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Abstract

Let R be a prime ring with char R # 2 and f(r1,...,7,) be a non-
central multilinear polynomial over C(= Z(U)), where U is the Utumi ring
of quotients of R. Let I be a nonzero two sided ideal of R, L a non central
Lie ideal of R and .#, ¢4 two generalized derivations of R. Denote the set
f()={f(rey... m)|r1,...,rm € I}, If for some 0 # a € R,

al(F? +9)(u),u] € C

for all w € f(I) or u € L, then possible forms of the maps are described.
This result improves the result proved by De Filippis et al. in [8] and

Carini and Scudo in [6].

Keywords: prime ring, derivation, generalized derivation.

2020 Mathematics Subject Classification: 16W25, 16N60, 16R50.

1. INTRODUCTION

Let R be a prime ring with center Z(R), U be its Utumi ring of quotients. C' is
the extended centroid of R which is basically center of U. By a derivation d on
R, one usually means an additive mapping d : R — R such that for any z,y € R,
d(xy) = d(z)y+xzd(y). By a generalized derivation g on R, one usually means an
additive mapping g : R — R such that for any =,y € R, g(zy) = g(x)y + zd(y)
for some derivation d in R. Every derivation is a generalized derivation. Thus
generalized derivation map is the generalization of the map derivation.

This work is supported by a grant from Science and Engineering Research Board (SERB),
New Delhi, India. Grant No. is MTR/2022/000568.
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2 B. DHARA

For any a,b € R, we denote [a,b] = ab — ba, which is called the commuta-
tor of a and b. The standard polynomial of four variables is s4(t1,t2,t3,t4) =
Y ves, (D7 toto@to3)toa), Where (=1)7 is +1 or —1 according to o being an
even or an odd permutation in symmetric group S4. R satisfies s4, we mean
sq(t1,ta,ts,ts) = 0 for all ty,to,t3,t4 € R. Let f(rs,...,r,) be a noncentral
valued multilinear polynomial over C' in n non-commuting variables.

Let S be a nonempty subset of R. Then f(S) denotes the set of all evalua-
tions of f(x1,...,x,) over S, that is, f(S) = {f(z1,...,zn)|21,..., 2, € S}. A
mapping x : R — R is said to be commuting on S if [x(s),s] = 0 for all s € S
and centralizing on S if [x(s),s] € Z(R) for all s € S.

Let d, g be two derivations and .%,¥ two generalized derivations on a prime
ring R. A well known result proved by Posner [26], says that if a nonzero central-
izing derivation exists in a prime ring R, then the ring R must be commutative.
After that, several authors have given their contributions to the theory extending
Posner’s [26] result in many directions (for instance, we refer to [1-4,8,11]).

In [15], authors of this paper studied the case when d? is commuting and
centralizing on f(I), where I is a non-zero right ideal of R.

In [11], De Filippis studied the case when ¢ is commuting on f(I), where I
is a non-zero right ideal of R and then described forms of the maps.

In [22, Theorem 2.1], Lee et al. introduced a special type of additive map
d?> 4 g and then initiated to study this type of map. They proved that if R is a
n!-torsion free semiprime ring such that [(d? + g)(s),s"] = 0 for all s € R, then d
and g are both commuting on R.

Further this special type of additive map was studied by Rehman and De
Filippis in [27], replacing derivations with generalized derivation, that is, the
map .#2 + 9.

Inspired by the above cited results, in [8], De Filippis et al. studied the
additive map .#?2 + ¢ centralizing on f(I), that is, [(#2 + 9)(f(I)), f(I)] = 0,
where [ is a non-zero right ideal of R and then obtained forms of the maps.

There is also ongoing interest to investigate the above identities with left
annihilating conditions.

In [10], De Filippis proved that if char (R) # 2 and 0 # a € R such that
al.Z(f(R)), f(R)] = 0, then one of the following holds:

(1) there exists o’ € C such that .7 (z) = o’z for all z € R,

(2) there exist ¢ € U and X € C such that Z(z) = (¢’ + N)x+x¢ forall z € R
and f(ry,...,r,)? is central valued on R.

