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Abstract10

Let R be a prime ring with char R 6= 2 and f(r1, . . . , rn) be a non-11

central multilinear polynomial over C(= Z(U)), where U is the Utumi ring12

of quotients of R. Let I be a nonzero two sided ideal of R, L a non central13

Lie ideal of R and F , G two generalized derivations of R. Denote the set14

f(I) = {f (r1 , . . . , rn)|r1, . . . , rn ∈ I}. If for some 0 6= a ∈ R,15

a[(F 2 + G )(u), u] ∈ C16

for all u ∈ f(I) or u ∈ L, then possible forms of the maps are described.17

This result improves the result proved by De Filippis et al. in [8] and18

Carini and Scudo in [6].19
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22

1. Introduction23

Let R be a prime ring with center Z(R), U be its Utumi ring of quotients. C is24

the extended centroid of R which is basically center of U . By a derivation d on25

R, one usually means an additive mapping d : R → R such that for any x, y ∈ R,26

d(xy) = d(x)y+xd(y). By a generalized derivation g on R, one usually means an27

additive mapping g : R → R such that for any x, y ∈ R, g(xy) = g(x)y + xd(y)28

for some derivation d in R. Every derivation is a generalized derivation. Thus29

generalized derivation map is the generalization of the map derivation.30
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For any a, b ∈ R, we denote [a, b] = ab − ba, which is called the commuta-31

tor of a and b. The standard polynomial of four variables is s4(t1, t2, t3, t4) =32

∑

σ∈S4
(−1)σtσ(1)tσ(2)tσ(3)tσ(4), where (−1)σ is +1 or −1 according to σ being an33

even or an odd permutation in symmetric group S4. R satisfies s4, we mean34

s4(t1, t2, t3, t4) = 0 for all t1, t2, t3, t4 ∈ R. Let f (r1 , . . . , rn) be a noncentral35

valued multilinear polynomial over C in n non-commuting variables.36

Let S be a nonempty subset of R. Then f(S) denotes the set of all evalua-37

tions of f(x1, . . . , xn) over S, that is, f(S) = {f(x1, . . . , xn)|x1, . . . , xn ∈ S}. A38

mapping χ : R → R is said to be commuting on S if [χ(s), s] = 0 for all s ∈ S39

and centralizing on S if [χ(s), s] ∈ Z(R) for all s ∈ S.40

Let d, g be two derivations and F ,G two generalized derivations on a prime41

ring R. A well known result proved by Posner [26], says that if a nonzero central-42

izing derivation exists in a prime ring R, then the ring R must be commutative.43

After that, several authors have given their contributions to the theory extending44

Posner’s [26] result in many directions (for instance, we refer to [1–4,8, 11]).45

In [15], authors of this paper studied the case when d2 is commuting and46

centralizing on f(I), where I is a non-zero right ideal of R.47

In [11], De Filippis studied the case when G is commuting on f(I), where I48

is a non-zero right ideal of R and then described forms of the maps.49

In [22, Theorem 2.1], Lee et al. introduced a special type of additive map50

d2 + g and then initiated to study this type of map. They proved that if R is a51

n!-torsion free semiprime ring such that [(d2 + g)(s), sn] = 0 for all s ∈ R, then d52

and g are both commuting on R.53

Further this special type of additive map was studied by Rehman and De54

Filippis in [27], replacing derivations with generalized derivation, that is, the55

map F 2 + G .56

Inspired by the above cited results, in [8], De Filippis et al. studied the57

additive map F 2 + G centralizing on f(I), that is, [(F 2 + G )(f(I)), f(I)] = 0,58

where I is a non-zero right ideal of R and then obtained forms of the maps.59

There is also ongoing interest to investigate the above identities with left60

annihilating conditions.61

In [10], De Filippis proved that if char (R) 6= 2 and 0 6= a ∈ R such that62

a[F (f(R)), f(R)] = 0, then one of the following holds:63

(1) there exists α′ ∈ C such that F (x) = α′x for all x ∈ R,64

(2) there exist q′ ∈ U and λ′ ∈ C such that F (x) = (q′+λ′)x+xq′ for all x ∈ R65

and f(r1, . . . , rn)
2 is central valued on R.66

In [13, Corollary 2.7], Dhara et al . studied the above situation of [10] with67

central valued, that is, a[F (f(R)), f(R)] ∈ C and described the forms of the68

maps.69
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Carini and Scudo in [6], already proved that if char (R) 6= 2 and 0 6= a ∈ R70

such that a[F 2(f(R)), f(R)] = 0, then one of the following holds:71

(1) there exists α′ ∈ C such that F (x) = α′x, for all x ∈ R,72

(2) there exists a′ ∈ U such that F (x) = a′x, for all x ∈ R, with a′2 ∈ C,73

(3) there exists a′ ∈ U such that F (x) = xa′, for all x ∈ R, with a′2 ∈ C.74

Recently in [12], Dhara et al . studied the above situation of [6] with central75

values, that is, a[F 2(f(R)), f(R)] ∈ C.76

In the present article our motivation is to examine the above situation of [8],77

with annihilator and centralizing conditions which improves and generalizes all78

the above results. More precisely, we prove the following theorems.79

Theorem 1.1. Let R be a prime ring with char (R) 6= 2 and f(r1, . . . , rn) be a80

non-central multilinear polynomial over C(= Z(U)), where U be the Utumi ring of81

quotients of R. Assume that I is a nonzero two sided ideal of R and F , G are two82

generalized derivations of R. Denote the set f(I) = {f (r1 , . . . , rn )|r1, . . . , rn ∈ I}.83

