- 1 Discussiones Mathematicae
- ² General Algebra and Applications xx (xxxx) 1–19

3

SPECIAL TYPE OF ADDITIVE MAPS IN PRIME RINGS WITH ANNIHILATING AND CENTRALIZING CONDITION

Basudeb Dhara Department of Mathematics Belda College, Belda, Paschim Medinipur, 721424, India e-mail: basu_dhara@yahoo.com Abstract 10 Let R be a prime ring with char $R \neq 2$ and $f(r_1, \ldots, r_n)$ be a non-11 central multilinear polynomial over C(=Z(U)), where U is the Utumi ring 12 of quotients of R. Let I be a nonzero two sided ideal of R, L a non central 13 Lie ideal of R and \mathcal{F} , \mathcal{G} two generalized derivations of R. Denote the set 14 $f(I) = \{f(r_1, \dots, r_n) | r_1, \dots, r_n \in I\}.$ If for some $0 \neq a \in R$, $a[(\mathscr{F}^2 + \mathscr{G})(u), u] \in C$ 16 for all $u \in f(I)$ or $u \in L$, then possible forms of the maps are described. 17 This result improves the result proved by De Filippis et al. in [8] and 18 Carini and Scudo in [6]. 19 **Keywords:** prime ring, derivation, generalized derivation. 20 2020 Mathematics Subject Classification: 16W25, 16N60, 16R50. 21

22

23

1. Introduction

Let R be a prime ring with center Z(R), U be its Utumi ring of quotients. C is the extended centroid of R which is basically center of U. By a derivation d on R, one usually means an additive mapping $d:R\to R$ such that for any $x,y\in R$, d(xy)=d(x)y+xd(y). By a generalized derivation g on R, one usually means an additive mapping $g:R\to R$ such that for any $x,y\in R$, g(xy)=g(x)y+xd(y) for some derivation d in R. Every derivation is a generalized derivation. Thus generalized derivation map is the generalization of the map derivation.

This work is supported by a grant from Science and Engineering Research Board (SERB), New Delhi, India. Grant No. is $\rm MTR/2022/000568$.

For any $a, b \in R$, we denote [a, b] = ab - ba, which is called the commutator of a and b. The standard polynomial of four variables is $s_4(t_1, t_2, t_3, t_4) =$ $\sum_{\sigma \in S_4} (-1)^{\sigma} t_{\sigma(1)} t_{\sigma(2)} t_{\sigma(3)} t_{\sigma(4)}$, where $(-1)^{\sigma}$ is +1 or -1 according to σ being an even or an odd permutation in symmetric group S_4 . R satisfies s_4 , we mean $s_4(t_1, t_2, t_3, t_4) = 0$ for all $t_1, t_2, t_3, t_4 \in R$. Let $f(r_1, \dots, r_n)$ be a noncentral valued multilinear polynomial over C in n non-commuting variables.

36

37

39

40

43

45

46

47

48

49

50

51

52

53

54

55

56

57

59

61

Let S be a nonempty subset of R. Then f(S) denotes the set of all evaluations of $f(x_1,\ldots,x_n)$ over S, that is, $f(S)=\{f(x_1,\ldots,x_n)|x_1,\ldots,x_n\in S\}$. A mapping $\chi: R \to R$ is said to be commuting on S if $[\chi(s), s] = 0$ for all $s \in S$ and centralizing on S if $[\chi(s), s] \in Z(R)$ for all $s \in S$.

Let d, g be two derivations and \mathcal{F}, \mathcal{G} two generalized derivations on a prime ring R. A well known result proved by Posner [26], says that if a nonzero centralizing derivation exists in a prime ring R, then the ring R must be commutative. After that, several authors have given their contributions to the theory extending Posner's [26] result in many directions (for instance, we refer to [1–4, 8, 11]).

In [15], authors of this paper studied the case when d^2 is commuting and centralizing on f(I), where I is a non-zero right ideal of R.

In [11], De Filippis studied the case when \mathscr{G} is commuting on f(I), where I is a non-zero right ideal of R and then described forms of the maps.

In [22, Theorem 2.1], Lee et al. introduced a special type of additive map $d^2 + g$ and then initiated to study this type of map. They proved that if R is a n!-torsion free semiprime ring such that $[(d^2+q)(s), s^n] = 0$ for all $s \in R$, then d and g are both commuting on R.

Further this special type of additive map was studied by Rehman and De Filippis in [27], replacing derivations with generalized derivation, that is, the map $\mathscr{F}^2 + \mathscr{G}$.

Inspired by the above cited results, in [8], De Filippis et al. studied the additive map $\mathscr{F}^2 + \mathscr{G}$ centralizing on f(I), that is, $[(\mathscr{F}^2 + \mathscr{G})(f(I)), f(I)] = 0$, where I is a non-zero right ideal of R and then obtained forms of the maps.

There is also ongoing interest to investigate the above identities with left 60 annihilating conditions.

In [10], De Filippis proved that if char $(R) \neq 2$ and $0 \neq a \in R$ such that 62 $a[\mathcal{F}(f(R)), f(R)] = 0$, then one of the following holds:

- (1) there exists $\alpha' \in C$ such that $\mathscr{F}(x) = \alpha' x$ for all $x \in R$,
- (2) there exist $q' \in U$ and $\lambda' \in C$ such that $\mathscr{F}(x) = (q' + \lambda')x + xq'$ for all $x \in R$ and $f(r_1, \ldots, r_n)^2$ is central valued on R.

In [13, Corollary 2.7], Dhara et al. studied the above situation of [10] with central valued, that is, $a[\mathcal{F}(f(R)), f(R)] \in C$ and described the forms of the maps.

77

79

85

92

93

94

95

97

98

99

100

104

Carini and Scudo in [6], already proved that if char $(R) \neq 2$ and $0 \neq a \in R$ such that $a[\mathscr{F}^2(f(R)), f(R)] = 0$, then one of the following holds:

- (1) there exists $\alpha' \in C$ such that $\mathscr{F}(x) = \alpha' x$, for all $x \in R$,
- 73 (2) there exists $a' \in U$ such that $\mathscr{F}(x) = a'x$, for all $x \in R$, with $a'^2 \in C$,
- 74 (3) there exists $a' \in U$ such that $\mathscr{F}(x) = xa'$, for all $x \in R$, with $a'^2 \in C$.

Recently in [12], Dhara *et al.* studied the above situation of [6] with central values, that is, $a[\mathcal{F}^2(f(R)), f(R)] \in C$.

In the present article our motivation is to examine the above situation of [8], with annihilator and centralizing conditions which improves and generalizes all the above results. More precisely, we prove the following theorems.