In [13, Corollary 2.7], Dhara et al. studied the above situation of [10] with

central valued, that is, a[.Z(f(R)), f(R)] € C and described the forms of the
maps.
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GENERALIZED DERIVATIONS 3

Carini and Scudo in [6], already proved that if char (R) # 2 and 0 #a € R
such that a[Z2(f(R)), f(R)] = 0, then one of the following holds:

(1) there exists o’ € C such that .Z(z) = oz, for all x € R,
(2) there exists a’ € U such that .#(z) = a'z, for all x € R, with a’? € C,
(3) there exists a’ € U such that .Z(z) = xd’, for all x € R, with a’? € C.

Recently in [12], Dhara et al. studied the above situation of [6] with central
values, that is, a[.#2(f(R)), f(R)] € C.

In the present article our motivation is to examine the above situation of [8],
with annihilator and centralizing conditions which improves and generalizes all
the above results. More precisely, we prove the following theorems.

Theorem 1.1. Let R be a prime ring with char (R) # 2 and f(ri,...,m,) be a
non-central multilinear polynomial over C(= Z(U)), where U be the Utumi ring of
quotients of R. Assume that I is a nonzero two sided ideal of R and %, 9 are two
generalized derivations of R. Denote the set f(I) = {f(r7,...,r)|r1,...,mn € I}.
If for some 0 # a € R,

a(F2+G)f (1, ma)) i f(raso )] €C
for all ri,...,ry, € I, then one of the following holds:

(1) there exist b,p € U such that .F(x) = xb and 9 (x) = xp for all x € R with
V+peC,

(2) there exist b,p € U such that F(x) = bx, Y(x) = px for all x € R with
v’ +peC,

(3) f(x1,...,2,)% is central valued and one of the following holds:

(a) there exist b,p,q € U such that F(x) = xb and 4 (x) = px + xq for all
z€R, withb> —p+qeC,

(b) there exist b,p,q € U such that F(x) = bz and 4 (x) = px + xq and for
allz € R withb*> +p—q € C,

(4) R satisfies s4 and one of the following holds:

(a) there exist b,p,q € U such that F(x) = xb and 4 (x) = px + xq for all
r€R, withb> —p+qeC,

(b) there exist b,p,q € U such that % (x) = bz and 4 (x) = px + xq for all
r€Rwitht> +p—qeC.

Theorem 1.2. Let R be a prime ring, L a noncentral Lie ideal of R and U the
Utumi quotient ring of R, C' = Z(U). Suppose that F and ¢ are two generalized
derivations of R such that for some 0 # a € R,

al(F?+9)(u),u] € C
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4 B. DHARA

for allu e L.
If char (R) # 2, then R satisfies s4 and one of the following holds:

(1) there exist b,p,q € U such that F(x) = xb and 4 (x) = px+xq for allz € R,
with b — (p — q) € C,

(2) there exist b,p,q € U such that F(x) = bx and 4 (x) = pr+ xq for allx € R
with b> +p —q € C.
If char (R) = 2, then one of the following holds:

(1) there exist b,c,p,q € U such that .F(x) = bx + [p,z| and 9 (z) = cx + [q, z]
for all x € R with Z(b) + ¢,p* +q € C;

(2) R satisfies s4.

Example 1. Consider a ring R = { ( g > la,b € Z}, where Z is the set of all
= xy Wthh is not central valued on
1 1\ (00
00/ \0 o0)

a 2b a b
We define maps .#,¥9,d, g : R—)Rbyg<0 0> <0 0>, <0 0)

0 b ~(a b\ [ a 3b a b\ (0 2b P
<00>,J<00>—<00>andd<00>—<00>.ThenJ
and ¢ are generalized derivations of R associated to derivations d and g respec-

tively. We see that for 0 # p = < 8 (1) ) € R,

b
0
integers and a multilinear polynomial f(x,y)
1
0

R. Note that R is not prime ring as ( 0

pUF? +9)(f(z,9)), f(z,y)] =0 € Z(R)

for all z,y € R. Since .# is not in the form of % (z) = bz or .Z () = xb for all
x € R and for some fixed b € R, the primeness assumption is not superfluous in
Theorem 1.1.