If for some 0 6= a ∈ R,84

a[(F 2 + G )(f (r1 , . . . , rn)), f (r1 , . . . , rn )] ∈ C85

for all r1, . . . , rn ∈ I, then one of the following holds:86

(1) there exist b, p ∈ U such that F (x) = xb and G (x) = xp for all x ∈ R with87

b2 + p ∈ C,88

(2) there exist b, p ∈ U such that F (x) = bx, G (x) = px for all x ∈ R with89

b2 + p ∈ C,90

(3) f(x1, . . . , xn)
2 is central valued and one of the following holds:91

(a) there exist b, p, q ∈ U such that F (x) = xb and G (x) = px + xq for all92

x ∈ R, with b2 − p+ q ∈ C,93

(b) there exist b, p, q ∈ U such that F (x) = bx and G (x) = px+ xq and for94

all x ∈ R with b2 + p− q ∈ C,95

(4) R satisfies s4 and one of the following holds:96

(a) there exist b, p, q ∈ U such that F (x) = xb and G (x) = px + xq for all97

x ∈ R, with b2 − p+ q ∈ C,98

(b) there exist b, p, q ∈ U such that F (x) = bx and G (x) = px + xq for all99

x ∈ R with b2 + p− q ∈ C.100

Theorem 1.2. Let R be a prime ring, L a noncentral Lie ideal of R and U the101

Utumi quotient ring of R, C = Z(U). Suppose that F and G are two generalized102

derivations of R such that for some 0 6= a ∈ R,103

a[(F 2 + G )(u), u] ∈ C104
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for all u ∈ L.105

If char (R) 6= 2, then R satisfies s4 and one of the following holds:106

(1) there exist b, p, q ∈ U such that F (x) = xb and G (x) = px+xq for all x ∈ R,107

with b2 − (p− q) ∈ C,108

(2) there exist b, p, q ∈ U such that F (x) = bx and G (x) = px+xq for all x ∈ R109

with b2 + p− q ∈ C.110

If char (R) = 2, then one of the following holds:111

(1) there exist b, c, p, q ∈ U such that F (x) = bx + [p, x] and G (x) = cx + [q, x]112

for all x ∈ R with F (b) + c, p2 + q ∈ C;113

(2) R satisfies s4.114

Example 1. Consider a ring R =

{(

a b
0 0

)

|a, b ∈ Z

}

, where Z is the set of all115

integers and a multilinear polynomial f(x, y) = xy which is not central valued on116

R. Note that R is not prime ring as

(

0 1
0 0

)(

a b
0 0

)(

1 1
0 0

)

=

(

0 0
0 0

)

.117

We define maps F ,G , d, g : R → R by G

(

a b
0 0

)

=

(

a 2b
0 0

)

, g

(

a b
0 0

)

=118

(

0 b
0 0

)

, F

(

a b
0 0

)

=

(

a 3b
0 0

)

and d

(

a b
0 0

)

=

(

0 2b
0 0

)

. Then F119

and G are generalized derivations of R associated to derivations d and g respec-120

tively. We see that for 0 6= p =

(

0 1
0 0

)

∈ R,121

p[(F 2 + G )(f(x, y)), f(x, y)] = 0 ∈ Z(R)122

for all x, y ∈ R. Since F is not in the form of F (x) = bx or F (x) = xb for all123

x ∈ R and for some fixed b ∈ R, the primeness assumption is not superfluous in124

Theorem 1.1.125

2. Some results126

Throughout this section, R always be a prime ring, I is two sided ideal of R and127

f (r1 , . . . , rn ) a noncentral valued multilinear polynomial over C. The C denotes128

the extended centroid of R which is the center of U .129

The following facts are to be used frequently to prove our Theorem.130

Fact 2.1. Let us denote by T = U ∗C C{X}, the free product over C of the131

C-algebra U and the free C-algebra C{X}, with X the countable set consisting of132
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the noncommuting indeterminates x1, x2, . . .. The elements of T are called gener-133

alized polynomials with coefficients in U . By a nontrivial generalized polynomial,134

we mean a nonzero element of T . For more details about these objects we refer135

to [5, 18].136

By [7], I, R and U satisfy the same generalized polynomial identities (GPIs)137

with coefficients in U .138

Fact 2.2. By [23], I, R and U satisfy the same differential identities.139

Fact 2.3 [4, Lemma 3]. If there exist a, c, p, q ∈ U such that140

(aX +Xc)X −X(pX +Xq) = 0141

for all X ∈ f(R), then one of the following holds:142

(1) a, q ∈ C and q − a = c− p ∈ C;143

(2) f(x1, . . . , xn)
2 is central valued on R and q − a = c− p ∈ C;144

(3) char (R) = 2 and R satisfies s4.145

Fact 2.4 (See [20, 23]). Let Der(U) be the set of all derivations on U and Dint146

be the set of all inner derivations on U .147

By [20, Theorem 2] (see also [23, Theorem 1]), we have the following result.148

Let d1, . . . , dm ∈ Der(U) and derivations words ∆j are in the form149

∆j = d
s1,j
1 d

s2,j
2 · · · d

sm,j
m j = 1, . . . , n150

where151

s = max
{

si,j, i = 1, . . . ,m j = 1, . . . , n
}

.152

If d1, . . . , dm are linearly C−independent modulo Dint, s < p, with char(R) =153

p 6= 0, and Φ
(

x
∆j

i

)

