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1. Introduction17

Loosely speaking, a gyrogroup is a group-like structure whose operation is not, in18

general, associative. The algebra of gyrogroups has been intensively studied by19

several authors. It turns out that groups and gyrogroups share several common20

properties. However, certain properties are satisfied by groups but not by generic21

gyrogroups, as we will see in the sequel. Lemma 2.1 of [1] states that there are22

exactly six gyrogroups of order 8 (up to isomorphism). Here, we give the full23

list of gyrogroups of order 8 as well as their gyration tables. These gyrogroups24

appear as examples or counter-examples of some open questions raised recently.25

Basic definitions and notations used in the paper can be found in [3, 4, 10]. In26

the next section, we recall relevant definitions and notations for easy reference.27

2. Preliminaries28

A gyrogroup (G,⊕) consists of a non-empty set G, together with a binary op-29

eration ⊕ on G, satisfying the following properties: (i) there exists a (unique)30
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two-sided identity e in G; (ii) each element a in G has a (unique) two-sided in-31

verse denoted by ⊖a; (iii) for each pair (a, b) of elements in G, there exists a32

(unique) automorphism gyr [a, b] of (G,⊕) called a gyroautomorphism such that33

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr [a, b](c) for all c ∈ G; and (iv) gyr [a⊕ b, b] = gyr [a, b]34

for all a, b ∈ G called the left loop property. It is evident that gyroautomorphisms35

remedy the absence of associativity of the binary operation in a gyrogroup. A36

gyrogroup is said to be non-degenerate if its operation is not associative, and in37

this case, it does not form a group.38

Let G be a gyrogroup. A subset H of G is called a subgyrogroup if H is39

a gyrogroup under the operation inherited from G and gyr [a, b](H) = H for40

all a, b ∈ H. Let a ∈ G. The cyclic subgyrogroup generated by a is given by41

⟨a⟩ = {ma : m ∈ Z}. In fact, ⟨a⟩ forms a cyclic group by Theorem 3.8 of [8]. The42

order of a is defined as the size of ⟨a⟩, denoted by |a|. The left gyrotranslation by43

a, denoted by La, is a map defined by the formula La(x) = a ⊕ x for all x ∈ G.44

By Theorem 10 of [9], La is a permutation of G. Let H be a subgyrogroup of G.45

The left coset a ⊕H is defined as a ⊕H = {a⊕ h : h ∈ H}. Similarly, the right46

coset H⊕a is defined as H⊕a = {h⊕ a : h ∈ H}. The index of H in G, denoted47

by [G : H], is defined as the size of G/H = {a⊕H : a ∈ G}. The left nucleus of48

G, denoted by Nℓ(G), is defined as49

(1) Nℓ(G) = {a ∈ G : gyr [a, b] = IG for all b ∈ G},50

where IG is the identity map on G. The right nucleus of G, denoted by Nr(G),51

is defined as52

(2) Nr(G) = {c ∈ G : gyr [a, b](c) = c for all a, b ∈ G}.53

Left and right nuclei of gyrogroups can be used to gain a better understanding54

of the structure of a gyrogroup; see, for instance, [5].55

Let G be a gyrogroup. A map φ from G to a gyrogroup is said to be a56

homomorphism if φ(a ⊕ b) = φ(a) ⊕ φ(b) for all a, b ∈ G. In this case, the57

kernel of φ is defined as the inverse image of {e} under φ. A subgyrogroup58

H of G is called an L-subgyrogroup if gyr [a, h](H) = H for all a ∈ G, h ∈ H;59

is called a strong subgyrogroup if gyr [a, b](H) = H for all a, b ∈ G; is called a60

normal subgyrogroup if H is equal to the kernel of a homomorphism from G to a61

gyrogroup. In this case, we write H ⊴ G. As in the proof of Proposition 35 of62

[4], any normal subgyrogroup is invariant under all the gyroautomorphisms and63

hence is strong. In fact, we have the following implications:64

“being normal” ⇒ “being strong” ⇒ “being an L-subgyrogroup”.65
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In light of Theorem 3.8 of [5], Nℓ(G) forms a normal associative subgyrogroup of66

G (that is, Nℓ(G) is normal and forms a group under the gyrogroup operation of67

G). This fact will be used to prove that a certain gyrogroup is degenerate in the68

next section.69

3. Properties of gyrogroups of order less than 870

It is clear that the trivial gyrogroup forms group. Recall that a gyrogroup of order71

p, where p is a prime, is degenerate (see, for instance, Theorem 6.2 of [8]) in the72

sense that it forms a group under the same operation. Hence, any gyrogroup of73

order n with n ∈ {2, 3, 5, 7} is degenerate. Next, we give a gyrogroup-theoretic74

proof that every gyrogroup of order 4 is degenerate.75

Proposition 1. If G is a gyrogroup of order 4, then G forms a group.76

Proof. In the case when G has an element of order 4, say a, G = ⟨a⟩ ∼= Z477

by Corollary 3.12 of [8]. Now, suppose that G has no elements of order 4. Let78

c, d ∈ G \ {e} with c ̸= d. Then c ̸= e, d ̸= e, |c| = 2, and |d| = 2. If c ⊕ d = e,79

we would have c = ⊖d = d, a contradiction. Similarly, c ⊕ d ̸= c and c ⊕ d ̸= d.80