2. SOME RESULTS

Throughout this section, R always be a prime ring, I is two sided ideal of R and
f(ry,...,ry) anoncentral valued multilinear polynomial over C. The C denotes
the extended centroid of R which is the center of U.

The following facts are to be used frequently to prove our Theorem.

Fact 2.1. Let us denote by T = U x¢c C{X}, the free product over C of the
C-algebra U and the free C-algebra C{X}, with X the countable set consisting of
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GENERALIZED DERIVATIONS 5

the noncommuting indeterminates x1,xo,.... The elements of T are called gener-
alized polynomials with coefficients in U. By a nontrivial generalized polynomial,
we mean a nonzero element of T. For more details about these objects we refer
to [5,18].

By [7], I, R and U satisfy the same generalized polynomial identities (GPIs)
with coefficients in U.

Fact 2.2. By [23], I, R and U satisfy the same differential identities.

Fact 2.3 [4, Lemma 3]. If there exist a,c,p,q € U such that
(aX + X)X — X(pX +Xq)=0

for all X € f(R), then one of the following holds:

(1) a,geC andgq—a=c—peC;

(2) f(x1,...,2,)?% is central valued on R and ¢ —a=c—p € C;

(3) char (R) =2 and R satisfies sy.

Fact 2.4 (See [20,23]). Let Der(U) be the set of all derivations on U and Djpy
be the set of all inner derivations on U.

By [20, Theorem 2] (see also [23, Theorem 1]), we have the following result.
Let dy,...,dp € Der(U) and derivations words A; are in the form

Aj=didy - dp j=1,...,n
where
S:max{si,j, t1=1,...,mj= 1,...,n}.
Ifdy, ..., dy are linearly C—independent modulo Dy, s < p, with char(R) =
p#0, and ¢ <wiAj> = 0 be a differential identity on R, then ®(y;;) =0 is a GPI
for R, where y;; are distinct indeterminates.

In particular, if derivation d ¢ Dins and char (R) # 2 such that R satisfies

d d ,.d? d?
@(xl,...,wn,xl,...,wn,xl ey Xy > =0,

then R satisfies GPI

(I)($1,---,$n,21,---,Zn,771,---,77n) =0.

Fact 2.5 [9, Lemma 1]. Let C be an infinite field, t be a positive integer with t > 2
and R = M;(C), the algebra of all t x t matrices over C. Let By,..., By be not
scalar matrices in R. Then there must exists at least one invertible matriz Q € R
such that all the entries of the matrices QB1Q™',...,QBLQ ™" have non-zero
values.
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Fact 2.6. If R satisfies a nontrivial generalized polynomial identity (GPI) x(r1,
cooyn) = 0, then it is also satisfied by U by [7]. Let E be the algebraic closure
of C. We know that if C is infinite, then x(r1,...,rn) =0 for all ri,...,r, €
U ®c E. Since both of U and U ®c E are prime and centrally closed (see [16,
Theorems 2.5 and 3.5]), we may replace R by U or R by U ®c E according to
C finite or infinite and hence we may assume that R is centrally closed over C.
Then by [25], R is a primitive ring having a nonzero socle soc(R) and C' is its
associated division ring. By Jacobson’s theorem [19, p. 75], R is isomorphic to a
dense ring of linear transformations of a vector space V over C.

Fact 2.7. Let X = {x1,22,...} be a countable set of consisting non-commuting
indeterminates x1,x2,.... We denote T = U x¢c C{X}, the free product of the
C-algebra U and the free C-algebra C{X}. Then the element of T are called the
generalized polynomials.

Then any element m € T of the form m = quy1q1y2q2 - - - YnGn, where qo, q1,

s qn €U and y1, ...,y € X is called a monomial.

Let B be a set of C-independent vectors of U. Each f € T can be represented
in the form f = Y . o;m;, where oy € C and m; are B-monomials and this
representation is unique. Any generalized polynomial f =Y. cym; is trivial, i.e.,
zero element in T if and only if a; = 0 for each i. For details we refer the reader
to [7].