= 0 be a differential identity on R, then Φ(yji) = 0 is a GPI154

for R, where yji are distinct indeterminates.155

In particular, if derivation d /∈ Dint and char (R) 6= 2 such that R satisfies156

Φ
(

x1, . . . , xn, x
d
1, . . . , x

d
n, x

d2

1 , . . . , xd
2

n

)

= 0,157

then R satisfies GPI158

Φ
(

x1, . . . , xn, z1, . . . , zn, η1, . . . , ηn
)

= 0.159

Fact 2.5 [9, Lemma 1]. Let C be an infinite field, t be a positive integer with t ≥ 2160

and R = Mt(C), the algebra of all t × t matrices over C. Let B1, . . . , Bk be not161

scalar matrices in R. Then there must exists at least one invertible matrix Q ∈ R162

such that all the entries of the matrices QB1Q
−1, . . . , QBkQ

−1 have non-zero163

values.164
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Fact 2.6. If R satisfies a nontrivial generalized polynomial identity (GPI) χ(r1,165

. . . , rn) = 0, then it is also satisfied by U by [7]. Let E be the algebraic closure166

of C. We know that if C is infinite, then χ(r1, . . . , rn) = 0 for all r1, . . . , rn ∈167

U ⊗C E. Since both of U and U ⊗C E are prime and centrally closed (see [16,168

Theorems 2.5 and 3.5]), we may replace R by U or R by U ⊗C E according to169

C finite or infinite and hence we may assume that R is centrally closed over C.170

Then by [25], R is a primitive ring having a nonzero socle soc(R) and C is its171

associated division ring. By Jacobson’s theorem [19, p. 75], R is isomorphic to a172

dense ring of linear transformations of a vector space V over C.173

Fact 2.7. Let X = {x1, x2, . . .} be a countable set of consisting non-commuting174

indeterminates x1, x2, . . . . We denote T = U ∗C C{X}, the free product of the175

C-algebra U and the free C-algebra C{X}. Then the element of T are called the176

generalized polynomials.177

Then any element m ∈ T of the form m = q0y1q1y2q2 . . . ynqn, where q0, q1,178

. . . , qn ∈ U and y1, . . . , yn ∈ X is called a monomial.179

Let B be a set of C-independent vectors of U . Each f ∈ T can be represented180

in the form f =
∑

i αimi, where αi ∈ C and mi are B-monomials and this181

representation is unique. Any generalized polynomial f =
∑

i αimi is trivial, i.e.,182

zero element in T if and only if αi = 0 for each i. For details we refer the reader183

to [7].184

We shall use this simple criterion to prove that R satisfies a nontrivial gen-185

eralized polynomial identity (GPI).186

3. The Case: Inner generalized derivations187

This section is dedicated, when all generalized derivations are inner.188

Lemma 3.1. Let R be a prime ring with char (R) 6= 2 and a, a′, a′′, b, c, c′, p′ ∈ R189

such that190

[

a′X2 + a′′XcX + aXp′X − 2aXbXc − aX2c′, y
]

= 0(3.1)191

for all X ∈ f(R) and y ∈ R. If a /∈ C, b /∈ C and c /∈ C, then (3.1) is a192

non-trivial GPI for R.193

Proof. Let a /∈ C, b /∈ C and c /∈ C. By Fact 2.1, U satisfies (3.1). On contrary,194

we assume that (3.1) is a trivial GPI for U . Let T = U ∗C C{r1, . . . , rn, y},195

the free product of U and C{r1, . . . , rn, y}, the free C-algebra in noncommuting196

indeterminates r1, . . . , rn, y. Let f(r1, . . . , rn) = X. Then197

[

a′X2 + a′′XcX + aXp′X − 2aXbXc − aX2c′, y
]

= 0 ∈ T.(3.2)198
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From above199

y
{

a′X2 + a′′XcX + aXp′X − 2aXbXc − aX2c′
}

= 0 ∈ T.(3.3)200

This implies that {c, c′, 1} is linearly C-dependent, other wise aXc′ = 0 implying201

a = 0 or c′ = 0, a contradiction. Then there exists α1, α2, α3 ∈ C such that202

α1c + α2c
′ + α3.1 = 0. If α2 = 0, then α1 6= 0, because of the C-independency203

of {c, c′, 1}. So this fact implies that c′ = 0, a contradiction. Thus α2 6= 0 and204

hence c′ = α+ βc, where α = −α−1
2 α3, β = −α−1

2 α1. Then U satisfies205

y
{

a′X2 + a′′XcX + aXp′X − 2aXbXc − aX2(α+ βc)
}

= 0.(3.4)206

Since c /∈ C, this implies that207

y
{

−2aXbXc − βaX2c
}

= 0(3.5)208

that is, y {(2aXb + βaX)Xc} = 0. Again, since b /∈ C, U satisfies 2yaXbXc = 0,209

implying either a = 0 or b = 0 or c = 0, a contradiction.210

Lemma 3.2. Let R be a prime ring with char (R) 6= 2 and a, a′, b, c, c′, p′ ∈ R211

such that212

[

a′X2 + 2bXcX +Xp′X − 2XbXc −X2c′, y
]