Thus, G = {e, c, d, c⊕ d}, and c⊕ d = d⊕ c. By assumption, |c⊕ d| = 2. Hence,81

Lc = (e c)(d c⊕ d), Ld = (e d)(c c⊕ d), and Lc⊕d = (e c⊕ d)(c d). According to82

the composition law of left gyrotranslations (see part 3 of Theorem 10 of [9]),83

gyr [c, d] = L−1
c⊕d ◦ Lc ◦ Ld84

= L⊖(c⊕d) ◦ Lc ◦ Ld85

= Lc⊕d ◦ Lc ◦ Ld86

= (e c⊕ d)(c d)(e c)(d c⊕ d)(e d)(c c⊕ d)87

= IG.88

It is clear that gyr [d, e] = IG, and that gyr [d, d] = IG. By the inversive symmetric89

property (see Theorem 2.34 of [10]), gyr [d, c] = gyr [c, d]−1 = IG. It follows from90

the right loop property (see Theorem 2.35 of [10]) that gyr [d, c⊕ d] = gyr [d, c] =91

IG. This shows that d lies in the left nucleus Nℓ(G) of G. One obtains in a similar92

fashion that c ∈ Nℓ(G). Thus, c ⊕ d ∈ Nℓ(G) by the closure property. Hence,93

G = Nℓ(G), and so G forms a group by Theorem 3.1 of [5].94

In 2020, Smith asked a question “why there is no a non-degenerate gyrogroup95

of order 6?” via private communication. Here, we give a gyrogroup-theoretic96

proof that every gyrogroup of order 6 is necessarily a group. Recall that any97

gyrogroup of even order always contains an element of order 2 by Theorem 3.798

of [7]. To complete the goal, we first prove the following lemma.99
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Lemma 2. If G is a gyrogroup of order 6, then G contains an element of order100

3 or an element of order 6.101

Proof. Assume to the contrary that G has no elements of order 3 and has no102

elements of order 6. By Proposition 6.1 of [8], the order of any element in G is a103

divisor of 6. Hence, any non-identity element of G is of order 2. Let a, b ∈ G\{e}104

with a ̸= b. By assumption, |a| = 2 and |b| = 2. Note that a⊕b ̸= e, a⊕b ̸= a, and105

a⊕ b ̸= b since otherwise b = ⊖a = a, b = e, and a = e, which are contradictions.106

For simplicity, the proof is divided into several parts.107

Claim 1. a⊕ b ̸= b⊕ a. Suppose to the contrary that a⊕ b = b⊕ a. Note that108

|{e, a, b, a ⊕ b}| = 4. Hence, we can let c1 and c2 be distinct elements of G such109

that c1, c2 ̸∈ {e, a, b, a ⊕ b}. Note that La(e) = a, La(a) = e, La(b) = a ⊕ b, and110

La(a ⊕ b) = b since a = ⊖a. This implies La(c1) = c2, noting that La(c1) ̸= c1111

since otherwise a = e. Similarly, Lb(e) = b, Lb(b) = e, Lb(a) = b⊕ a = a⊕ b, and112

Lb(b ⊕ a) = a. This implies Lb(c1) = c2. It follows that a ⊕ c1 = c2 = b ⊕ c1,113

which implies by the right cancellation law that a = b, a contradiction. Thus,114

a⊕ b ̸= b⊕ a.115

Claim 2. G = {e, a, b, a ⊕ b, b ⊕ a, a ⊕ (b ⊕ a)}. By Claim 1, a ⊕ b ̸= b ⊕ a.116

By Theorem 4.1 of [7], ⟨a⟩ partitions G into disjoint right cosets. Note that117

⟨a⟩⊕e = {e, a} and ⟨a⟩⊕b = {b, a⊕b}. Since b⊕a ̸∈ {e, a, b, a⊕b}, it follows that118

⟨a⟩⊕(b⊕a) is the remaining right coset. Hence, G = {e, a, b, a⊕b, b⊕a, a⊕(b⊕a)},119

as required.120

To complete the proof, we show that a contradiction arises. As computed121

above, La and Lb decompose into products of disjoint transpositions as122

La = (e a)(b a⊕ b)(b⊕ a a⊕ (b⊕ a)) and Lb = (e b)(a b⊕ a)(a⊕ b a⊕ (b⊕ a)).123

A direct computation shows that La ◦Lb = (e a⊕ b b⊕a)(a a⊕ (b⊕a) b). Next,124

we consider La⊕b. By assumption, |a ⊕ b| = 2, and so ⊖(a ⊕ b) = a ⊕ b. This125

implies that (a⊕ b)⊕ a ̸∈ {e, a, a⊕ b}. Thus, (a⊕ b)⊕ a ∈ {b, b⊕ a, a⊕ (b⊕ a)}.126

Note that gyr [a, b] = L−1
a⊕b ◦La ◦Lb = La⊕b ◦La ◦Lb. We show that the following127

cases lead to some contradictions.128

Case 1. (a⊕ b)⊕ a = b. In this case,129

La⊕b = (e a⊕ b)(a b)(b⊕ a a⊕ (b⊕ a)).130

Hence, gyr [a, b] = (e)(b)(a b⊕ a a⊕ b a⊕ (b⊕ a)). In particular, gyr[a, b] 4 = IG.131