We shall use this simple criterion to prove that R satisfies a nontrivial gen-
eralized polynomial identity (GPI).

3. THE CASE: INNER GENERALIZED DERIVATIONS
This section is dedicated, when all generalized derivations are inner.

Lemma 3.1. Let R be a prime ring with char (R) # 2 and a,d’,a”,b,c,c,p' € R
such that

(3.1) (@ X? 4+ a"XcX + aXp'X — 2aXbXc—aX?,y] =0

forall X € f(R) andy € R. Ifa ¢ C, b ¢ C and c ¢ C, then (3.1) is a
non-trivial GPI for R.

Proof. Let a ¢ C,b ¢ C and ¢ ¢ C. By Fact 2.1, U satisfies (3.1). On contrary,
we assume that (3.1) is a trivial GPI for U. Let T' = U x¢ C{ri,...,rn,y},
the free product of U and C{ry,...,r,,y}, the free C-algebra in noncommuting
indeterminates 71, ...,7,,y. Let f(r1,...,7,) = X. Then

(3.2) [@’X? 4+ a"XcX +aXp'X — 2aXbXc—aX?,y] =0€T.
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From above
(3.3) y{d'X? +a"XcX +aXp'X — 2aXbXc—aX?d} =0€T.

This implies that {c,’, 1} is linearly C-dependent, other wise aX¢ = 0 implying
a = 0 or ¢ = 0, a contradiction. Then there exists a1, as,a3 € C such that
aic+ agd + az. 1 = 0. If ap = 0, then a; # 0, because of the C-independency
of {¢,c,1}. So this fact implies that ¢ = 0, a contradiction. Thus ay # 0 and

hence ¢ = a + B¢, where a = —oz2_10z3, B = —oz2_10z1. Then U satisfies

(3.4) y{ad'X? +a"XcX + aXp'X — 2aXbXc — aX?*(a+ Bc)} = 0.

Since ¢ ¢ C, this implies that

(3.5) y{—2aXbXc — BaX?c} =0

that is, y {(2aXb + paX)Xc} = 0. Again, since b ¢ C, U satisfies 2yaXbXc = 0,
implying either a = 0 or b = 0 or ¢ = 0, a contradiction. [ |

Lemma 3.2. Let R be a prime ring with char (R) # 2 and a,d’,b,c,d,p' € R
such that

(3.6) [@’X? 4+ 2bXcX + Xp'X —2XbXc— X2 ,y] =0

for all X € f(R) andy € R. If b ¢ C and ¢ ¢ C, then (3.6) is a non-trivial
generalized polynomial identity for R.

Proof. Let b ¢ C and ¢ ¢ C. By Fact 2.1, U satisfies (3.6). On contrary, we
assume that (3.6) is a trivial GPI for U. Let T = U *¢ C{r1,...,r,y}, the free
product of U and C{ry,...,m,y}. Let f(r1,...,r,) = X. Then

(3.7) [’ X2 +2bXcX + Xp'X —2XbXc— X2,y =0€eT.
From above
(3.8) y{d'X? +2bXcX + Xp'X — 2XbXc — X3¢}

is zero element in 7. This implies that {c,¢’,1} is linearly C-dependent. Then
there exist aq, a9, a3 € C such that ajc+ asd +a3.1 =0. If ap = 0, then c € C,
a contradiction. Thus as # 0 and hence ¢ = a + B¢, where a = —a;lag and
8= —aglal. Then U satisfies

(3.9) y{d'X? 4+ 2bXcX + Xp'X — 2XbXc — X*(a+ Be)} = 0.
Since ¢ ¢ C, this implies that
(3.10) y{ — 2XbXc - BX%c} =0

that is, y{(QXb + BX)XC} = 0. Again, since b ¢ C, U satisfies 2y XbXc = 0,
implying either b = 0 or ¢ = 0, a contradiction. [ |
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Lemma 3.3. Let C be a field, m be a positive integer withm > 2 and R = M,,(C)
be the ring of all mxm matrices over C' with char R # 2. Ifa,d’,a”,b,c,d,p' € R
such that R satisfies

(3.11) [d/X? +d"XcX + aXp'X —2aXbXc—aX?d,y] =0
for all X € f(R) and y € R, then either a € C.I, orbe C.1y,, orce C.I,.