Theorem 1.1. Let R be a prime ring with char $(R) \neq 2$ and $f(r_1, \ldots, r_n)$ be a non-central multilinear polynomial over C(=Z(U)), where U be the Utumi ring of quotients of R. Assume that I is a nonzero two sided ideal of R and \mathscr{F} , \mathscr{G} are two generalized derivations of R. Denote the set $f(I) = \{f(r_1, \ldots, r_n) | r_1, \ldots, r_n \in I\}$. If for some $0 \neq a \in R$,

$$a[(\mathscr{F}^2 + \mathscr{G})(f(r_1, \dots, r_n)), f(r_1, \dots, r_n)] \in C$$

for all $r_1, \ldots, r_n \in I$, then one of the following holds:

- 11) there exist $b, p \in U$ such that $\mathscr{F}(x) = xb$ and $\mathscr{G}(x) = xp$ for all $x \in R$ with $b^2 + p \in C$,
- 89 (2) there exist $b, p \in U$ such that $\mathscr{F}(x) = bx$, $\mathscr{G}(x) = px$ for all $x \in R$ with $b^2 + p \in C$,
- $f(x_1,\ldots,x_n)^2$ is central valued and one of the following holds:
 - (a) there exist $b, p, q \in U$ such that $\mathscr{F}(x) = xb$ and $\mathscr{G}(x) = px + xq$ for all $x \in R$, with $b^2 p + q \in C$,
- (b) there exist $b, p, q \in U$ such that $\mathscr{F}(x) = bx$ and $\mathscr{G}(x) = px + xq$ and for all $x \in R$ with $b^2 + p q \in C$,
- R satisfies s_4 and one of the following holds:
 - (a) there exist $b, p, q \in U$ such that $\mathscr{F}(x) = xb$ and $\mathscr{G}(x) = px + xq$ for all $x \in R$, with $b^2 p + q \in C$,
 - (b) there exist $b, p, q \in U$ such that $\mathscr{F}(x) = bx$ and $\mathscr{G}(x) = px + xq$ for all $x \in R$ with $b^2 + p q \in C$.

Theorem 1.2. Let R be a prime ring, L a noncentral Lie ideal of R and U the Utumi quotient ring of R, C = Z(U). Suppose that $\mathscr F$ and $\mathscr G$ are two generalized derivations of R such that for some $0 \neq a \in R$,

$$a[(\mathscr{F}^2+\mathscr{G})(u),u]\in C$$

for all $u \in L$. 105

106

If char $(R) \neq 2$, then R satisfies s_4 and one of the following holds:

- (1) there exist $b, p, q \in U$ such that $\mathscr{F}(x) = xb$ and $\mathscr{G}(x) = px + xq$ for all $x \in R$, 107 with $b^2 - (p - q) \in C$, 108
- (2) there exist $b, p, q \in U$ such that $\mathscr{F}(x) = bx$ and $\mathscr{G}(x) = px + xq$ for all $x \in R$ 109 with $b^2 + p - q \in C$. 110
- If char(R) = 2, then one of the following holds: 111
- (1) there exist $b, c, p, q \in U$ such that $\mathscr{F}(x) = bx + [p, x]$ and $\mathscr{G}(x) = cx + [q, x]$ 112 for all $x \in R$ with $\mathscr{F}(b) + c, p^2 + q \in C$; 113
- (2) R satisfies s_4 . 114
- **Example 1.** Consider a ring $R = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} | a, b \in Z \right\}$, where Z is the set of all 115
- integers and a multilinear polynomial f(x,y) = xy which is not central valued on
- R. Note that R is not prime ring as $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
- We define maps $\mathscr{F},\mathscr{G},d,g:R\to R$ by $\mathscr{G}\left(\begin{array}{cc}a&b\\0&0\end{array}\right)=\left(\begin{array}{cc}a&2b\\0&0\end{array}\right),$ $g\left(\begin{array}{cc}a&b\\0&0\end{array}\right)=$
- $\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}, \mathscr{F} \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a & 3b \\ 0 & 0 \end{pmatrix} \text{ and } d \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 2b \\ 0 & 0 \end{pmatrix}. \text{ Then } \mathscr{F}$ and \mathscr{G} are generalized derivations of R associated to derivations d and g respec-
- tively. We see that for $0 \neq p = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in R$,

$$p[(\mathscr{F}^2 + \mathscr{G})(f(x,y)), f(x,y)] = 0 \in Z(R)$$

for all $x, y \in R$. Since \mathscr{F} is not in the form of $\mathscr{F}(x) = bx$ or $\mathscr{F}(x) = xb$ for all $x \in R$ and for some fixed $b \in R$, the primeness assumption is not superfluous in 124

Theorem 1.1. 125

122

126

130

2. Some results

Throughout this section, R always be a prime ring, I is two sided ideal of R and 127 $f(r_1,\ldots,r_n)$ a noncentral valued multilinear polynomial over C. The C denotes 128 the extended centroid of R which is the center of U. 129

The following facts are to be used frequently to prove our Theorem.

Fact 2.1. Let us denote by $T = U *_C C\{X\}$, the free product over C of the C-algebra U and the free C-algebra $C\{X\}$, with X the countable set consisting of the noncommuting indeterminates x_1, x_2, \ldots The elements of T are called generalized polynomials with coefficients in U. By a nontrivial generalized polynomial, we mean a nonzero element of T. For more details about these objects we refer to [5, 18].

By [7], I, R and U satisfy the same generalized polynomial identities (GPIs) with coefficients in U.

Fact 2.2. By [23], I, R and U satisfy the same differential identities.

Fact 2.3 [4, Lemma 3]. If there exist $a, c, p, q \in U$ such that

$$(aX + Xc)X - X(pX + Xq) = 0$$

for all $X \in f(R)$, then one of the following holds:

- 143 (1) $a, q \in C$ and $q a = c p \in C$;
- 144 (2) $f(x_1,...,x_n)^2$ is central valued on R and $q-a=c-p\in C$;
- 145 (3) char(R) = 2 and R satisfies s_4 .

Fact 2.4 (See [20,23]). Let Der(U) be the set of all derivations on U and D_{int} be the set of all inner derivations on U.

By [20, Theorem 2] (see also [23, Theorem 1]), we have the following result. Let $d_1, \ldots, d_m \in \text{Der}(U)$ and derivations words Δ_j are in the form

$$\Delta_j = d_1^{s_{1,j}} d_2^{s_{2,j}} \cdots d_m^{s_{m,j}} \quad j = 1, \dots, n$$

151 where

141

148

149

150

152

156

157

$$s = \max \{s_{i,j}, i = 1, \dots, m \ j = 1, \dots, n\}.$$

If d_1, \ldots, d_m are linearly C-independent modulo D_{int} , s < p, with $\mathrm{char}(R) = p \neq 0$, and $\Phi\left(x_i^{\Delta_j}\right) = 0$ be a differential identity on R, then $\Phi(y_{ji}) = 0$ is a GPI for R, where y_{ji} are distinct indeterminates.