Note that gyr [a, b](a) = b⊕ a. Applying gyr[a, b] 3 on both sides of the previous132

equation gives a = b ⊕ gyr[a, b] 3(a). It follows that gyr[a, b] 3(a) = b ⊕ a. Since133

gyr[a, b] 3 = (e)(b)(a a⊕ (b⊕ a) a⊕ b b⊕ a), we obtain b⊕ a = a⊕ (b⊕ a), which134

implies a = e, a contradiction.135
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Case 2. (a⊕ b)⊕ a = b⊕ a. In this case,136

La⊕b = (e a⊕ b)(a b⊕ a)(b a⊕ (b⊕ a)).137

Hence, gyr [a, b] = (e)(a ⊕ (b ⊕ a))(a b b ⊕ a a ⊕ b), and so gyr [a, b](b) = b ⊕ a.138

According to the gyrator identity (see part 10 of Theorem 2.10 of [10]), b⊕ a =139

⊖(a⊕ b)⊕ (a⊕ (b⊕ b)) = (a⊕ b)⊕ a, which implies b = a⊕ b, a contradiction.140

Case 3. (a⊕b)⊕a = a⊕(b⊕a). Since La⊕b = (e a⊕b)(a a⊕(b⊕a))(b b⊕a),141

we obtain gyr [a, b] = (e)(a)(b a ⊕ (b ⊕ a) b ⊕ a a ⊕ b). Thus, gyr[a, b] 4 = IG.142

As gyr [a, b](b) = a ⊕ (b ⊕ a), applying gyr[a, b] 3 on both sides of the previous143

equation gives b = a ⊕ gyr[a, b] 3(b ⊕ a). Hence, gyr[a, b] 3(b ⊕ a) = a ⊕ b. Since144

gyr[a, b] 3 = (e)(a)(b a⊕ b b⊕ a a⊕ (b⊕ a)), it follows that a⊕ b = a⊕ (b⊕ a),145

which implies b = b⊕ a, a contradiction.146

This completes the proof.147

Lemma 2 implies that any gyrogroup of order 6 satisfies the Cauchy property:148

any gyrogroup of order 6 has an element of order 2 and an element of order 3.149

We are now in a position to prove the main theorem of this section.150

Theorem 3. If G is a gyrogroup of order 6, then G forms a group.151

Proof. In the case when G has an element of order 6, say g, we obtain that152

G = ⟨g⟩ ∼= Z6. Therefore, we assume that G has no elements of order 6. Hence,153

any non-identity element of G must be of order 2 or of order 3 as a consequence154

of Theorem 4.1 of [7].155

By Theorem 3.7 of [7], G has an element of order 2, say a. By Lemma 2, G156

has an element of order 3, say b. Thus, ⟨b⟩ = {e, b, 2b}, and a ̸∈ ⟨b⟩. Note that157

⟨b⟩ is an L-subgyrogroup of G by Theorem 4.4 of [7], and so [G : ⟨b⟩] = 2. Since158

a ̸∈ ⟨b⟩, it follows that a⊕⟨b⟩ ≠ e⊕⟨b⟩. Thus, (a⊕⟨b⟩)∩ (e⊕⟨b⟩) = ∅. It follows159

that G = {e, b, 2b, a, a⊕b, a⊕2b}. For simplicity, the proof is divided into several160

parts.161

Claim 1. gyr [b, a](b) = b. To prove the claim, note that all non-identity elements162

in ⟨b⟩ have order 3 and, by Theorem 4.4 of [7], any element of G of order 3163

must be in ⟨b⟩. This implies either gyr [b, a](b) = b or gyr [b, a](b) = 2b since164

|gyr [b, a](b)| = |b| = 3. If gyr [b, a](b) = 2b, we would have gyr [b, a](2b) = b and165

would have gyr [a, b](b) = 2b since gyr [b, a]−1 = gyr [a, b]. This would imply166

a⊕ 2b = a⊕ (b⊕ b) = (a⊕ b)⊕ gyr [a, b](b) = (a⊕ b)⊕ 2b,167

which would imply by the right cancellation law that a = a⊕ b, a contradiction.168

Thus, gyr [b, a](b) = b. This also implies gyr [a, b](b) = b.169
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Claim 2. |b ⊕ a| = 2. Note that b ⊕ a ̸= e. Furthermore, by assumption,170

|b ⊕ a| ≠ 6. To prove the claim, suppose to the contrary that |b ⊕ a| = 3. Then171

b⊕a = b or b⊕a = 2b. In the former case, we obtain that a = e, a contradiction.172

In the latter case, we obtain that a = b, a contradiction. Thus, |b⊕ a| = 2. This173

also implies ⊖(b⊕ a) = b⊕ a.174

Claim 3. a ⊕ b = 2b ⊕ a. To prove the claim, note first that a ⊕ ⟨b⟩ = ⟨b⟩ ⊕ a175

for ⟨b⟩ ⊴ G (see Proposition 39 of [4]). As noted above, a ⊕ b ̸= a. Hence,176

either a ⊕ b = b ⊕ a or a ⊕ b = 2b ⊕ a. We show that a ⊕ b ̸= b ⊕ a. Suppose177

to the contrary that a ⊕ b = b ⊕ a. Then b = ⊖a ⊕ (b ⊕ a) = a ⊕ (b ⊕ a),178

which implies Lb = La⊕(b⊕a) = La ◦ Lb ◦ La (see Equation (2.6) of [6]). Thus,179

La ◦ Lb = Lb ◦ La since L−1
a = L⊖a = La. Using the composition law, we180

obtain La⊕b ◦ gyr [a, b] = Lb⊕a ◦ gyr [b, a], which implies gyr [a, b] = gyr [b, a].181