Proof. We consider the following two cases.

Case 1. When C' is infinite field.
On contrary, we assume that a ¢ C.I,,, b ¢ C.I,, and ¢ ¢ C.I,,. We denote by
ep; the usual matrix unit, that is, 1 in (h,l)-entry and zero elsewhere.

By Fact 2.5, there exists an invertible matrix N such that all the entries of
the matrices NaN—!, NbN~! and NeN~! are nonzero. Let ¢(x) = NzN~!, an
inner automorphism on R. Then by hypothesis, for all X € f(R),

[0(a)X? + ¢(a") X p(c) X + pla) X p(p') X
(3.12) —2¢(a)Xp(b) X ¢(c) — d(a)X?¢(c'),y] = 0.

By [24], since f(rqy,...,r,) is not central valued, there exist matrices rq, ...,
rn € My, (C) such that f(ry,...,m,) = ey, with i # j, where v € C —
{0}. Thus we can substitute the value of X as e;; in (3.12) and then we have
[p(a")eijp(c)ei; + Pp(a)eijp(p')eij — 2p(a)eijd(b)eijd(c), ei;] = 0. Left multiplying
by e;; yields

2eijp(a)eijd(b)eijé(cle; = 0,
which is a contradiction, since all the entries of the matrices ¢(a), ¢(b) and ¢(c)
are non-zero.

Case 2. When C' is finite field.
Let E be an infinite field such that C C FE, that is, F is an extension of C.
Let R = M,,(E) = R®c E. Note that the multilinear polynomial f(r;,...,7,)
is central-valued on R if and only if it is central-valued on R. Consider the
generalized polynomial

U(ry,...,Th—1,Y)
= [df(ry,...,m0)2+ad"f(re,. .. rn)ef(riy. .. m)
+af(ryy.o )0 f(rey.cosrn) —2af (ry, ... r)bf (rgy. . mn)e

- af(?"l DI T’I’L)2c/7y]'

(3.13)

Then ¥(ry,...,r—1,y) = 0is a GPI for R.
Notice that ¥(rq,...,7,-1,y) is a polynomial of multi-degree (2,...,2) in
the indeterminates r1,...,7, and degree 1 in the indeterminate y.
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Now linearizing the identity W(ry,...,m,—1,y) = 0 with respect to variable
r1 (i.e., replacing r; with 71 + s1), we get a polynomial identity for R

Uy(ry,...,rn-1,51,y) =0

such that ¥y(ry,...,r—1,71,y) = 2¥(ry,...,7—1,y). Continuing the process
of linearization, we get a multilinear generalized polynomial identity of 2n 4 1
indeterminates

\I]TL(T:L?"'?Tn?Sl?"'7Sn7y) :0

such that
U (1o oy iy Py e e ey T y) = 270 (11, ooy T, Y).

Since U, (r1,...,Tn, 81, .-, Sn,y) is the multilinear polynomial, we can write that
\Dn(rla---7rn7$17-" 7$nay) =0

is a GPI for R and R too. Since char(C) # 2 we have ¥(rq,...,r,,y) = 0 for all
T,...,Tn,y € R and thus the conclusion follows by case-1 as above. [ |

As a particular case of above Lemma 3.3, we have the following corollary.

Corollary 3.4. Let C be a field and m be a fized positive integer with m > 2.
Let R = M,,(C) be the ring of all m x m matrices over C. If for some a,d’,
a’,b,c,c,p’ € R such that

[a'r2 +ad"rer + arp'r — 2arbre — arzc', y] =0
for all r;y € R, then either a € C.I,, orbe C.I,, orce C.I.