In particular, if derivation $d \notin D_{int}$ and char $(R) \neq 2$ such that R satisfies

$$\Phi\left(x_1, \dots, x_n, x_1^d, \dots, x_n^d, x_1^{d^2}, \dots, x_n^{d^2}\right) = 0,$$

then R satisfies GPI

$$\Phi(x_1, \dots, x_n, z_1, \dots, z_n, \eta_1, \dots, \eta_n) = 0.$$

Fact 2.5 [9, Lemma 1]. Let C be an infinite field, t be a positive integer with $t \geq 2$ and $R = M_t(C)$, the algebra of all $t \times t$ matrices over C. Let B_1, \ldots, B_k be not scalar matrices in R. Then there must exists at least one invertible matrix $Q \in R$ such that all the entries of the matrices $QB_1Q^{-1}, \ldots, QB_kQ^{-1}$ have non-zero values.

Fact 2.6. If R satisfies a nontrivial generalized polynomial identity (GPI) $\chi(r_1, r_2)$ $(r_n) = 0$, then it is also satisfied by U by [7]. Let E be the algebraic closure 166 of C. We know that if C is infinite, then $\chi(r_1,\ldots,r_n)=0$ for all $r_1,\ldots,r_n\in$ 167 $U \otimes_C E$. Since both of U and $U \otimes_C E$ are prime and centrally closed (see [16, 168 Theorems 2.5 and 3.5]), we may replace R by U or R by $U \otimes_C E$ according to 169 C finite or infinite and hence we may assume that R is centrally closed over C. 170 Then by [25], R is a primitive ring having a nonzero socle soc(R) and C is its 171 associated division ring. By Jacobson's theorem [19, p. 75], R is isomorphic to a 172 dense ring of linear transformations of a vector space V over C. 173

Fact 2.7. Let $X = \{x_1, x_2, \ldots\}$ be a countable set of consisting non-commuting indeterminates x_1, x_2, \ldots We denote $T = U *_C C\{X\}$, the free product of the C-algebra U and the free C-algebra $C\{X\}$. Then the element of T are called the generalized polynomials.

Then any element $m \in T$ of the form $m = q_0 y_1 q_1 y_2 q_2 \dots y_n q_n$, where $q_0, q_1, \dots, q_n \in U$ and $y_1, \dots, y_n \in X$ is called a monomial.

Let B be a set of C-independent vectors of U. Each $f \in T$ can be represented in the form $f = \sum_i \alpha_i m_i$, where $\alpha_i \in C$ and m_i are B-monomials and this representation is unique. Any generalized polynomial $f = \sum_i \alpha_i m_i$ is trivial, i.e., zero element in T if and only if $\alpha_i = 0$ for each i. For details we refer the reader to [7].

We shall use this simple criterion to prove that R satisfies a nontrivial generalized polynomial identity (GPI).

3. The Case: Inner generalized derivations

188 This section is dedicated, when all generalized derivations are inner.

178

179

180

181

182

183

184

185

186

187

Lemma 3.1. Let R be a prime ring with char $(R) \neq 2$ and $a, a', a'', b, c, c', p' \in R$ such that

191 (3.1)
$$\left[a'X^2 + a''XcX + aXp'X - 2aXbXc - aX^2c', y \right] = 0$$

192 for all $X \in f(R)$ and $y \in R$. If $a \notin C$, $b \notin C$ and $c \notin C$, then (3.1) is a 193 non-trivial GPI for R.

Proof. Let $a \notin C$, $b \notin C$ and $c \notin C$. By Fact 2.1, U satisfies (3.1). On contrary, we assume that (3.1) is a trivial GPI for U. Let $T = U *_C C\{r_1, \ldots, r_n, y\}$, the free product of U and $C\{r_1, \ldots, r_n, y\}$, the free C-algebra in noncommuting indeterminates r_1, \ldots, r_n, y . Let $f(r_1, \ldots, r_n) = X$. Then

198 (3.2)
$$\left[a'X^2 + a''XcX + aXp'X - 2aXbXc - aX^2c', y \right] = 0 \in T.$$

From above 199

$$y\left\{a'X^2 + a''XcX + aXp'X - 2aXbXc - aX^2c'\right\} = 0 \in T.$$

This implies that $\{c, c', 1\}$ is linearly C-dependent, other wise aXc' = 0 implying 201

$$a=0$$
 or $c'=0$, a contradiction. Then there exists $\alpha_1,\alpha_2,\alpha_3\in C$ such that

$$\alpha_1 c + \alpha_2 c' + \alpha_3 . 1 = 0$$
. If $\alpha_2 = 0$, then $\alpha_1 \neq 0$, because of the C-independency

of
$$\{c,c',1\}$$
. So this fact implies that $c'=0$, a contradiction. Thus $\alpha_2\neq 0$ and hence $c'=\alpha+\beta c$, where $\alpha=-\alpha_2^{-1}\alpha_3, \beta=-\alpha_2^{-1}\alpha_1$. Then U satisfies

hence
$$c' = \alpha + \beta c$$
, where $\alpha = -\alpha_2^{-1}\alpha_3$, $\beta = -\alpha_2^{-1}\alpha_1$. Then U satisfies

206 (3.4)
$$y\{a'X^2 + a''XcX + aXp'X - 2aXbXc - aX^2(\alpha + \beta c)\} = 0.$$

Since $c \notin C$, this implies that 207

$$y\left\{-2aXbXc - \beta aX^{2}c\right\} = 0$$

that is, $y\{(2aXb+\beta aX)Xc\}=0$. Again, since $b\notin C$, U satisfies 2yaXbXc=0, 209

implying either
$$a = 0$$
 or $b = 0$ or $c = 0$, a contradiction.

Lemma 3.2. Let R be a prime ring with char $(R) \neq 2$ and $a, a', b, c, c', p' \in R$

such that

[
$$a'X^2 + 2bXcX + Xp'X - 2XbXc - X^2c', y$$
] = 0

for all $X \in f(R)$ and $y \in R$. If $b \notin C$ and $c \notin C$, then (3.6) is a non-trivial 214

generalized polynomial identity for R.