= 0(3.6)213

for all X ∈ f(R) and y ∈ R. If b /∈ C and c /∈ C, then (3.6) is a non-trivial214

generalized polynomial identity for R.215

Proof. Let b /∈ C and c /∈ C. By Fact 2.1, U satisfies (3.6). On contrary, we216

assume that (3.6) is a trivial GPI for U . Let T = U ∗C C{r1, . . . , rn, y}, the free217

product of U and C{r1, . . . , rn, y}. Let f(r1, . . . , rn) = X. Then218

[a′X2 + 2bXcX +Xp′X − 2XbXc −X2c′, y] = 0 ∈ T.(3.7)219

From above220

y
{

a′X2 + 2bXcX +Xp′X − 2XbXc −X2c′
}

(3.8)221

is zero element in T . This implies that {c, c′, 1} is linearly C-dependent. Then222

there exist α1, α2, α3 ∈ C such that α1c+α2c
′ +α3.1 = 0. If α2 = 0, then c ∈ C,223

a contradiction. Thus α2 6= 0 and hence c′ = α + βc, where α = −α−1
2 α3 and224

β = −α−1
2 α1. Then U satisfies225

y
{

a′X2 + 2bXcX +Xp′X − 2XbXc −X2(α+ βc)
}

= 0.(3.9)226

Since c /∈ C, this implies that227

y
{

− 2XbXc − βX2c
}

= 0(3.10)228

that is, y
{

(2Xb + βX)Xc
}

= 0. Again, since b /∈ C, U satisfies 2yXbXc = 0,229

implying either b = 0 or c = 0, a contradiction.230
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Lemma 3.3. Let C be a field, m be a positive integer with m ≥ 2 and R = Mm(C)231

be the ring of all m×m matrices over C with char R 6= 2. If a, a′, a′′, b, c, c′, p′ ∈ R232

such that R satisfies233

[

a′X2 + a′′XcX + aXp′X − 2aXbXc − aX2c′, y
]

= 0(3.11)234

for all X ∈ f(R) and y ∈ R, then either a ∈ C.Im or b ∈ C.Im or c ∈ C.Im.235

Proof. We consider the following two cases.236

Case 1. When C is infinite field.237

On contrary, we assume that a /∈ C.Im, b /∈ C.Im and c /∈ C.Im. We denote by238

ehl the usual matrix unit, that is, 1 in (h, l)-entry and zero elsewhere.239

By Fact 2.5, there exists an invertible matrix N such that all the entries of240

the matrices NaN−1, NbN−1 and NcN−1 are nonzero. Let φ(x) = NxN−1, an241

inner automorphism on R. Then by hypothesis, for all X ∈ f(R),242

[

φ(a′)X2 + φ(a′′)Xφ(c)X + φ(a)Xφ(p′)X243

−2φ(a)Xφ(b)Xφ(c) − φ(a)X2φ(c′), y
]

= 0.(3.12)244

By [24], since f(r1, . . . , rn) is not central valued, there exist matrices r1, . . . ,245

rn ∈ Mm(C) such that f (r1 , . . . , rn) = γeij , with i 6= j, where γ ∈ C −246

{0}. Thus we can substitute the value of X as eij in (3.12) and then we have247

[φ(a′′)eijφ(c)eij + φ(a)eijφ(p
′)eij − 2φ(a)eijφ(b)eijφ(c), eij ] = 0. Left multiplying248

by eij yields249

2eijφ(a)eijφ(b)eijφ(c)eij = 0,250

which is a contradiction, since all the entries of the matrices φ(a), φ(b) and φ(c)251

are non-zero.252

Case 2. When C is finite field.253

Let E be an infinite field such that C ⊆ E, that is, E is an extension of C.254

Let R = Mm(E) ∼= R ⊗C E. Note that the multilinear polynomial f (r1 , . . . , rn)255

is central-valued on R if and only if it is central-valued on R. Consider the256

generalized polynomial257

(3.13)

Ψ(r1, . . . , rn−1, y)

= [a′f (r1 , . . . , rn )
2 + a′′f (r1 , . . . , rn )cf (r1 , . . . , rn )

+ af (r1 , . . . , rn)p
′f (r1 , . . . , rn )− 2af (r1 , . . . , rn)bf (r1 , . . . , rn )c

− af (r1 , . . . , rn)
2c′, y].