Lemma 3.5. Let R be a prime ring, f(r1,...,7,) a non-central multilinear poly-
nomial over C' and a,a’,a” b,c,d,p' € R. If char (R) # 2 and

(3.14) [/ X? +d"XcX + aXp'X —2aXbXc—aX?d,y] =0
for all X € f(R) and y € R, then either a € C orbe C orce C.
Proof. By hypothesis and Fact 2.1,

(3.15) [a'X2 +ad"XcX +aXp' X —2aXbXc— aX?d, y] =0

for all X € f(U) and y € R. By Lemma 3.1, above identity is a non-trivial GPI.
Then by Fact 2.6, R is isomorphic to a dense ring of linear transformations of a
vector space V over C.

Let dimcV = m. By density of R, then R = M,,(C). Given that f(rs,..., )
is not central valued on R and therefore, R must be noncommutative. Hence
m > 2. In this case, by Lemma 3.3, we get our conclusions.
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Let dimcV = co. Since the set f(R) is dense on R (Lemma 2 in [28]), from
above, R satisfies

(3.16) [a'r? + a"rer + arp'r — 2arbre — ar?d,y] = 0.
In this case we want to prove that either a € C or b € C or ¢ € C. We know
the fact that for any element ¢ € R, [q, Soc(RC)] = (0) implies ¢ € C. Hence
on contrary, we assume that a ¢ C, b ¢ C and ¢ ¢ C. Hence, there exist
ho, h1, ha € Soc(R) such that [a, hg] # 0, [b, h1] # 0 and [c, ho] # 0. Now we show
a number of contradiction. Since dimgV = oo, for any idempotent e € Soc(R),
we have eRe = M (C) with k = dimcVe. By Litoff’s theorem [17], there exists
an idempotent e € Soc(R) such that hg, hi, he, hoa, ahg, h1b,bhy, hoc, chs € eRe,
where eRe = M}, (C), k = dimcVe. Since R satisfies
(3.17) e [a/(er6)2 + a”erecere + aerep'ere — 2aereberec — a(ere)’d, eyele =0,
the subring eRe satisfies
(3.18) [ea/er2 + ea”erecer + eaereper — 2eaereberece — eaer’ece, y] =0.
Then by Corollary 3.4, eae € eC or ebe € eC or ece € eC. If eae € eC', then

ahg = eahy = eaehg = hgeae = hgae = hga.
If ebe € eC, then

bh1 = 6bh1 = ebeh1 = hlebe = hlbe = hlb

and if ece € eC, then

chy = echy = ecehy = hgece = hoce = hoc.

In any case, we have contradiction with the choices of hg, h1 and hs.
Thus we conclude that either a € C or b€ C or c€ C. [ |

Lemma 3.6. Let R be a prime ring, f(ry,...,rn) a non-central multilinear poly-
nomial over C' and char (R) # 2, where C is the extended centroid of R. If a,d,
b,c,d,p' € R such that R satisfies

(3.19) [’ X? +2bXcX + Xp'X —2XbXc— X2,y] =0

for all X € f(R) and y € R, then either be C or c e C.
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Proof. By hypothesis
(3.20) [/ X2 + 20X cX + Xp'X — 2XbXe — X2 ,y] =0

for all X € f(R) and y € R. If this is a trivial GPI for R, then by Lemma
3.2, either b € C' or ¢ € C. Now assume that (3.20) is a nontrivial GPI for R.
Then by Fact 2.6, R is isomorphic to a dense ring of linear transformations of a
vector space V over C. If dim¢V = m, then R = M,,(C) and M,,(C) satisfies
(3.20). By [24], since f(r1,...,r,) is not central valued, there exist matrices
T,...,rn € My (C) and v € C — {0} such that f(ry,...,7,) = vei;, with i # j.
Thus we can substitute a particular value of X with e;; in (3.20), and then we
have [2be;jce;j + eijp'ei; — 2ei5besic, e;5] = 0. This implies —4bj;cj; = 0. Then by
same argument as given in Lemma 3.3, either b € C' or ¢ € C.