Proof. Let $b \notin C$ and $c \notin C$. By Fact 2.1, U satisfies (3.6). On contrary, we 216

assume that (3.6) is a trivial GPI for
$$U$$
. Let $T = U *_C C\{r_1, \ldots, r_n, y\}$, the free

product of U and $C\{r_1,\ldots,r_n,y\}$. Let $f(r_1,\ldots,r_n)=X$. Then

$$[a'X^2 + 2bXcX + Xp'X - 2XbXc - X^2c', y] = 0 \in T.$$

From above 220

$$y\{a'X^2 + 2bXcX + Xp'X - 2XbXc - X^2c'\}$$

is zero element in T. This implies that $\{c, c', 1\}$ is linearly C-dependent. Then 222

there exist
$$\alpha_1, \alpha_2, \alpha_3 \in C$$
 such that $\alpha_1 c + \alpha_2 c' + \alpha_3 . 1 = 0$. If $\alpha_2 = 0$, then $c \in C$,

a contradiction. Thus $\alpha_2 \neq 0$ and hence $c' = \alpha + \beta c$, where $\alpha = -\alpha_2^{-1}\alpha_3$ and

 $\beta = -\alpha_2^{-1}\alpha_1$. Then *U* satisfies 225

$$226 \quad (3.9) \qquad y \left\{ a'X^2 + 2bXcX + Xp'X - 2XbXc - X^2(\alpha + \beta c) \right\} = 0.$$

Since $c \notin C$, this implies that

$$228 (3.10) y\{-2XbXc - \beta X^2c\} = 0$$

that is, $y\{(2Xb + \beta X)Xc\} = 0$. Again, since $b \notin C$, U satisfies 2yXbXc = 0,

implying either b = 0 or c = 0, a contradiction.

Lemma 3.3. Let C be a field, m be a positive integer with $m \ge 2$ and $R = M_m(C)$ be the ring of all $m \times m$ matrices over C with char $R \ne 2$. If $a, a', a'', b, c, c', p' \in R$ such that R satisfies

$$[a'X^{2} + a''XcX + aXp'X - 2aXbXc - aX^{2}c', y] = 0$$

for all $X \in f(R)$ and $y \in R$, then either $a \in C.I_m$ or $b \in C.I_m$ or $c \in C.I_m$.

236 **Proof.** We consider the following two cases.

Case 1. When C is infinite field.

237

250

253

On contrary, we assume that $a \notin C.I_m$, $b \notin C.I_m$ and $c \notin C.I_m$. We denote by e_{hl} the usual matrix unit, that is, 1 in (h,l)-entry and zero elsewhere.

By Fact 2.5, there exists an invertible matrix N such that all the entries of the matrices NaN^{-1} , NbN^{-1} and NcN^{-1} are nonzero. Let $\phi(x) = NxN^{-1}$, an inner automorphism on R. Then by hypothesis, for all $X \in f(R)$,

$$\left[\phi(a') X^2 + \phi(a'') X \phi(c) X + \phi(a) X \phi(p') X \right.$$

$$\left. \left[\phi(a') X^2 + \phi(a'') X \phi(c) X + \phi(a) X \phi(p') X \right] \right.$$

$$\left. \left[\phi(a') X^2 + \phi(a'') X \phi(c) X + \phi(a) X \phi(p') X \right] \right.$$

$$\left. \left[\phi(a') X^2 + \phi(a'') X \phi(c) X + \phi(a) X \phi(p') X \right] \right.$$

By [24], since $f(r_1, ..., r_n)$ is not central valued, there exist matrices $r_1, ..., r_n \in M_m(C)$ such that $f(r_1, ..., r_n) = \gamma e_{ij}$, with $i \neq j$, where $\gamma \in C - \{0\}$. Thus we can substitute the value of X as e_{ij} in (3.12) and then we have $[\phi(a'')e_{ij}\phi(c)e_{ij} + \phi(a)e_{ij}\phi(p')e_{ij} - 2\phi(a)e_{ij}\phi(b)e_{ij}\phi(c), e_{ij}] = 0$. Left multiplying by e_{ij} yields

$$2e_{ij}\phi(a)e_{ij}\phi(b)e_{ij}\phi(c)e_{ij} = 0,$$

which is a contradiction, since all the entries of the matrices $\phi(a)$, $\phi(b)$ and $\phi(c)$ are non-zero.

Case 2. When C is finite field.

Let E be an infinite field such that $C \subseteq E$, that is, E is an extension of C.

Let $\overline{R} = M_m(E) \cong R \otimes_C E$. Note that the multilinear polynomial $f(r_1, \ldots, r_n)$ is central-valued on R if and only if it is central-valued on \overline{R} . Consider the generalized polynomial

$$\Psi(r_1, \dots, r_{n-1}, y) = [a'f(r_1, \dots, r_n)^2 + a''f(r_1, \dots, r_n)cf(r_1, \dots, r_n) + af(r_1, \dots, r_n)p'f(r_1, \dots, r_n) - 2af(r_1, \dots, r_n)bf(r_1, \dots, r_n)c - af(r_1, \dots, r_n)^2c', y].$$

Then $\Psi(r_1,\ldots,r_{n-1},y)=0$ is a GPI for R.

Notice that $\Psi(r_1,\ldots,r_{n-1},y)$ is a polynomial of multi-degree $(2,\ldots,2)$ in the indeterminates r_1,\ldots,r_n and degree 1 in the indeterminate y.

Now linearizing the identity $\Psi(r_1, \ldots, r_{n-1}, y) = 0$ with respect to variable r_1 (i.e., replacing r_1 with $r_1 + s_1$), we get a polynomial identity for R

$$\Psi_1(r_1,\ldots,r_{n-1},s_1,y)=0$$

such that $\Psi_1(r_1,\ldots,r_{n-1},r_1,y)=2\Psi(r_1,\ldots,r_{n-1},y)$. Continuing the process of linearization, we get a multilinear generalized polynomial identity of 2n+1 indeterminates

$$\Psi_n(r_1,\ldots,r_n,s_1,\ldots,s_n,y)=0$$

269 such that

268

270

279

$$\Psi_n(r_1,\ldots,r_n,r_1,\ldots,r_n,y) = 2^n \Psi(r_1,\ldots,r_n,y).$$

Since $\Psi_n(r_1,\ldots,r_n,s_1,\ldots,s_n,y)$ is the multilinear polynomial, we can write that

$$\Psi_n(r_1,\ldots,r_n,s_1,\ldots,s_n,y)=0$$

is a GPI for R and \overline{R} too. Since $char(C) \neq 2$ we have $\Psi(r_1, \ldots, r_n, y) = 0$ for all $r_1, \ldots, r_n, y \in \overline{R}$ and thus the conclusion follows by case-1 as above.

As a particular case of above Lemma 3.3, we have the following corollary.

Corollary 3.4. Let C be a field and m be a fixed positive integer with $m \geq 2$.

Let $R = M_m(C)$ be the ring of all $m \times m$ matrices over C. If for some a, a', $a'', b, c, c', p' \in R$ such that

$$\left[a'r^2 + a''rcr + arp'r - 2arbrc - ar^2c', y\right] = 0$$

for all $r, y \in R$, then either $a \in C.I_m$ or $b \in C.I_m$ or $c \in C.I_m$.

Lemma 3.5. Let R be a prime ring, $f(r_1, ..., r_n)$ a non-central multilinear polynomial over C and $a, a', a'', b, c, c', p' \in R$. If char $(R) \neq 2$ and

$$[a'X^2 + a''XcX + aXp'X - 2aXbXc - aX^2c', y] = 0$$

for all $X \in f(R)$ and $y \in R$, then either $a \in C$ or $b \in C$ or $c \in C$.