Hence, gyr[b, a] 2 = IG. By the gyrator identity and Claim 2, gyr [b, a](a) =182

⊖(b ⊕ a) ⊕ (b ⊕ (a ⊕ a)) = (b ⊕ a) ⊕ b. Hence, by Claim 1, gyr [b, a](a) =183

(a⊕ b)⊕ b = a⊕ (b⊕gyr [b, a](b)) = a⊕2b. From the even property (see Theorem184

2.34 of [10]), we obtain gyr [2b, a] = gyr [⊖b,⊖a] = gyr [b, a], which implies that185

gyr [b, a](a⊕ 2b) = (a⊕ 2b)⊕ 2b186

= a⊕ (2b⊕ gyr [2b, a](2b))187

= a⊕ (2b⊕ gyr [b, a](2b))188

= a⊕ (2b⊕ 2b)189

= a⊕ b.190

This leads to a contradiction since gyr [b, a](a⊕ 2b) = gyr[b, a] 2(a) = a. This191

shows that a⊕ b = 2b⊕ a.192

Claim 4. gyr [b, a](a) = a. By Claim 3, a ⊕ b = 2b ⊕ a. Hence, it follows from193

the gyrator identity and Claim 2 that194

gyr [b, a](a) = (b⊕ a)⊕ b195

= b⊕ (a⊕ gyr [a, b](b))196

= b⊕ (a⊕ b)197

= b⊕ (2b⊕ a)198

= b⊕ (⊖b⊕ a)199

= a.200

Claim 5. a and b belong to Nℓ(G). Since every element of G can be expressed201

in terms of a and b, together with the fact that gyr [b, a] leaves a and b fixed,202

it follows that gyr [b, a] = IG. This implies gyr [a, b] = IG. By parts 2 and 4 of203

Theorem 2.10 of [10], gyr [a, e] = gyr [e, a]−1 = IG, and gyr [a, a] = IG. As proved204
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above, gyr [a, 2b] = gyr [2b, a]−1 = gyr [b, a]−1 = IG. By the left and right loop205

properties,206

gyr [a, a⊕ b] = gyr [a⊕ (a⊕ b), a⊕ b] = gyr [b, a⊕ b] = gyr [b, a] = IG.207

Similarly, gyr [a, a⊕ 2b] = gyr [2b, a] = IG. This shows that a ∈ Nℓ(G). As208

above, gyr [b, e] = IG, gyr [b, b] = IG, and gyr [b, a] = IG. By Proposition 3.10 of209

[8], gyr [b, 2b] = IG. By the right loop property, gyr [b, a⊕ b] = gyr [b, a] = IG.210

Note that (a⊕ 2b)⊕ b = a⊕ (2b⊕ gyr [2b, a](b)) = a⊕ (2b⊕ b) = a. Hence, by the211

right loop property, gyr [b, a⊕ 2b] = gyr [b, a] = IG. This shows that b ∈ Nℓ(G).212

We are now in a position to prove the main statement. By Claim 5, a and b213

lie in Nℓ(G). Hence, 2b, a⊕ b, and a⊕ 2b lie in Nℓ(G) by the closure property. It214

follows that G = Nℓ(G), which implies that G forms a group.215

As a consequence of Theorem 3 and the remark above, every non-degenerate216

gyrogroup has at least eight elements. We summarize this result as Corollary 4.217

Corollary 4. If G is a non-degenerate gyrogroup, then |G| ≥ 8.218

Proof. This follows from the previous results, together with the fact that there219

is a concrete example of a non-degenerate gyrogroup of order 8 (see, for instance,220

Example 1 of [4]).221

4. Properties of gyrogroups of order 8222

In view of Lemma 2.1 of [1], there are precisely six gyrogroups of order 8 (up to223

isomorphism) for there are six non-isomorphic non-associative left Bol loops of224

order 8 (see [2]) and all of which have the Aℓ-property. In this section, we give225

the complete list of gyrogroups of order 8 up to isomorphism and prove several226

related properties. The verification of the axioms for a gyrogroup is simply a227

matter of direct computation.228

4.1. The gyrogroup G8,1229

The gyroaddition and gyration tables for the gyrogroup G8,1 are given in Table230

1. In G8,1, there are four non-trivial proper subgyrogroups, as shown in Table 2.231

The only non-trivial gyroautomorphism of G8,1 is given in cycle decomposition232

by α = (1 3)(2 4).233

Bao asked the following questions via private communication.234

Question 5. Is there a non-degenerate gyrogroup in which every subgyrogroup is235

normal ?236
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⊕ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 7 6 0 5 2 4 3
2 2 5 7 6 0 3 1 4
3 3 0 5 7 6 4 2 1
4 4 6 0 5 7 1 3 2
5 5 2 3 4 1 7 0 6
6 6 4 1 2 3 0 7 5
7 7 3 4 1 2 6 5 0

gyr 0 1 2 3 4 5 6 7

0 ι ι ι ι ι ι ι ι
1 ι ι α ι α α α ι
2 ι α ι α ι α α ι
3 ι ι α ι α α α ι
4 ι α ι α ι α α ι
5 ι α α α α ι ι ι
6 ι α α α α ι ι ι
7 ι ι ι ι ι ι ι ι

Table 1. The gyroaddition and gyration tables for the gyrogroup G8,1, where ι is the
identity automorphism and α = (1 3)(2 4).