If dimcV = oo, we have for any idempotent e € Soc(R), eRe = M (C), with
k = dimcVe. Let b ¢ C and ¢ ¢ C. Then there exist hy, ha € Soc(R) such that
[b, h1] # 0 and [c, ho] # 0 for some hy, ha € Soc(R). By Litoft’s theorem [17] there
exists an idempotent e € Soc(R) such that hy, he, h1b,bhy, hoc, chy are all in eRe.
Moreover, if k = dimcVe, then eRe = My(C). Since V is infinite dimensional
over C, the set f(R) is dense on R ( [28, Lemma 2]) and hence by hypothesis, R
satisfies the GPI

[a/w2 + 2bzcx + xp'z — 2xbre — 22, y] = 0.
Now replacing  with exe and y with eye we have
eld’ (exe)? + 2b(exe)c(exe) + (exe)p' (exe) — 2(exe)b(exe)c — (exe)d, (eye)]e = 0.
Thus the subring eRe satisfies the GPI
[(ed’e)a? + 2(ebe)x(ece)x + x(ep'e)x — 2x(ebe)x(ece) — z?(ec’e), y] = 0.

As above of finite dimensional case, we have either ebe € eC or ece € eC. If
ebe € eC, then

bh1 = ebhy = ebehy = hiebe = hibe = h1b,
a contradiction and if ece € eC, then
cho = echo = ecehy = hgece = hoce = hoc,
a contradiction. Therefore, we conclude that either b € C or ¢ € C. [

Proposition 3.7. Let R be a noncommutative prime ring, f(rs,...,r,) be a
multilinear polynomial over C, which is not central valued on R, where C' is the
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extended centroid of R. Suppose char (R) # 2 and I a nonzero two sided ideal of
R. If for some b,c,p,q € U, F(x) = bx + xc, Y (x) = pxr + xq for all x € R are
two inner generalized derivations of R such that

al(Z2+9)(f(r),f(r)] € C

holds for all r =(ry,..., 1) € I, then one of the following holds:

(1) Z(z) =x(b+c) and 9(z) = z(p+q) for allx € R with (b+c)®>+p+q € C;
(2) Z(x)=(b+c)z, 9(x) = (p+q)x for allx € R with (b+c)> +p+q€C;
(3) f(x1,...,2,)?% is central valued and one of the following holds:

(a) Z(z) = x(b+c) and 9 (x) = pr+xq for all z € R, with (b+c)®>—(p—q) €
C;

(b) Z(x) = (b+c)xr and 9 (x) = pr+xq and for allx € R with (b+c)®+p—q
e C;

(4) R satisfies s4 and one of the following holds:

(a) F(z) =x(b+c) and 9 (x) = pxr+xq for allx € R, with (b+¢)?> — (p—q)
eC;

(b) F(z) = (b+c)x and 9 (x) = pr+xq for allz € R with (b+c)?>+p—q € C.
Proof. Since I, R and U satisfy same GPIs (see [7]), by hypothesis we have
(3.21) a[(B* +p)X +2bXc+ X(c* +¢),X] € C

for all X € f(U).

We re-write it as

a(®® +p)X? + 2abXcX +aX (2 +q—b* —p)X

(3.22) —2aXbXc—aX?(?+q)eC
for all X € f(U). By Lemma 3.5, either a € Corbe C or ce C.

If 0 # a € C, then (3.22) reduces to

(b +p) X2 +2bXcX + X(* +q—b* —p)X

(3.23) —2XbXc— X*(2+q) eC
for all X € f(U). In this case by Lemma 3.6, either b € C or c € C.

Thus we have proved that either b € C or ¢ € C. Therefore, we examine
these two situation in the below mentioned cases.
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Case 1. b € C. Equation (3.21) reduces to
(3.24) al(b® +p)X + X (2bc + 2 +¢q), X] € C

for all X € f(U).
By [13, Corollary 2.7], one of the following holds:

(1) f(R)? € C and (b® +p) — (2bc+ 2 +¢q) € C,ie, p—qg— (b+c)? € C.
Therefore, form of the map will be .7 (z) = z(b+c) for all z € R, which gives
our conclusion (1).

(2) b*+p,2bct+c?+q € C. Sinceb € C, we have p € C. Therefore, 7 (z) = z(b+c)
and 9 (z) = x(p+ q) for all z € R with (b+c¢)? +p+q € C.