285 **Proof.** By hypothesis and Fact 2.1,

286 (3.15)
$$\left[a'X^2 + a''XcX + aXp'X - 2aXbXc - aX^2c', y \right] = 0$$

for all $X \in f(U)$ and $y \in R$. By Lemma 3.1, above identity is a non-trivial GPI. Then by Fact 2.6, R is isomorphic to a dense ring of linear transformations of a vector space V over C.

Let $\dim_C V = m$. By density of R, then $R \cong M_m(C)$. Given that $f(r_1, \ldots, r_n)$ is not central valued on R and therefore, R must be noncommutative. Hence $m \geq 2$. In this case, by Lemma 3.3, we get our conclusions.

Let $\dim_C V = \infty$. Since the set f(R) is dense on R (Lemma 2 in [28]), from above, R satisfies

295 (3.16)
$$\left[a'r^2 + a''rcr + arp'r - 2arbrc - ar^2c', y \right] = 0.$$

In this case we want to prove that either $a \in C$ or $b \in C$ or $c \in C$. We know the fact that for any element $q \in R$, [q, Soc(RC)] = (0) implies $q \in C$. Hence on contrary, we assume that $a \notin C$, $b \notin C$ and $c \notin C$. Hence, there exist $h_0, h_1, h_2 \in Soc(R)$ such that $[a, h_0] \neq 0$, $[b, h_1] \neq 0$ and $[c, h_2] \neq 0$. Now we show a number of contradiction. Since $\dim_C V = \infty$, for any idempotent $e \in Soc(R)$, we have $eRe \cong M_k(C)$ with $k = \dim_C Ve$. By Litoff's theorem [17], there exists an idempotent $e \in Soc(R)$ such that $h_0, h_1, h_2, h_0a, ah_0, h_1b, bh_1, h_2c, ch_2 \in eRe$, where $eRe \cong M_k(C)$, $k = \dim_C Ve$. Since R satisfies

304 (3.17)
$$e[a'(ere)^2 + a''erecere + aerep'ere - 2aereberec - a(ere)^2c', eye]e = 0,$$

305 the subring eRe satisfies

$$[ea'er^2 + ea''erecer + eaerep'er - 2eaereberece - eaer^2ec'e, y] = 0.$$

Then by Corollary 3.4, $eae \in eC$ or $ebe \in eC$ or $ece \in eC$. If $eae \in eC$, then

$$ah_0 = eah_0 = eaeh_0 = h_0eae = h_0ae = h_0a.$$

If $ebe \in eC$, then

308

312

314

$$bh_1 = ebh_1 = ebeh_1 = h_1ebe = h_1be = h_1b$$

and if $ece \in eC$, then

$$ch_2 = ech_2 = eceh_2 = h_2ece = h_2ce = h_2c$$

In any case, we have contradiction with the choices of h_0 , h_1 and h_2 .

Thus we conclude that either $a \in C$ or $b \in C$ or $c \in C$.

Lemma 3.6. Let R be a prime ring, $f(r_1, ..., r_n)$ a non-central multilinear polynomial over C and char $(R) \neq 2$, where C is the extended centroid of R. If a, a', $b, c, c', p' \in R$ such that R satisfies

318 (3.19)
$$[a'X^2 + 2bXcX + Xp'X - 2XbXc - X^2c', y] = 0$$

for all $X \in f(R)$ and $y \in R$, then either $b \in C$ or $c \in C$.

Proof. By hypothesis

331

332

333

334

335

336

337

338

345

347

$$[a'X^2 + 2bXcX + Xp'X - 2XbXc - X^2c', y] = 0$$

for all $X \in f(R)$ and $y \in R$. If this is a trivial GPI for R, then by Lemma 322 3.2, either $b \in C$ or $c \in C$. Now assume that (3.20) is a nontrivial GPI for R. Then by Fact 2.6, R is isomorphic to a dense ring of linear transformations of a 324 vector space V over C. If $\dim_C V = m$, then $R \cong M_m(C)$ and $M_m(C)$ satisfies 325 (3.20). By [24], since $f(r_1, \ldots, r_n)$ is not central valued, there exist matrices 326 $r_1, \ldots, r_n \in M_m(C)$ and $\gamma \in C - \{0\}$ such that $f(r_1, \ldots, r_n) = \gamma e_{ij}$, with $i \neq j$. 327 Thus we can substitute a particular value of X with e_{ij} in (3.20), and then we 328 have $[2be_{ij}ce_{ij} + e_{ij}p'e_{ij} - 2e_{ij}be_{ij}c, e_{ij}] = 0$. This implies $-4b_{ji}c_{ji} = 0$. Then by 329 same argument as given in Lemma 3.3, either $b \in C$ or $c \in C$. 330

If $\dim_C V = \infty$, we have for any idempotent $e \in Soc(R)$, $eRe \cong M_k(C)$, with $k = \dim_C Ve$. Let $b \notin C$ and $c \notin C$. Then there exist $h_1, h_2 \in Soc(R)$ such that $[b, h_1] \neq 0$ and $[c, h_2] \neq 0$ for some $h_1, h_2 \in Soc(R)$. By Litoff's theorem [17] there exists an idempotent $e \in Soc(R)$ such that $h_1, h_2, h_1b, bh_1, h_2c, ch_2$ are all in eRe. Moreover, if $k = \dim_C Ve$, then $eRe \cong M_k(C)$. Since V is infinite dimensional over C, the set f(R) is dense on R ([28, Lemma 2]) and hence by hypothesis, R satisfies the GPI

$$[a'x^{2} + 2bxcx + xp'x - 2xbxc - x^{2}c', y] = 0.$$

Now replacing x with exe and y with eye we have

$$e[a'(exe)^2 + 2b(exe)c(exe) + (exe)p'(exe) - 2(exe)b(exe)c - (exe)^2c', (eye)]e = 0.$$

Thus the subring eRe satisfies the GPI

$$[(ea'e)x^{2} + 2(ebe)x(ece)x + x(ep'e)x - 2x(ebe)x(ece) - x^{2}(ec'e), y] = 0.$$

As above of finite dimensional case, we have either $ebe \in eC$ or $ece \in eC$. If $ebe \in eC$, then

$$bh_1 = ebh_1 = ebeh_1 = h_1ebe = h_1be = h_1b,$$

a contradiction and if $ece \in eC$, then

$$ch_2 = ech_2 = eceh_2 = h_2ece = h_2ce = h_2c,$$

a contradiction. Therefore, we conclude that either $b \in C$ or $c \in C$.