Subgyrogroup Elements Isomorphism Type Remark

⟨7⟩ {0, 7} Z2 left nucleus
⟨1⟩ {0, 1, 3, 7} Z4 n/a
⟨2⟩ {0, 2, 4, 7} Z4 n/a
⟨5⟩ {0, 5, 6, 7} Z4 right nucleus

Table 2. The non-trivial proper subgyrogroups of G8,1.

Question 6. Is there a non-degenerate gyrogroup in which every subgyrogroup is237

strong ?238

Questions 5 and 6 have the affirmative answer as we will see shortly. Note239

that ⟨7⟩⊴G8,1 since ⟨7⟩ is the left nucleus of G8,1 (see Theorem 3.8 of [5]), and240

that ⟨1⟩, ⟨2⟩, and ⟨5⟩ are all normal in G8,1 since they are strong subgyrogroups241

of G8,1 of index 2 (see Theorem 4.5 of [5]). This shows that every subgyrogroup242

of G8,1 is normal, and so Question 5 has the affirmative answer. Also, note that243

⟨5⟩ is the right nucleus of G8,1. The lattice of subgyrogroups of G8,1 is depicted in244

Figure 1 and is the same as the lattice of subgroups of the quaternion of order 8.245

4.2. The gyrogroup G8,2246

The gyroaddition and gyration tables for the gyrogroup G8,2 are given in Table247

3. In G8,2, there are six non-trivial proper subgyrogroups, as shown in Table 4.248

The only non-trivial gyroautomorphism of G8,2 is given in cycle decomposition249

by β = (4 5)(6 7).250

Note that ⟨1⟩ ⊴ G8,2 since ⟨1⟩ is the left nucleus of G8,2, and that ⟨4⟩, ⟨6⟩,251

and ⟨1, 2⟩ are all normal in G8,2 since they are strong subgyrogroups of G8,2 of252

index 2. Also, note that ⟨1, 2⟩ is the right nucleus of G8,2. Moreover, ⟨2⟩ is a253

strong subgyrogroup of G8,2 but is not normal in G8,2. In fact, 4⊕⟨2⟩ = {4, 7} but254

⟨2⟩⊕4 = {4, 6} (see Proposition 39 of [4]). Similarly, ⟨3⟩ is a strong subgyrogroup255
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G8,1

⟨1⟩ ⟨2⟩ ⟨5⟩

⟨7⟩

⟨0⟩

Figure 1. The lattice diagram of G8,1, where double lines indicate being a normal sub-
gyrogroup in the whole gyrogroup.

⊕ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 7 6 1 0 2 3
5 5 4 6 7 0 1 3 2
6 6 7 5 4 2 3 1 0
7 7 6 4 5 3 2 0 1

gyr 0 1 2 3 4 5 6 7

0 ι ι ι ι ι ι ι ι
1 ι ι ι ι ι ι ι ι
2 ι ι ι ι β β β β
3 ι ι ι ι β β β β
4 ι ι β β ι ι β β
5 ι ι β β ι ι β β
6 ι ι β β β β ι ι
7 ι ι β β β β ι ι

Table 3. The gyroaddition and gyration tables for the gyrogroup G8,2, where ι is the
identity automorphism and β = (4 5)(6 7).

Subgyrogroup Elements Isomorphism Type Remark

⟨1⟩ {0, 1} Z2 left nucleus
⟨2⟩ {0, 2} Z2 n/a
⟨3⟩ {0, 3} Z2 n/a
⟨4⟩ {0, 1, 4, 5} Z4 n/a
⟨6⟩ {0, 1, 6, 7} Z4 n/a
⟨1, 2⟩ {0, 1, 2, 3} Z2 × Z2 right nucleus

Table 4. The non-trivial proper subgyrogroups of G8,2.

of G8,2 but is not normal in G8,2. In fact, 4 ⊕ ⟨3⟩ = {4, 6} but ⟨3⟩ ⊕ 4 = {4, 7}.256

This in particular shows that every subgyrogroup of G8,2 is strong. As non-257

normal strong subgyrogroups exist, the property of being a strong subgyrogroup258
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is strictly weaker than the property of being a normal subgyrogroup. This also259

shows that Question 6 has the affirmative answer. The lattice of subgyrogroups260

of G8,2 is depicted in Figure 2.261

G8,2

⟨4⟩ ⟨6⟩ ⟨1, 2⟩

⟨1⟩ ⟨2⟩ ⟨3⟩

⟨0⟩

Figure 2. The lattice diagram of G8,2, where double lines indicate being a normal sub-
gyrogroup in the whole gyrogroup.