258

Then Ψ(r1, . . . , rn−1, y) = 0 is a GPI for R.259

Notice that Ψ(r1, . . . , rn−1, y) is a polynomial of multi-degree (2, . . . , 2) in260

the indeterminates r1, . . . , rn and degree 1 in the indeterminate y.261
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Now linearizing the identity Ψ(r1, . . . , rn−1, y) = 0 with respect to variable262

r1 (i.e., replacing r1 with r1 + s1), we get a polynomial identity for R263

Ψ1(r1, . . . , rn−1, s1, y) = 0264

such that Ψ1(r1, . . . , rn−1, r1, y) = 2Ψ(r1, . . . , rn−1, y). Continuing the process265

of linearization, we get a multilinear generalized polynomial identity of 2n + 1266

indeterminates267

Ψn(r1, . . . , rn, s1, . . . , sn, y) = 0268

such that269

Ψn(r1, . . . , rn, r1, . . . , rn, y) = 2nΨ(r1, . . . , rn, y).270

Since Ψn(r1, . . . , rn, s1, . . . , sn, y) is the multilinear polynomial, we can write that271

Ψn(r1, . . . , rn, s1, . . . , sn, y) = 0272

is a GPI for R and R too. Since char(C) 6= 2 we have Ψ(r1, . . . , rn, y) = 0 for all273

r1, . . . , rn, y ∈ R and thus the conclusion follows by case-1 as above.274

As a particular case of above Lemma 3.3, we have the following corollary.275

Corollary 3.4. Let C be a field and m be a fixed positive integer with m ≥ 2.276

Let R = Mm(C) be the ring of all m × m matrices over C. If for some a, a′,277

a′′, b, c, c′, p′ ∈ R such that278

[

a′r2 + a′′rcr + arp′r − 2arbrc− ar2c′, y
]

= 0279

for all r, y ∈ R, then either a ∈ C.Im or b ∈ C.Im or c ∈ C.Im.280

Lemma 3.5. Let R be a prime ring, f(r1, . . . , rn) a non-central multilinear poly-281

nomial over C and a, a′, a′′, b, c, c′, p′ ∈ R. If char (R) 6= 2 and282

[

a′X2 + a′′XcX + aXp′X − 2aXbXc − aX2c′, y
]

= 0(3.14)283

for all X ∈ f(R) and y ∈ R, then either a ∈ C or b ∈ C or c ∈ C.284

Proof. By hypothesis and Fact 2.1,285

[

a′X2 + a′′XcX + aXp′X − 2aXbXc − aX2c′, y
]

= 0(3.15)286

for all X ∈ f(U) and y ∈ R. By Lemma 3.1, above identity is a non-trivial GPI.287

Then by Fact 2.6, R is isomorphic to a dense ring of linear transformations of a288

vector space V over C.289

Let dimCV = m. By density ofR, thenR ∼= Mm(C). Given that f (r1 , . . . , rn )290

is not central valued on R and therefore, R must be noncommutative. Hence291

m ≥ 2. In this case, by Lemma 3.3, we get our conclusions.292
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Let dimCV = ∞. Since the set f(R) is dense on R (Lemma 2 in [28]), from293

above, R satisfies294

[

a′r2 + a′′rcr + arp′r − 2arbrc− ar2c′, y
]

= 0.(3.16)295

In this case we want to prove that either a ∈ C or b ∈ C or c ∈ C. We know296

the fact that for any element q ∈ R, [q, Soc(RC)] = (0) implies q ∈ C. Hence297

on contrary, we assume that a /∈ C, b /∈ C and c /∈ C. Hence, there exist298

h0, h1, h2 ∈ Soc(R) such that [a, h0] 6= 0, [b, h1] 6= 0 and [c, h2] 6= 0. Now we show299

a number of contradiction. Since dimCV = ∞, for any idempotent e ∈ Soc(R),300

we have eRe ∼= Mk(C) with k = dimCV e. By Litoff’s theorem [17], there exists301

an idempotent e ∈ Soc(R) such that h0, h1, h2, h0a, ah0, h1b, bh1, h2c, ch2 ∈ eRe,302

where eRe ∼= Mk(C), k = dimCV e. Since R satisfies303

(3.17) e
[

a′(ere)2 + a′′erecere+ aerep′ere− 2aereberec− a(ere)2c′, eye
]

e = 0,304

the subring eRe satisfies305

(3.18)
[

ea′er2 + ea′′erecer + eaerep′er − 2eaereberece − eaer2ec′e, y
]

= 0.306

Then by Corollary 3.4, eae ∈ eC or ebe ∈ eC or ece ∈ eC. If eae ∈ eC, then307

ah0 = eah0 = eaeh0 = h0eae = h0ae = h0a.308

If ebe ∈ eC, then309

bh1 = ebh1 = ebeh1 = h1ebe = h1be = h1b310

and if ece ∈ eC, then311

ch2 = ech2 = eceh2 = h2ece = h2ce = h2c.312

In any case, we have contradiction with the choices of h0, h1 and h2.313

Thus we conclude that either a ∈ C or b ∈ C or c ∈ C.314

Lemma 3.6. Let R be a prime ring, f (r1 , . . . , rn ) a non-central multilinear poly-315

nomial over C and char (R) 6= 2, where C is the extended centroid of R. If a, a′,316

b, c, c′, p′ ∈ R such that R satisfies317

[a′X2 + 2bXcX +Xp′X − 2XbXc −X2c′, y] = 0(3.19)318

for all X ∈ f(R) and y ∈ R, then either b ∈ C or c ∈ C.319



Generalized Derivations 11

Proof. By hypothesis320

[a′X2 + 2bXcX +Xp′X − 2XbXc −X2c′, y] = 0(3.20)321

for all X ∈ f(R) and y ∈ R. If this is a trivial GPI for R, then by Lemma322

3.2, either b ∈ C or c ∈ C. Now assume that (3.20) is a nontrivial GPI for R.323

Then by Fact 2.6, R is isomorphic to a dense ring of linear transformations of a324

vector space V over C. If dimCV = m, then R ∼= Mm(C) and Mm(C) satisfies325

(3.20). By [24], since f(r1, . . . , rn) is not central valued, there exist matrices326

r1, . . . , rn ∈ Mm(C) and γ ∈ C − {0} such that f(r1, . . . , rn) = γeij , with i 6= j.327