Proposition 3.7. Let R be a noncommutative prime ring, $f(r_1, ..., r_n)$ be a multilinear polynomial over C, which is not central valued on R, where C is the

extended centroid of R. Suppose char $(R) \neq 2$ and I a nonzero two sided ideal of R. If for some $b, c, p, q \in U$, $\mathscr{F}(x) = bx + xc$, $\mathscr{G}(x) = px + xq$ for all $x \in R$ are two inner generalized derivations of R such that

$$a[(\mathscr{F}^2 + \mathscr{G})(f(r)), f(r)] \in C$$

holds for all $r = (r_1, \dots, r_n) \in I^n$, then one of the following holds:

356 (1)
$$\mathscr{F}(x) = x(b+c)$$
 and $\mathscr{G}(x) = x(p+q)$ for all $x \in R$ with $(b+c)^2 + p + q \in C$;

357 (2)
$$\mathscr{F}(x) = (b+c)x$$
, $\mathscr{G}(x) = (p+q)x$ for all $x \in R$ with $(b+c)^2 + p + q \in C$;

- 358 (3) $f(x_1, \ldots, x_n)^2$ is central valued and one of the following holds:
- (a) $\mathscr{F}(x) = x(b+c)$ and $\mathscr{G}(x) = px + xq$ for all $x \in R$, with $(b+c)^2 (p-q) \in C$:
- (b) $\mathscr{F}(x) = (b+c)x$ and $\mathscr{G}(x) = px + xq$ and for all $x \in R$ with $(b+c)^2 + p q$ $\in C$:
- 363 (4) R satisfies s_4 and one of the following holds:
- (a) $\mathscr{F}(x) = x(b+c)$ and $\mathscr{G}(x) = px + xq$ for all $x \in R$, with $(b+c)^2 (p-q)$ $\in C$;
 - (b) $\mathscr{F}(x) = (b+c)x$ and $\mathscr{G}(x) = px + xq$ for all $x \in R$ with $(b+c)^2 + p q \in C$.

Proof. Since I, R and U satisfy same GPIs (see [7]), by hypothesis we have

368 (3.21)
$$a[(b^2+p)X + 2bXc + X(c^2+q), X] \in C$$

for all $X \in f(U)$.

366

We re-write it as

371
$$a(b^2+p)X^2 + 2abXcX + aX(c^2+q-b^2-p)X$$
372
$$-2aXbXc - aX^2(c^2+q) \in C$$

for all $X \in f(U)$. By Lemma 3.5, either $a \in C$ or $b \in C$ or $c \in C$.

If $0 \neq a \in C$, then (3.22) reduces to

$$(b^2 + p)X^2 + 2bXcX + X(c^2 + q - b^2 - p)X$$

$$-2XbXc - X^2(c^2 + q) \in C$$

for all $X \in f(U)$. In this case by Lemma 3.6, either $b \in C$ or $c \in C$.

Thus we have proved that either $b \in C$ or $c \in C$. Therefore, we examine these two situation in the below mentioned cases.

Case 1. $b \in C$. Equation (3.21) reduces to

381
$$(3.24)$$
 $a[(b^2+p)X + X(2bc+c^2+q), X] \in C$

for all $X \in f(U)$.

401

By [13, Corollary 2.7], one of the following holds:

- 384 (1) $f(R)^2 \in C$ and $(b^2 + p) (2bc + c^2 + q) \in C$, i.e., $p q (b + c)^2 \in C$.

 385 Therefore, form of the map will be $\mathscr{F}(x) = x(b+c)$ for all $x \in R$, which gives our conclusion (1).
- 387 (2) $b^2+p, 2bc+c^2+q \in C$. Since $b \in C$, we have $p \in C$. Therefore, $\mathscr{F}(x)=x(b+c)$ and $\mathscr{G}(x)=x(p+q)$ for all $x \in R$ with $(b+c)^2+p+q \in C$.
- 389 (3) R satisfies s_4 and $(b^2 + p) (2bc + c^2 + q) \in C$ i.e., $p q (b + c)^2 \in C$. In this case $\mathscr{F}(x) = x(b+c)$ for all $x \in R$, which gives our conclusion (3).
- Case 2. $c \in C$. In this case by (3.21),

$$a[((b+c)^2+p)X+Xq,X] \in C$$

for all $X \in f(U)$. By [13, Corollary 2.7], one of the following holds:

- 394 (1) $f(R)^2 \in C$ and $(b+c)^2 + p q \in C$. Hence form of the map will be $\mathscr{F}(x) = (b+c)x$ for all $x \in R$, which gives our conclusion (2).
- 396 (2) $(b+c)^2 + p$, $q \in C$. Thus $\mathscr{F}(x) = (b+c)x$, $\mathscr{G}(x) = (p+q)x$ for all $x \in R$ 397 with $(b+c)^2 + p + q \in C$.
- 398 (3) R satisfies s_4 and $(b^2 + p + 2bc) (c^2 + q) \in C$, i.e., $(b+c)^2 + p q \in C$. In this case $\mathscr{F}(x) = (b+c)x$ for all $x \in R$, and thus conclusion (4) follows.

4. Proof of Theorem 1.1.

In all that follows, let R be a prime ring, $f(r_1, \ldots, r_n)$ a noncentral multilinear polynomial over C, char $(R) \neq 2$, where C is the extended centroid of R and U is the Utumi ring of quotients of R. By [21, Theorem 3], $\mathscr{F}(x) = bx + d(x)$, $\mathscr{G}(x) = cx + \delta(x)$ for some $b, c \in U$ and d, δ are two derivations of U. Then $\mathscr{F}^2(x) = \mathscr{F}(\mathscr{F}(x)) = \mathscr{F}(b)x + 2bd(x) + d^2(x)$. By hypothesis, we have

$$a\left[\mathscr{F}(b)f(r) + 2bd(f(r)) + d^{2}(f(r)) + cf(r) + \delta(f(r)), f(r)\right] \in C$$

for all $r = (r_1, \ldots, r_n) \in I^n$. By Fact 2.1 and Fact 2.2, we have

410
$$(4.1)$$
 $a[\mathscr{F}(b)f(r) + 2bd(f(r)) + d^2(f(r)) + cf(r) + \delta(f(r)), f(r)] \in C$

411 for all $r = (r_1, \dots, r_n) \in U^n$.

If d and δ both are inner, by Proposition 3.7, conclusion follows. Thus we need to consider the cases when d and δ are not simultaneously inner. Thus the following three cases may occur.

Case 1. d is inner, δ is outer.

Assume for some $p \in U$, d(x) = [p, x] for all $x \in R$. By (4.1), U satisfies

$$a[\mathscr{F}(b)f(r) + 2b[p, f(r)] + [p, [p, f(r)]] + cf(r) + \delta(f(r)), f(r)] \in C.$$

By Fact 2.4, we can replace $\delta(r_i)$ by t_i for $i=1,\ldots,n$ in (4.2) and then U satisfies blended component

$$a\left[\sum_{i} f(r_{1}, \dots, t_{i}, \dots, r_{n}), f(r_{1}, \dots, r_{n})\right] \in C.$$

Replacing y_i by $[q', r_i]$ for some $q' \notin C$, we have that

$$a\Big[[q', f(r_1, ..., r_n)], f(r_1, ..., r_n)\Big] \in C$$

for all $r_1, \ldots, r_n \in U$. Then by [13, Corollary 2.7], $q' \in C$, a contradiction.