4.3. The gyrogroup G8,3262

The gyroaddition and gyration tables for the gyrogroup G8,3 are given in Table263

5. In G8,3, there are six non-trivial proper subgyrogroups, as shown in Table 6.264

The only non-trivial gyroautomorphism of G8,3 is given in cycle decomposition265

by γ = (4 6)(5 7). This gyrogroup is indeed the gyrogroup G8 in Example 1 of266

[4].267

⊕ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 3 0 2 7 4 5 6
2 2 0 3 1 5 6 7 4
3 3 2 1 0 6 7 4 5
4 4 5 7 6 3 2 0 1
5 5 6 4 7 2 0 1 3
6 6 7 5 4 0 1 3 2
7 7 4 6 5 1 3 2 0

gyr 0 1 2 3 4 5 6 7

0 ι ι ι ι ι ι ι ι
1 ι ι ι ι γ γ γ γ
2 ι ι ι ι γ γ γ γ
3 ι ι ι ι ι ι ι ι
4 ι γ γ ι ι γ ι γ
5 ι γ γ ι γ ι γ ι
6 ι γ γ ι ι γ ι γ
7 ι γ γ ι γ ι γ ι

Table 5. The gyroaddition and gyration tables for the gyrogroup G8,3, where ι is the
identity automorphism and γ = (4 6)(5 7).

Note that ⟨3⟩ ⊴ G8,3 since ⟨3⟩ is the left nucleus of G8,3, and that ⟨2⟩, ⟨4⟩,268

and ⟨3, 5⟩ are all normal in G8,3 since they are strong subgyrogroups of G8,3 of269
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Subgyrogroup Elements Isomorphism Type Remark

⟨3⟩ {0, 3} Z2 left nucleus
⟨5⟩ {0, 5} Z2 n/a
⟨7⟩ {0, 7} Z2 n/a
⟨2⟩ {0, 1, 2, 3} Z4 right nucleus
⟨4⟩ {0, 3, 4, 6} Z4 n/a
⟨3, 5⟩ {0, 3, 5, 7} Z2 × Z2 n/a

Table 6. The non-trivial proper subgyrogroups of G8,3.

index 2. Also, note that ⟨2⟩ is the right nucleus of G8,3. Moreover, ⟨5⟩ is a270

strong subgyrogroup of G8,3 but is not normal in G8,3. In fact, 1 ⊕ ⟨5⟩ = {1, 4}271

but ⟨5⟩ ⊕ 1 = {1, 6}. Similarly, ⟨7⟩ is a strong subgyrogroup of G8,3 but is not272

normal in G8,3. In fact, 1 ⊕ ⟨7⟩ = {1, 6} but ⟨7⟩ ⊕ 1 = {1, 4}. The lattice of273

subgyrogroups of G8,3 is depicted in Figure 3. We remark that G8,2 and G8,3 are274

not isomorphic because their right nuclei are not isomorphic: the right nucleus275

of G8,2 is isomorphic to the Klein 4-group, whereas the right nucleus of G8,3 is276

isomorphic to the cyclic group of order 4.277

G8,3

⟨2⟩ ⟨4⟩ ⟨3, 5⟩

⟨3⟩ ⟨5⟩ ⟨7⟩

⟨0⟩

Figure 3. The lattice diagram of G8,3, where double lines indicate being a normal sub-
gyrogroup in the whole gyrogroup.

4.4. The gyrogroup G8,4278

The gyroaddition and gyration tables for the gyrogroup G8,4 are given in Table279

7. In G8,4, there are 10 non-trivial proper subgyrogroups, as shown in Table 8.280

The only non-trivial gyroautomorphism of G8,4 is given in cycle decomposition281

by δ = (4 7)(5 6).282

Note that ⟨3⟩⊴G8,4 since ⟨3⟩ is the left nucleus of G8,4, and that ⟨1, 2⟩, ⟨3, 4⟩,283
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⊕ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 0 3 2 6 7 4 5
2 2 3 0 1 5 4 7 6
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

gyr 0 1 2 3 4 5 6 7

0 ι ι ι ι ι ι ι ι
1 ι ι ι ι δ δ δ δ
2 ι ι ι ι δ δ δ δ
3 ι ι ι ι ι ι ι ι
4 ι δ δ ι ι δ δ ι
5 ι δ δ ι δ ι ι δ
6 ι δ δ ι δ ι ι δ
7 ι δ δ ι ι δ δ ι

Table 7. The gyroaddition and gyration tables for the gyrogroup G8,4, where ι is the
identity automorphism and δ = (4 7)(5 6).