Thus we can substitute a particular value of X with eij in (3.20), and then we328

have [2beijceij + eijp
′eij − 2eijbeijc, eij ] = 0. This implies −4bjicji = 0. Then by329

same argument as given in Lemma 3.3, either b ∈ C or c ∈ C.330

If dimCV = ∞, we have for any idempotent e ∈ Soc(R), eRe ∼= Mk(C), with331

k = dimCV e. Let b /∈ C and c /∈ C. Then there exist h1, h2 ∈ Soc(R) such that332

[b, h1] 6= 0 and [c, h2] 6= 0 for some h1, h2 ∈ Soc(R). By Litoff’s theorem [17] there333

exists an idempotent e ∈ Soc(R) such that h1, h2, h1b, bh1, h2c, ch2 are all in eRe.334

Moreover, if k = dimCV e, then eRe ∼= Mk(C). Since V is infinite dimensional335

over C, the set f(R) is dense on R ( [28, Lemma 2]) and hence by hypothesis, R336

satisfies the GPI337

[

a′x2 + 2bxcx+ xp′x− 2xbxc− x2c′, y
]

= 0.338

Now replacing x with exe and y with eye we have339

e[a′(exe)2 +2b(exe)c(exe) + (exe)p′(exe)− 2(exe)b(exe)c− (exe)2c′, (eye)
]

e = 0.340

Thus the subring eRe satisfies the GPI341

[

(ea′e)x2 + 2(ebe)x(ece)x + x(ep′e)x− 2x(ebe)x(ece) − x2(ec′e), y
]

= 0.342

As above of finite dimensional case, we have either ebe ∈ eC or ece ∈ eC. If343

ebe ∈ eC, then344

bh1 = ebh1 = ebeh1 = h1ebe = h1be = h1b,345

a contradiction and if ece ∈ eC, then346

ch2 = ech2 = eceh2 = h2ece = h2ce = h2c,347

a contradiction. Therefore, we conclude that either b ∈ C or c ∈ C.348

Proposition 3.7. Let R be a noncommutative prime ring, f (r1 , . . . , rn ) be a349

multilinear polynomial over C, which is not central valued on R, where C is the350
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extended centroid of R. Suppose char (R) 6= 2 and I a nonzero two sided ideal of351

R. If for some b, c, p, q ∈ U , F (x) = bx + xc, G (x) = px+ xq for all x ∈ R are352

two inner generalized derivations of R such that353

a[(F 2 + G )(f (r)), f (r)] ∈ C354

holds for all r =(r1 , . . . , rn) ∈ In, then one of the following holds:355

(1) F (x) = x(b+ c) and G (x) = x(p+ q) for all x ∈ R with (b+ c)2 + p+ q ∈ C;356

(2) F (x) = (b+ c)x, G (x) = (p+ q)x for all x ∈ R with (b+ c)2 + p+ q ∈ C;357

(3) f(x1, . . . , xn)
2 is central valued and one of the following holds:358

(a) F (x) = x(b+c) and G (x) = px+xq for all x ∈ R, with (b+c)2−(p−q) ∈359

C;360

(b) F (x) = (b+c)x and G (x) = px+xq and for all x ∈ R with (b+c)2+p−q361

∈ C;362

(4) R satisfies s4 and one of the following holds:363

(a) F (x) = x(b+ c) and G (x) = px+xq for all x ∈ R, with (b+ c)2− (p− q)364

∈ C;365

(b) F (x) = (b+c)x and G (x) = px+xq for all x ∈ R with (b+c)2+p−q ∈ C.366

Proof. Since I, R and U satisfy same GPIs (see [7]), by hypothesis we have367

a
[

(b2 + p)X + 2bXc+X(c2 + q),X
]

∈ C(3.21)368

for all X ∈ f(U).369

We re-write it as370

a(b2 + p)X2 + 2abXcX + aX(c2 + q − b2 − p)X371

−2aXbXc − aX2(c2 + q) ∈ C(3.22)372

for all X ∈ f(U). By Lemma 3.5, either a ∈ C or b ∈ C or c ∈ C.373

If 0 6= a ∈ C, then (3.22) reduces to374

(

b2 + p)X2 + 2bXcX +X(c2 + q − b2 − p
)

X375

−2XbXc −X2(c2 + q) ∈ C(3.23)376

for all X ∈ f(U). In this case by Lemma 3.6, either b ∈ C or c ∈ C.377

Thus we have proved that either b ∈ C or c ∈ C. Therefore, we examine378

these two situation in the below mentioned cases.379
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Case 1. b ∈ C. Equation (3.21) reduces to380

a[(b2 + p)X +X(2bc + c2 + q),X] ∈ C(3.24)381

for all X ∈ f(U).382

By [13, Corollary 2.7], one of the following holds:383

(1) f(R)2 ∈ C and (b2 + p) − (2bc + c2 + q) ∈ C, i.e., p − q − (b + c)2 ∈ C.384

Therefore, form of the map will be F (x) = x(b+c) for all x ∈ R, which gives385

our conclusion (1).386

(2) b2+p, 2bc+c2+q ∈ C. Since b ∈ C, we have p ∈ C. Therefore, F (x) = x(b+c)387

and G (x) = x(p+ q) for all x ∈ R with (b+ c)2 + p+ q ∈ C.388

(3) R satisfies s4 and (b2 + p)− (2bc + c2 + q) ∈ C i.e., p− q − (b+ c)2 ∈ C. In389