Case 2. δ is inner, d is outer. Assume for some $q \in U$, $\delta(x) = [q, x]$ for all $x \in R$. By (4.1), for all $r = (r_1, \ldots, r_n) \in U^n$,

$$a\left[\mathscr{F}(b)f(r) + 2bd(f(r)) + d^{2}(f(r)) + cf(r) + [q, f(r)], f(r)\right] \in C.$$

Since d is outer, by Fact 2.4, we can replace $d(r_i)$ by y_i for i = 1, ..., n and $d^2(r_i)$ by t_i for i = 1, ..., n in (4.4) and then U satisfies blended component

$$a\left[\sum_{i} f(r_1, \dots, t_i, \dots, r_n), f(r_1, \dots, r_n)\right] \in C.$$

This equation is same as (4.3) and so it leads to a contradiction as above.

Case 3. d, δ all are outer. Assume first that d and δ are linearly C-independent modulo inner derivations of U. Then by applying Fact 2.4, we can replace $\delta(r_i)$ by t_i for $i=1,\ldots,n$ and $d(r_i)$ by x_i for $i=1,\ldots,n$ in (4.1). By this substitution, we have the blended component

435 (4.6)
$$a\left[\sum_{i} f(r_{1}, \dots, t_{i}, \dots, r_{n}), f(r_{1}, \dots, r_{n})\right] \in C$$

satisfied by U. This equation is same as (4.3). Thus by same argument we arrive to a contradiction.

Assume next that d and δ are linearly C-dependent modulo inner derivations of U. Then there exist some $\alpha_1, \beta_1 \in C$ and $q' \in U$ such that $\alpha_1 d + \beta_1 \delta = a d_q'$.

Since d is outer, $\beta_1 \neq 0$ and hence $\delta(x) = \lambda d(x) + [q, x]$, where $\lambda = -\alpha_1 \beta_1^{-1}$ and $q = \beta_1^{-1} q'$.

From (4.1), we obtain

443
$$a\Big[F(b)f(r) + 2bd(f(r)) + d^2(f(r)) + cf(r) + \lambda d(f(r)) + [q, f(r)], f(r)\Big] \in C.$$

Again by applying Fact 2.4, we can replace $d(r_i)$ by y_i for $i=1,\ldots,n$ and $d^2(r_i)$ by t_i for $i=1,\ldots,n$ in (4.7) and then U satisfies blended components

447 (4.8)
$$a \left[\sum_{i} f(r_1, \dots, t_i, \dots, r_n), f(r_1, \dots, r_n) \right] \in C.$$

This equation is same as (4.3) and hence we have contradiction as before.

5. Proof of Theorem 1.2.

In all that follows, we assume that R is a prime ring with char $(R) \neq 2$, U the Utumi ring of quotients of R and C = Z(U) the extended centroid of R. By [21, Theorem 3], $\mathscr{F}(x) = bx + d(x)$, $\mathscr{G}(x) = cx + \delta(x)$ for some $b, c \in U$ and d, δ are derivations of U.

If char (R) = 2 and R satisfies s_4 , then we have our conclusion (5).

Thus we assume that either char $(R) \neq 2$ or R does not satisfy s_4 . Then by [14, Remark 1], there exists a nonzero ideal I of R such that $[I, I] \subseteq L$. Hence by hypothesis, we have

$$a\Big[\mathscr{F}(b)[s,t] + 2bd([s,t]) + d^2([s,t]) + c[s,t] + \delta([s,t]),[s,t]\Big] \in C$$

for all $s, t \in I$. If char $(R) \neq 2$, then by Theorem 1.1, we have our conclusions.

Thus we assume that char (R) = 2. Then R can not satisfy s_4 . By Fact 2.1 and Fact 2.2, we have

462 (5.1)
$$a\left[\mathscr{F}(b)[s,t] + d^2([s,t]) + c[s,t] + \delta([s,t]), [s,t]\right] \in C$$

for all $s, t \in U$.

449

454

Moreover, if d(x) = [p, x] and $\delta(x) = [q, x]$ are all inner derivations, then from above

466
$$a\left[\mathscr{F}(b)[s,t]+[p^2,[s,t]]+c[s,t]+[q,[s,t]],[s,t]\right]\in C$$

that is

$$a\Big[(\mathscr{F}(b)+p^2+c+q)[s,t]-[s,t](p^2+q),[s,t]\Big]\in C$$

for all $s, t \in U$. This can be written as

$$a\Big[\mathscr{F}(b) + p^2 + c + q, [s, t]\Big][s, t] - [s, t]\Big[p^2 + q, [s, t]\Big] \in C$$

for all $s, t \in U$.

By [14, Theorem 2.7], $\mathscr{F}(b) + p^2 + c + q \in C$ and $p^2 + q \in C$, i.e., $\mathscr{F}(b) + c$, $p^2 + q \in C$.

Thus the following three cases may occur.

Case 1. d are inner, δ is outer.

Let for some $p \in U$, d(x) = [p, x] for all $x \in R$. By (5.1), U satisfies

477 (5.2)
$$a\left[\mathscr{F}(b)[s,t] + [p^2,[s,t]] + c[s,t] + \delta([s,t]),[s,t]\right] \in C.$$

By Fact 2.4, we can replace $\delta([s,t])$ by [x,t]+[s,y] in (5.2) and then U satisfies blended component

480 (5.3)
$$a\Big[[x,t]+[s,y],[s,t]\Big]\in C.$$

Replacing x by [q, s] and y by [q, t] for some $q \notin C$, we have that

$$a\Big[[q,[s,t]],[s,t]\Big] \in C$$

for all $s, t \in U$. Then by [14, Theorem 2.7], $q \in C$, a contradiction.

 $Case 2. \delta is inner, d is outer.$

Let for some $q \in U$, $\delta(x) = [q, x]$ for all $x \in R$. By (5.1), U satisfies

$$a\left[\mathscr{F}(b)[s,t] + [d^2(s),t] + [s,d^2(t)] + c[s,t] + [q,[s,t]],[s,t]\right] \in C.$$

Since d is outer, by Fact 2.4, we can replace $d^2(s)$ by x and $d^2(t)$ by y and then U satisfies blended component

489 (5.5)
$$a\Big[[x,t]+[s,y],[s,t]\Big]\in C.$$

490 This is same as (5.3) and hence a contradiction follows.

491 Case 3. d, δ all are outer.

Assume first that, d and δ are linearly C-independent modulo inner derivations

of U. Then by Fact 2.4, we can replace $d^2([s,t])$ by [x,t]+[s,y] and $\delta([s,t])$ by [u,t]+[s,v] in (5.1) and then U satisfies blended components

495 (5.6)
$$a[x,t] + [s,y], [s,t] \in C.$$

This is same equation as (5.3) and hence it leads to a contradiction as above.

