DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in press


Authors:

B. Dhara

Basudeb Dhara

Department of Mathematics
Belda College, Belda, Paschim Medinipur, 721424, India

email: basu_dhara@yahoo.com

Title:

Special type of additive maps in prime rings with annihilating and centralizing condition

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications

Received: 2024-03-22 , Revised: 2024-11-20 , Accepted: 2024-11-20 , Available online: 2025-08-13 , https://doi.org/10.7151/dmgaa.1486

Abstract:

Let $R$ be a prime ring with char $R\neq 2$ and $f(r_1,\dots,r_n)$ be a non-central multilinear polynomial over $C(=Z(U))$, where $U$ is the Utumi ring of quotients of $R$. Let $I$ be a nonzero two sided ideal of $R$, $L$ a non central Lie ideal of $R$ and $\mathscr{F}$, $\mathscr{G}$ two generalized derivations of $R$. Denote the set $f(I)=\{f(r_1,\ldots,r_n) | r_1,\dots,r_n\in I\}$. If for some $0\neq a\in R$, $$ a[(\mathscr{F}^2+\mathscr{G})(u), u]\in C $$ for all $u\in f(I)$ or $u\in L$, then possible forms of the maps are described. This result improves the result proved by De Filippis et al. in [8] and Carini and Scudo in [6].

Keywords:

prime ring, derivation, generalized derivation

References:

  1. A. Ali, V. De Filippis and S. Khan, Power values of quadratic polynomials with generalized skew derivations on Lie ideals, Beitr. Algebra Geom. 62 (2021) 893–905.
    https://doi.org/10.1007/s13366-020-00550-3
  2. A. Ali, B. Dhara and S. Khan, Generalized derivations with power values in rings and Banach algebras, J. Math. Comput. Sci. 7(5) (2017) 912–926.
  3. A. Ali, V. De Filippis and S. Khan, Power values of generalized derivations with annihilator conditions in prime rings, Comm. Algebra, 44(7) (2016) 2887–2897.
    https://doi.org/10.1080/00927872.2015.1065848
  4. N. Argac and V. De Filippis, Actions of generalized derivations on multilinear polynomials in prime rings, Algebra Colloquium 18 (Spec 01) (2011) 955–964.
    https://doi.org/10.1142/S1005386711000836
  5. K.I. Beidar, W.S. Martindale III and A.V. Mikhalev Rings with Generalized Identities, Pure and Appl. Math. 196 (Marcel Dekker, New York, 1996).
  6. L. Carini and G. Scudo, An annihilator condition with generalized derivations on multilinear polynomials, Comm. Algebra 42 (2014) 4084–4093.
    https://doi.org/10.1080/00927872.2013.804927
  7. C.L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103(3) (1988) 723–728.
  8. V. De Filippis, B. Dhara and G. Scudo, Generalized derivations and commuting additive maps on multilinear polynomials in prime rings, Ukrainian Math. J. 68(2) (2016) 203–223.
    https://doi.org/10.1007/s11253-016-1219-0
  9. V. De Filippis and O.M. Di Vincenzo, Vanishing derivations and centralizers of generalized derivations on multilinear polynomials, Comm. Algebra 40(6) (2012) 1918–1932.
    https://doi.org/10.1080/00927872.2011.553859
  10. V. De Filippis, Posner's second theorem and an annihilator condition with generalized derivations, Turk. J. Math. 32(2) (2008) 197–211.
  11. V. De Filippis, An Engel condition with generalized derivations on multilinear polynomials, Israel J. Math. 162 (2007) 93–108.
    https://doi.org/10.1007/s11856-007-0090-y
  12. B. Dhara, S. Kar and M. Bera, Annihilating and centralizing condition of generalized derivation in prime ring, South. Asian Bull. Math. 48(4) (2024) 467–476.
  13. B. Dhara, S. Kar and K.G. Pradhan, Co-centralizing generalized derivations acting on multilinear polynomials in prime rings, Bull. Iranian Math. Soc. 42(6) (2016) 1331–1342.
  14. B. Dhara, Annihilator condition on power values of derivations, Indian J. Pure Appl. Math. 42(5) (2011) 357–369.
    https://doi.org/10.1007/s13226-011-0023-7
  15. B. Dhara and R.K. Sharma, Right sided ideals and multilinear polynomials with derivations on prime rings, Rend. Sem. Mat. Univ. Padova 121 (2009) 243–257.
  16. T.S. Erickson, W.S. Martindale III and J.M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60(1) (1975) 49–63.
    https://doi.org/10.2140/pjm.1975.60.49
  17. C. Faith and Y. Utumi, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hung. 14 (1963) 369–371.
    https://doi.org/10.1007/BF01895723
  18. I.N. Herstein, Rings with involution (Univ. of Chicago Press, Chicago, 1976).
  19. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Pub. 37, Amer. Math. Soc. (Providence, RI, 1964).
  20. V.K. Kharchenko, Differential identities of prime rings, Algebra and Logic 17 (1978) 155–168.
    https://doi.org/10.1007/BF01670115
  21. T.K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27(8) (1999) 4057–4073.
    https://doi.org/10.1080/00927879908826682
  22. E.H. Lee, Y.S. Jung and I.S. Chang, Derivations on prime and semiprime rings, Bull. Korean Math. Soc. 39/3 (2002) 485–494.
  23. T.K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20(1) (1992) 27–38.
  24. U. Leron, Nil and power central polynomials in rings, Trans. Amer. Math. Soc. 202 (1975) 297–103.
  25. W.S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12(4) (1969) 576–584.
    https://doi.org/10.1016/0021-8693(69)90029-5
  26. E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8(6) (1957) 1093–1100.
    https://doi.org/10.2307/2032686
  27. N. Rehman and V. De Filippis, On $n$-commuting and $n$-skew commuting maps with generalized derivations in prime and semiprime rings, Siberian Math. J. 52(3) (2011) 516–523.
    https://doi.org/10.1134/S0037446611030141
  28. T.L. Wong, Derivations with power central values on multilinear polynomials, Algebra Colloquium 3(4) (1996) 369–378.

Close