Article in press
Authors:
Title:
A note on the gyrogroups of order 8
PDFSource:
Discussiones Mathematicae - General Algebra and Applications
Received: 2024-09-07 , Revised: 2024-12-21 , Accepted: 2024-12-22 , Available online: 2025-08-21 , https://doi.org/10.7151/dmgaa.1488
Abstract:
In this paper, we exhibit the complete list of gyrogroups of order 8 up to isomorphism. These gyrogroups will be used as examples or counter-examples to answer a few questions raised by some authors.
Keywords:
finite gyrogroup, normal subgyrogroup, strong subgyrogroup, $L$-subgyrogroup
References:
- A.R. Ashrafi, K.M. Nezhaad and M.A. Salahshour, Classification of \mbox{gyrogroups} of orders at most 31, AUT J. Math. Com. 5(1) (2024) 11–18.
https://doi.org/10.22060/AJMC.2023.21939.1125 - R.P. Burn, Finite Bol loops, Math. Proc. Cambridge Philos. Soc. 84 (1978) 377–386.
https://doi.org/10.1017/S0305004100055213 - H. Kiechle, Theory of {K}-loops (Springer-Verlag, Berlin, 2002).
- T. Suksumran, The algebra of gyrogroups: Cayley's theorem, Lagrange's \mbox{theorem}, and isomorphism theorems, Essays in mathematics and its applications (Th. M. Rassias and P.M. Pardalos, eds.) (2016), 369–437.
https://doi.org/10.1007/978-3-319-31338-2\_15 - T. Suksumran, Special subgroups of gyrogroups: Commutators, nuclei and radical, Math. Interdiscip. Res. 1(1) (2016) 53–68.
https://doi.org/10.22052/mir.2016.13907 - T. Suksumran, Involutive groups, unique 2-divisibility, and related \mbox{gyrogroup} structures, J. Algebra Appl. 16(6) (2017) Article ID 1750114.
https://doi.org/10.1142/S0219498817501146 - T. Suksumran and A. A. Ungar, Gyrogroups and the Cauchy property, Quasigroups Related Systems 24(2) (2016) 277–286.
- T. Suksumran and K. Wiboonton, Lagrange's theorem for gyrogroups and the Cauchy property, Quasigroups Related Systems 22(2) (2014) 283–294.
- T. Suksumran and K. Wiboonton, Isomorphism theorems for \mbox{gyrogroups} and L-subgyrogroups, J. Geom. Symmetry Phys. 37 (2015) 67–83.
https://doi.org/10.7546/jgsp-37-2015-67-83 - A. A. Ungar, Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity (World Scientific, Hackensack, NJ, 2008).
Close