Assume next that, d and δ are linearly C-dependent modulo inner derivations of U. Then there exist $\alpha', \beta' \in C$, $q' \in U$ such that $\alpha'd + \beta'\delta = ad'_q$. Since d is outer, $\beta' \neq 0$ and hence, we can write $\delta(x) = \lambda d(x) + [q, x]$, where $\lambda = -\alpha'\beta'^{-1}$ and $q = \beta'^{-1}q'$.

From (5.1), we obtain

501

$$(5.7) a\Big[\mathscr{F}(b)[s,t] + d^2([s,t]) + c[s,t] + \lambda d([s,t]) + [q,[s,t]], [s,t]\Big] \in C.$$

By Fact 2.4, we can replace d([s,t]) by [u,t]+[s,v] and $d^2([s,t])$ by [x,t]+[s,y] in (5.7) and then U satisfies blended components

505 (5.8)
$$a\Big[[x,t]+[s,y],[s,t]\Big]\in C.$$

This is same equation as (5.3) and then by same argument we have a contradiction. Thus the Theorem is proved.

Acknowledgements

The author would like to thank referee for his/her valuable comments and suggestions which have helped the author to improve the manuscript.

510 REFERENCES

- 511 [1] A. Ali, V. De Filippis and S. Khan, Power values of quadratic polynomials with 512 generalized skew derivations on Lie ideals, Beitr. Algebra Geom. **62** (2021) 893– 513 905. 514 https://doi.org/10.1007/s13366-020-00550-3
- [2] A. Ali, B. Dhara and S. Khan, Generalized derivations with power values in rings
 and Banach algebras, J. Math. Comput. Sci. 7(5) (2017) 912–926.
- [3] A. Ali, V. De Filippis and S. Khan, Power values of generalized derivations with annihilator conditions in prime rings, Comm. Algebra, 44(7) (2016) 2887–2897. https://doi.org/10.1080/00927872.2015.1065848
- 520 [4] N. Argac and V. De Filippis, Actions of generalized derivations on multilinear poly-521 nomials in prime rings, Algebra Colloquium 18 (Spec 01) (2011) 955–964. 522 https://doi.org/10.1142/S1005386711000836
- [5] K.I. Beidar, W.S. Martindale III and A.V. Mikhalev Rings with Generalized Identities, Pure and Appl. Math. **196** (Marcel Dekker, New York, 1996).

 [6] L. Carini and G. Scudo, An annihilator condition with generalized derivations on multilinear polynomials, Comm. Algebra 42 (2014) 4084–4093.
 https://doi.org/10.1080/00927872.2013.804927

- [7] C.L. Chuang, *GPIs having coefficients in Utumi quotient rings*, Proc. Amer. Math. Soc. **103(3)** (1988) 723–728.
- [8] V. De Filippis, B. Dhara and G. Scudo, Generalized derivations and commuting additive maps on multilinear polynomials in prime rings, Ukrainian Math. J. 68(2)
 (2016) 203–223.
- https://doi.org/10.1007/s11253-016-1219-0
- [9] V. De Filippis and O.M. Di Vincenzo, Vanishing derivations and centralizers of generalized derivations on multilinear polynomials, Comm. Algebra 40(6) (2012)
 1918–1932.
- https://doi.org/10.1080/00927872.2011.553859
- 538 [10] V. De Filippis, Posner's second theorem and an annihilator condition with general-539 ized derivations, Turk. J. Math. **32(2)** (2008) 197–211.
- [11] V. De Filippis, An Engel condition with generalized derivations on multilinear polynomials, Israel J. Math. 162 (2007) 93–108.
 https://doi.org/10.1007/s11856-007-0090-y
- [12] B. Dhara, S. Kar and M. Bera, Annihilating and centralizing condition of generalized
 derivation in prime ring, South. Asian Bull. Math. 48(4) (2024) 467–476.
- [13] B. Dhara, S. Kar and K.G. Pradhan, Co-centralizing generalized derivations acting
 on multilinear polynomials in prime rings, Bull. Iranian Math. Soc. 42(6) (2016)
 1331–1342.
- [14] B. Dhara, Annihilator condition on power values of derivations, Indian J. Pure Appl.
 Math. 42(5) (2011) 357–369.
 https://doi.org/10.1007/s13226-011-0023-7
- [15] B. Dhara and R.K. Sharma, Right sided ideals and multilinear polynomials with
 derivations on prime rings, Rend. Sem. Mat. Univ. Padova 121 (2009) 243–257.
- [16] T.S. Erickson, W.S. Martindale III and J.M. Osborn, *Prime nonassociative algebras*,
 Pacific J. Math. **60(1)** (1975) 49–63.
 https://doi.org/10.2140/pjm.1975.60.49
- [17] C. Faith and Y. Utumi, On a new proof of Litoff's theorem, Acta Math. Acad. Sci.
 Hung. 14 (1963) 369–371.
 https://doi.org/10.1007/BF01895723
- 559 [18] I.N. Herstein, Rings with involution (Univ. of Chicago Press, Chicago, 1976).
- [19] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Pub. 37, Amer. Math.
 Soc. (Providence, RI, 1964).
- [20] V.K. Kharchenko, Differential identities of prime rings, Algebra and Logic 17 (1978)
 155–168.
- https://doi.org/10.1007/BF01670115

- [21] T.K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27(8) (1999)
 4057–4073.
- https://doi.org/10.1080/00927879908826682
- [22] E.H. Lee, Y.S. Jung and I.S. Chang, Derivations on prime and semiprime rings,
 Bull. Korean Math. Soc. 39/3 (2002) 485–494.
- ⁵⁷⁰ [23] T.K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica **20(1)** (1992) 27–38.
- [24] U. Leron, Nil and power central polynomials in rings, Trans. Amer. Math. Soc. 202
 (1975) 297–103.
- [25] W.S. Martindale III, Prime rings satisfying a generalized polynomial identity, J.
 Algebra 12(4) (1969) 576–584.
 https://doi.org/10.1016/0021-8693(69)90029-5
- [26] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8(6) (1957) 1093–
 1100.
- https://doi.org/10.2307/2032686
- [27] N. Rehman and V. De Filippis, On n-commuting and n-skew commuting maps
 with generalized derivations in prime and semiprime rings, Siberian Math. J. 52(3)
 (2011) 516-523.
 https://doi.org/10.1134/S0037446611030141
- 584 [28] T.L. Wong, Derivations with power central values on multilinear polynomials, Algebra Colloquium **3(4)** (1996) 369–378.

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/