this case F (x) = x(b+ c) for all x ∈ R, which gives our conclusion (3).390

Case 2. c ∈ C. In this case by (3.21),391

a[((b + c)2 + p)X +Xq,X] ∈ C(3.25)392

for all X ∈ f(U). By [13, Corollary 2.7], one of the following holds:393

(1) f(R)2 ∈ C and (b + c)2 + p − q ∈ C. Hence form of the map will be394

F (x) = (b+ c)x for all x ∈ R, which gives our conclusion (2).395

(2) (b + c)2 + p), q ∈ C. Thus F (x) = (b + c)x, G (x) = (p + q)x for all x ∈ R396

with (b+ c)2 + p+ q ∈ C.397

(3) R satisfies s4 and (b2 + p+ 2bc)− (c2 + q) ∈ C, i.e., (b+ c)2 + p− q ∈ C. In398

this case F (x) = (b+ c)x for all x ∈ R, and thus conclusion (4) follows.399400

4. Proof of Theorem 1.1.401

In all that follows, let R be a prime ring, f (r1 , . . . , rn) a noncentral multilinear402

polynomial over C, char (R) 6= 2, where C is the extended centroid of R and403

U is the Utumi ring of quotients of R. By [21, Theorem 3], F (x) = bx + d(x),404

G (x) = cx + δ(x) for some b, c ∈ U and d, δ are two derivations of U . Then405

F 2(x) = F (F (x)) = F (b)x+ 2bd(x) + d2(x).406

By hypothesis, we have407

a
[

F (b)f (r) + 2bd(f (r)) + d2(f (r)) + cf (r) + δ(f (r)), f (r)
]

∈ C408

for all r =(r1 , . . . , rn) ∈ In. By Fact 2.1 and Fact 2.2, we have409

(4.1) a
[

F (b)f (r) + 2bd(f (r)) + d2(f (r)) + cf (r) + δ(f (r)), f (r)
]

∈ C410
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for all r =(r1 , . . . , rn) ∈ Un.411

If d and δ both are inner, by Proposition 3.7, conclusion follows. Thus we412

need to consider the cases when d and δ are not simultaneously inner. Thus the413

following three cases may occur.414

Case 1. d is inner, δ is outer.415

Assume for some p ∈ U , d(x) = [p, x] for all x ∈ R. By (4.1), U satisfies416

(4.2) a
[

F (b)f (r) + 2b[p, f (r)] + [p, [p, f (r)]] + cf (r) + δ(f (r)), f (r)
]

∈ C.417

By Fact 2.4, we can replace δ(ri) by ti for i = 1, . . . , n in (4.2) and then U418

satisfies blended component419

a

[

∑

i

f(r1, . . . , ti, . . . , rn), f (r1 , . . . , rn)

]

∈ C.(4.3)420

Replacing yi by [q′, ri] for some q′ /∈ C, we have that421

a
[

[q′, f (r1 , . . . , rn)], f (r1 , . . . , rn )
]

∈ C422

for all r1, . . . , rn ∈ U . Then by [13, Corollary 2.7], q′ ∈ C, a contradiction.423

Case 2. δ is inner, d is outer. Assume for some q ∈ U , δ(x) = [q, x] for all424

x ∈ R. By (4.1), for all r =(r1 , . . . , rn ) ∈ Un,425

(4.4) a
[

F (b)f (r) + 2bd(f (r)) + d2(f (r)) + cf (r) + [q, f (r)], f (r)
]

∈ C.426

Since d is outer, by Fact 2.4, we can replace d(ri) by yi for i = 1, . . . , n and427

d2(ri) by ti for i = 1, . . . , n in (4.4) and then U satisfies blended component428

a

[

∑

i

f(r1, . . . , ti, . . . , rn), f (r1 , . . . , rn)

]

∈ C.(4.5)429

This equation is same as (4.3) and so it leads to a contradiction as above.430

Case 3. d, δ all are outer. Assume first that d and δ are linearly C-indepen-431

dent modulo inner derivations of U . Then by applying Fact 2.4, we can replace432

δ(ri) by ti for i = 1, . . . , n and d(ri) by xi for i = 1, . . . , n in (4.1). By this433

substitution, we have the blended component434

a

[

∑

i

f(r1, . . . , ti, . . . , rn), f (r1 , . . . , rn)

]

∈ C(4.6)435

satisfied by U . This equation is same as (4.3). Thus by same argument we arrive436

to a contradiction.437
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Assume next that d and δ are linearly C-dependent modulo inner derivations438

of U . Then there exist some α1, β1 ∈ C and q′ ∈ U such that α1d + β1δ = ad′q.439

Since d is outer, β1 6= 0 and hence δ(x) = λd(x) + [q, x], where λ = −α1β
−1
1 and440

q = β−1
1 q′.441

From (4.1), we obtain442

a
[

F (b)f (r) + 2bd(f (r)) + d2(f (r)) + cf (r) + λd(f (r))443

+ [q, f (r)], f (r)
]