Subgyrogroup Elements Isomorphism Type Remark

⟨1⟩ {0, 1} Z2 n/a
⟨2⟩ {0, 2} Z2 n/a
⟨3⟩ {0, 3} Z2 left nucleus
⟨4⟩ {0, 4} Z2 n/a
⟨5⟩ {0, 5} Z2 n/a
⟨6⟩ {0, 6} Z2 n/a
⟨7⟩ {0, 7} Z2 n/a
⟨1, 2⟩ {0, 1, 2, 3} Z2 × Z2 right nucleus
⟨3, 4⟩ {0, 3, 4, 7} Z2 × Z2 n/a
⟨3, 5⟩ {0, 3, 5, 6} Z2 × Z2 n/a

Table 8. The non-trivial proper subgyrogroups of G8,4.

and ⟨3, 5⟩ are all normal in G8,4 since they are strong subgyrogroups of G8,4284

of index 2. Also, note that ⟨1, 2⟩ is the right nucleus of G8,4. Moreover, ⟨1⟩285

is not normal in G8,4 since 4 ⊕ ⟨1⟩ ̸= ⟨1⟩ ⊕ 4; ⟨2⟩ is not normal in G8,4 since286

4⊕⟨2⟩ ≠ ⟨2⟩⊕4; ⟨4⟩ is not normal in G8,4 since 1⊕⟨4⟩ ≠ ⟨4⟩⊕1; ⟨5⟩ is not normal287

in G8,4 since 1⊕⟨5⟩ ≠ ⟨5⟩⊕1; ⟨6⟩ is not normal in G8,4 since 1⊕⟨6⟩ ≠ ⟨6⟩⊕1; and288

⟨7⟩ is not normal in G8,4 since 1⊕⟨7⟩ ≠ ⟨7⟩⊕ 1. Also, note that every element of289

G8,4 is of order 2. The lattice of subgyrogroups of G8,4 is depicted in Figure 4.290

4.5. The gyrogroup G8,5291

The gyroaddition and gyration tables for the gyrogroup G8,5 are given in Table 9.292

In G8,5, there are eight non-trivial proper subgyrogroups, as shown in Table 10.293

The only non-trivial gyroautomorphism of G8,5 is given in cycle decomposition294

by ϵ = (1 2)(3 4).295
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G8,4

⟨3, 4⟩ ⟨1, 2⟩ ⟨3, 5⟩

⟨4⟩ ⟨7⟩ ⟨1⟩ ⟨3⟩ ⟨2⟩ ⟨6⟩ ⟨5⟩

⟨0⟩

Figure 4. The lattice diagram of G8,4, where double lines indicate being a normal sub-
gyrogroup in the whole gyrogroup.

⊕ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 0 5 7 6 2 4 3
2 2 5 0 6 7 1 3 4
3 3 6 7 5 0 4 2 1
4 4 7 6 0 5 3 1 2
5 5 2 1 4 3 0 7 6
6 6 4 3 2 1 7 0 5
7 7 3 4 1 2 6 5 0

gyr 0 1 2 3 4 5 6 7

0 ι ι ι ι ι ι ι ι
1 ι ι ι ϵ ϵ ι ϵ ϵ
2 ι ι ι ϵ ϵ ι ϵ ϵ
3 ι ϵ ϵ ι ι ι ϵ ϵ
4 ι ϵ ϵ ι ι ι ϵ ϵ
5 ι ι ι ι ι ι ι ι
6 ι ϵ ϵ ϵ ϵ ι ι ι
7 ι ϵ ϵ ϵ ϵ ι ι ι

Table 9. The gyroaddition and gyration tables for the gyrogroup G8,5, where ι is the
identity automorphism and ϵ = (1 2)(3 4).

Subgyrogroup Elements Isomorphism Type Remark

⟨1⟩ {0, 1} Z2 n/a
⟨2⟩ {0, 2} Z2 n/a
⟨5⟩ {0, 5} Z2 left nucleus
⟨6⟩ {0, 6} Z2 n/a
⟨7⟩ {0, 7} Z2 n/a
⟨3⟩ {0, 3, 4, 5} Z4 n/a
⟨1, 2⟩ {0, 1, 2, 5} Z2 × Z2 n/a
⟨5, 6⟩ {0, 5, 6, 7} Z2 × Z2 right nucleus

Table 10. The non-trivial proper subgyrogroups of G8,5.

Recall that if a subgroup Ξ of a group Γ satisfies the condition that gΞ = Ξg296
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for all g ∈ Γ, then Ξ is normal in Γ. Therefore, Wattanapan asked the following297

question via private communication.298

Question 7. Let G be a gyrogroup, and let N be a subgyrogroup of G. Does the299

condition that a⊕N = N ⊕ a for all a ∈ G imply normality of N?300

We will see shortly that Question 7 has the negative answer. Note that301

⟨5⟩ ⊴G8,5 since ⟨5⟩ is the left nucleus of G8,5, and that ⟨1, 2⟩, ⟨3⟩, and ⟨5, 6⟩ are302

all normal in G8,5 since they are strong subgyrogroups of G8,5 of index 2. Also,303

note that ⟨5, 6⟩ is the right nucleus ofG8,5. Moreover, ⟨6⟩ is a strong subgyrogroup304

of G8,5 satisfying the property that a ⊕ ⟨6⟩ = ⟨6⟩ ⊕ a for all a ∈ G8,5 but is not305

normal in G8,5. In fact, the operation of cosets 1⊕⟨6⟩ and 2⊕⟨6⟩ depends on the306

choice of representatives: (1⊕2)⊕⟨6⟩ = {5, 7} and (4⊕2)⊕⟨6⟩ = {0, 6}, whereas307

1⊕ ⟨6⟩ = 4⊕ ⟨6⟩ (see Theorem 31 of [4]). Similarly, ⟨7⟩ is a strong subgyrogroup308

of G8,5 satisfying the property that a ⊕ ⟨7⟩ = ⟨7⟩ ⊕ a for all a ∈ G8,5 but is not309

normal in G8,5. In fact, the operation of cosets 1⊕⟨7⟩ and 4⊕⟨7⟩ depends on the310

choice of representatives: (1⊕4)⊕⟨7⟩ = {5, 6} and (3⊕4)⊕⟨7⟩ = {0, 7}, whereas311

1⊕ ⟨7⟩ = 3⊕ ⟨7⟩. Moreover, ⟨1⟩ is not normal in G8,5 since 3⊕ ⟨1⟩ = {3, 6} but312

