ∈ G. Suppose I is a Q-ideal in R and the quotient semiring of R is501

R/I. Suppose for each element g ∈ G, the following condition502

rg ∈ Rg =⇒ ∃αg ∈ Qg; rg + I ⊆ αg + I∀rg ∈ Rg (8)

By Theorem 3.1, the family {(R/I)g}g∈G forms a grading of R/I such that503

(R/I)g = {αg + I ∈ R/I|∃rg ∈ Rg; rg + I ⊆ αg + I & αg ∈ Qg}504

for all g ∈ G. Define the set Q′
g = {αg ∈ Qg |∃rg ∈ Rg ; rg + I ⊆ αg + I} and505

suppose Q′
gQ

′
h ⊆ Q′

gh for all g, h ∈ G. Then we have the following:506

1. Q′
g is a subsemiring of Qg for all g ∈ G.507

2. Q′ =
∑
g∈G

Q′
g is a graded subsemiring of R.508

3. The mapping fg : Q′
g −→ (R/I)g defined as fg(α) = α + I ∀α ∈ Q′

g is a509

semirings isomorphism for all g ∈ G.510

Proof. 1. Suppose g ∈ G. Then by Theorem 4.2, we get (Q′
g,+) is a sub-511

monoid of the monoid (Qg,+) whereQ ⊆ R. SinceG is a left zero semigroup512

and Q′
gQ

′
h ⊆ Q′

gh for all g, h ∈ G, we get Q′
gQ

′
g ⊆ Q′

gg = Q′
g. Therefore Q

′
g513

is a subsemiring of R.514
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2. Since 0 ∈ Q′
g ⊆ R, we get 0 ∈ Q′ ⊆ R. Let γ, θ be two elements of Q′.515

Then γ =
∑
g∈G

ψg, θ =
∑
g∈G

λg such that ψg, λg ∈ Q′
g for all g ∈ G. Hence516

γ + θ =
∑
g∈G

ψg +
∑
g∈G

λg =
∑
g∈G

(ψg + λg). Now, since ψg + λg ∈ Q′
g for all517

g ∈ G, we get γ + θ is an element in Q′. Also, since (Q′
g,+) is an additive518

submonoied of (Qg,+) and Q′
gQ

′
h ⊆ Q′

gh for all g, h ∈ G, we get γθ =519

(
∑
g∈G

ψg)(
∑
g∈G

λg) =
∑
t∈G

∑
g∈G

ψtλg =
∑
g∈G

ηg such that ηg ∈ Q′
g for all g ∈ G.520

Thus γθ ∈ Q′. Therefore Q′ is a subsemiring of R. Now, we shall prove521

that Q′ is graded by G. Suppose x is an element in Q′. Write x =
∑
g∈G

xg522

and x =
∑
g∈G

yg where xg, yg ∈ Q′
g for all g ∈ G. Then

∑
g∈G

xg =
∑
g∈G

yg. It523

follows that
∑
g∈G

(xg + I) =
∑
g∈G

(yg + I). Since xg + I, yg + I ∈ (R/I)g for524

all g ∈ G and (R/I) = ⊕
g∈G

(R/I)g, we get xg + I = yg + I for all g ∈ G.525

Therefore xg = yg for all g ∈ G, since I is Q-ideal. Now, since (Q′
g,+) is526

a submonoid of (Qg,+) for all g ∈ G and Q′
g ⊆ Q′ for all g ∈ G, we get527

(Q′
g,+) is a submonoid of (Q′,+) for all g ∈ G. Since Q′

gQ
′
h ⊆ Q′

gh for all528

g, h ∈ G, we get the subsemiring Q′ = ⊕
g∈G

Q′
g of R is graded by G.529

3. Assume that g is an element in G. Let ζ, κ be two elements of Q′
g. Then530

(a) fg(ζ + κ) = (ζ + κ) + I = (ζ + I) + (κ+ I) = fg(ζ) + fg(κ).531

(b) By the definition of R/I, we have (ζ+ I)(κ+ I) = ψ+ I such that ψ is532

unique element in Q such that ζκ+ I ⊆ ψ + I. Since ζκ+ I ⊆ ψ + I,533

ζκ + I ⊆ ζκ + I, ζκ ∈ Qgg = Qg ⊆ Q, and I is Q-ideal, we get534

ζκ + I = ψ + I = (ζ + I)(κ + I). It follows that fg(ζκ) = ζκ + I =535

(ζ + I)(κ+ I) = fg(ζ)fg(κ).536

(c) Suppose fg(ζ) = fg(κ). This implies ζ + I = κ+ I. Since I is Q-ideal,537

we get ζ = κ.538

(d) Suppose η is an element in (R/I)g. Then there exists α ∈ Qg such539

that η = α+ I and there exists r ∈ Rg such that r + I ⊆ α+ I. Thus540

α ∈ Q′
g for which fg(α) = α+ I = η.541

Thus, from (a), (b), (c), and (d), we get fg is an isomorphism.542

543

Note that, in Theorem 4.2 and Theorem 4.3, we have (R/I)g = {αg + I544

|αg ∈ Q′
g} for all g ∈ G.545
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