∈ C.(4.7)444

Again by applying Fact 2.4, we can replace d(ri) by yi for i = 1, . . . , n and445

d2(ri) by ti for i = 1, . . . , n in (4.7) and then U satisfies blended components446

a

[

∑

i

f(r1, . . . , ti, . . . , rn), f (r1 , . . . , rn )

]

∈ C.(4.8)447

This equation is same as (4.3) and hence we have contradiction as before.448

5. Proof of Theorem 1.2.449

In all that follows, we assume that R is a prime ring with char (R) 6= 2, U450

the Utumi ring of quotients of R and C = Z(U) the extended centroid of R.451

By [21, Theorem 3], F (x) = bx + d(x), G (x) = cx + δ(x) for some b, c ∈ U and452

d, δ are derivations of U .453

If char (R) = 2 and R satisfies s4, then we have our conclusion (5).454

Thus we assume that either char (R) 6= 2 or R does not satisfy s4. Then455

by [14, Remark 1], there exists a nonzero ideal I of R such that [I, I] ⊆ L. Hence456

by hypothesis, we have457

a
[

F (b)[s, t] + 2bd([s, t]) + d2([s, t]) + c[s, t] + δ([s, t]), [s, t]
]

∈ C458

for all s, t ∈ I. If char (R) 6= 2, then by Theorem 1.1, we have our conclusions.459

Thus we assume that char (R) = 2. Then R can not satisfy s4. By Fact 2.1460

and Fact 2.2, we have461

a
[

F (b)[s, t] + d2([s, t]) + c[s, t] + δ([s, t]), [s, t]
]

∈ C(5.1)462

for all s, t ∈ U .463

Moreover, if d(x) = [p, x] and δ(x) = [q, x] are all inner derivations, then464

from above465

a
[

F (b)[s, t] + [p2, [s, t]] + c[s, t] + [q, [s, t]], [s, t]
]

∈ C466



16 B. Dhara

that is467

a
[

(F (b) + p2 + c+ q)[s, t]− [s, t](p2 + q), [s, t]
]

∈ C468

for all s, t ∈ U . This can be written as469

a
[

F (b) + p2 + c+ q, [s, t]
]

[s, t]− [s, t]
[

p2 + q, [s, t]
]

∈ C470

for all s, t ∈ U .471

By [14, Theorem 2.7], F (b) + p2 + c + q ∈ C and p2 + q ∈ C, i.e., F (b) +472

c, p2 + q ∈ C.473

Thus the following three cases may occur.474

Case 1. d are inner, δ is outer.475

Let for some p ∈ U , d(x) = [p, x] for all x ∈ R. By (5.1), U satisfies476

a
[

F (b)[s, t] + [p2, [s, t]] + c[s, t] + δ([s, t]), [s, t]
]

∈ C.(5.2)477

By Fact 2.4, we can replace δ([s, t]) by [x, t] + [s, y] in (5.2) and then U478

satisfies blended component479

a
[

[x, t] + [s, y], [s, t]
]

∈ C.(5.3)480

Replacing x by [q, s] and y by [q, t] for some q /∈ C, we have that481

a
[

[q, [s, t]], [s, t]
]

∈ C482

for all s, t ∈ U . Then by [14, Theorem 2.7], q ∈ C, a contradiction.483

Case 2. δ is inner, d is outer.484

Let for some q ∈ U , δ(x) = [q, x] for all x ∈ R. By (5.1), U satisfies485

a
[

F (b)[s, t] + [d2(s), t] + [s, d2(t)] + c[s, t] + [q, [s, t]], [s, t]
]

∈ C.(5.4)486

Since d is outer, by Fact 2.4, we can replace d2(s) by x and d2(t) by y and487

then U satisfies blended component488

a
[

[x, t] + [s, y], [s, t]
]

∈ C.(5.5)489

This is same as (5.3) and hence a contradiction follows.490

Case 3. d, δ all are outer.491

Assume first that, d and δ are linearly C-independent modulo inner derivations492
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of U . Then by Fact 2.4, we can replace d2([s, t]) by [x, t] + [s, y] and δ([s, t]) by493

[u, t] + [s, v] in (5.1) and then U satisfies blended components494

a
[

[x, t] + [s, y], [s, t]
]

∈ C.(5.6)495

This is same equation as (5.3) and hence it leads to a contradiction as above.496

Assume next that, d and δ are linearly C-dependent modulo inner derivations497

of U . Then there exist α′, β′ ∈ C, q′ ∈ U such that α′d + β′δ = ad′q. Since d is498

outer, β′ 6= 0 and hence, we can write δ(x) = λd(x) + [q, x], where λ = −α′β′−1
499

and q = β′−1q′.500

From (5.1), we obtain501

(5.7) a
[

F (b)[s, t] + d2([s, t]) + c[s, t] + λd([s, t]) + [q, [s, t]], [s, t]
]

∈ C.502

By Fact 2.4, we can replace d([s, t]) by [u, t]+[s, v] and d2([s, t]) by [x, t]+[s, y]503

in (5.7) and then U satisfies blended components504

a
[

[x, t] + [s, y], [s, t]
]

∈ C.(5.8)505

This is same equation as (5.3) and then by same argument we have a contradic-506

tion. Thus the Theorem is proved. �507
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