⟨1⟩ ⊕ 3 = {3, 7}. Similarly, ⟨2⟩ is not normal in G8,5 since 4 ⊕ ⟨2⟩ = {4, 6} but313

⟨2⟩⊕4 = {4, 7}. This in particular shows that the condition that a⊕N = N⊕a for314

all elements a in a gyrogroup does not imply normality of N . Therefore, Question315

7 has the negative answer. The lattice of subgyrogroups of G8,5 is depicted in316

Figure 5.317

G8,5

⟨1, 2⟩ ⟨3⟩ ⟨5, 6⟩

⟨1⟩ ⟨2⟩ ⟨5⟩ ⟨6⟩ ⟨7⟩

⟨0⟩

Figure 5. The lattice diagram of G8,5, where double lines indicate being a normal sub-
gyrogroup in the whole gyrogroup.

4.6. The gyrogroup G8,6318

The gyroaddition and gyration tables for the gyrogroupG8,6 are given in Table 11.319

In G8,6, there are eight non-trivial proper subgyrogroups, as shown in Table 12.320
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The only non-trivial gyroautomorphism of G8,6 is given in cycle decomposition321

by ζ = (1 3)(2 4).322

⊕ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 0 5 7 6 2 4 3
2 2 6 0 5 7 3 1 4
3 3 7 6 0 5 4 2 1
4 4 5 7 6 0 1 3 2
5 5 2 3 4 1 7 0 6
6 6 4 1 2 3 0 7 5
7 7 3 4 1 2 6 5 0

gyr 0 1 2 3 4 5 6 7

0 ι ι ι ι ι ι ι ι
1 ι ι ζ ι ζ ζ ζ ι
2 ι ζ ι ζ ι ζ ζ ι
3 ι ι ζ ι ζ ζ ζ ι
4 ι ζ ι ζ ι ζ ζ ι
5 ι ζ ζ ζ ζ ι ι ι
6 ι ζ ζ ζ ζ ι ι ι
7 ι ι ι ι ι ι ι ι

Table 11. The gyroaddition and gyration tables for the gyrogroup G8,6, where ι is the
identity automorphism and ζ = (1 3)(2 4).

Subgyrogroup Elements Isomorphism Type Remark

⟨1⟩ {0, 1} Z2 n/a
⟨2⟩ {0, 2} Z2 n/a
⟨3⟩ {0, 3} Z2 n/a
⟨4⟩ {0, 4} Z2 n/a
⟨7⟩ {0, 7} Z2 left nucleus
⟨5⟩ {0, 5, 6, 7} Z4 right nucleus
⟨1, 3⟩ {0, 1, 3, 7} Z2 × Z2 n/a
⟨2, 4⟩ {0, 2, 4, 7} Z2 × Z2 n/a

Table 12. The non-trivial proper subgyrogroups of G8,6.

Note that ⟨7⟩⊴G8,6 since ⟨7⟩ is the left nucleus ofG8,6, and that ⟨5⟩, ⟨1, 3⟩, and323

⟨2, 4⟩ are all normal in G8,6 since they are strong subgyrogroups of G8,6 of index324

2. Also, note that ⟨5⟩ is the right nucleus of G8,6. Moreover, ⟨1⟩ is not normal325

in G8,6 since 2⊕ ⟨1⟩ ̸= ⟨1⟩ ⊕ 2; ⟨2⟩ is not normal in G8,6 since 1⊕ ⟨2⟩ ̸= ⟨2⟩ ⊕ 1;326

⟨3⟩ is not normal in G8,6 since 2 ⊕ ⟨3⟩ ̸= ⟨3⟩ ⊕ 2; and ⟨4⟩ is not normal in G8,6327

since 1⊕⟨4⟩ ≠ ⟨4⟩⊕ 1. The lattice of subgyrogroups of G8,6 is depicted in Figure328

6. We remark that G8,5 and G8,6 are not isomorphic because their right nuclei329

are not isomorphic: the right nucleus of G8,5 is isomorphic to the Klein 4-group,330

whereas the right nucleus of G8,6 is isomorphic to the cyclic group of order 4.331

In summary, we present the complete list of pairwise non-isomorphic gyro-332

groups of order 8, determine their subgyrogroup structures, and draw their lattice333

diagrams of subgyrogroups. Finally, with these examples of gyrogroups, we can334

answer a few recent questions raised by Smith, Bao, and Wattanapan.335
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G8,6

⟨1, 3⟩ ⟨5⟩ ⟨2, 4⟩

⟨1⟩ ⟨3⟩ ⟨7⟩ ⟨2⟩ ⟨4⟩

⟨0⟩

Figure 6. The lattice diagram of G8,6, where double lines indicate being a normal sub-
gyrogroup in the whole gyrogroup.
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