(3) R satisfies s4 and (b*> +p) — (2bc+c2 +q) € Cie,p—qg—(b+c)> € C. In
this case .7 (z) = x(b + ¢) for all x € R, which gives our conclusion (3).

Case 2. ¢ € C. In this case by (3.21),
(3.25) al((b+c)*+p)X +Xq,X]€C

for all X € f(U). By [13, Corollary 2.7], one of the following holds:

(1) f(R)> € C and (b+¢c)>+p—q € C. Hence form of the map will be
F(x) = (b+ ¢)x for all x € R, which gives our conclusion (2).

(2) (b+c)?+p),q e C. Thus F(z) = (b+c)x, 9(x) = (p+q)v forall z € R
with (b+¢)>+p+q € C.

(3) R satisfies s4 and (b? +p+2bc) — (2 +q) € C,ie., (b+c)2+p—qeC. In
this case .Z (z) = (b+ ¢)z for all z € R, and thus conclusion (4) follows. =

4. PROOF OF THEOREM 1.1.

In all that follows, let R be a prime ring, f(r;,...,r,) a noncentral multilinear
polynomial over C, char (R) # 2, where C is the extended centroid of R and
U is the Utumi ring of quotients of R. By [21, Theorem 3|, .#(z) = bx + d(z),
Y (x) = cx + d(x) for some b,c € U and d, ¢ are two derivations of U. Then
F2(x) = F(F(x)) = F(b)x + 2bd(z) + d*(x).

By hypothesis, we have

a[-Z (b)f (r) +26d(f (1)) + d*(f(r)) + cf (r) + 6(f (), f(r)] € C

for all » =(ry,...,m,) € I". By Fact 2.1 and Fact 2.2, we have

(4.1) al.Z(b)f (r) + 2bd(f () + d*(f (1)) + cf (r) + 6(f (r)). f(r)] € C



411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

14 B. DHARA

for all m =(ry,...,m) € U™

If d and § both are inner, by Proposition 3.7, conclusion follows. Thus we
need to consider the cases when d and ¢ are not simultaneously inner. Thus the
following three cases may occur.

Case 1. d is inner, § is outer.
Assume for some p € U, d(x) = [p,z] for all x € R. By (4.1), U satisfies

(42)  a[FOF () + 2Bl ()] + [, [p, ()] + e (7) + 8(F (1), £ ()] € C.

By Fact 2.4, we can replace 6(r;) by ¢; for i = 1,...,n in (4.2) and then U
satisfies blended component

(4.3) a[g:f(rl,...,ti,...,rn),f(m,...,rn)} eC.

Replacing y; by [¢/,7;] for some ¢’ ¢ C, we have that

a[[q/,f(m,...,rn)],f(rz,...,rn)} eC

for all r1,...,7, € U. Then by [13, Corollary 2.7], ¢ € C, a contradiction.
Case 2. § is inner, d is outer. Assume for some ¢ € U, §(x) = [¢,z] for all
x € R. By (4.1), for all » =(ry,...,1m,) € U™,

(4.4) a[ff(b)f(r) +20d(f(r)) + d*(f(r)) + cf (r) + (g, f(r)]. f(r) | € C.

Since d is outer, by Fact 2.4, we can replace d(r;) by y; fori =1,...,n and
d*(r;) by t; for i = 1,...,n in (4.4) and then U satisfies blended component

(4.5) a[;f(rl,...,ti,...,rn),f(rl,...,rn)} ecC.

This equation is same as (4.3) and so it leads to a contradiction as above.

Case 3. d,0 all are outer. Assume first that d and § are linearly C-indepen-
dent modulo inner derivations of U. Then by applying Fact 2.4, we can replace
0(r;) by t; for i = 1,...,n and d(r;) by z; for i = 1,...,n in (4.1). By this
substitution, we have the blended component

(4.6) a[Zf(rl,...,ti,...,rn),f(m,...,rn) eC

satisfied by U. This equation is same as (4.3). Thus by same argument we arrive
to a contradiction.
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Assume next that d and § are linearly C-dependent modulo inner derivations
of U. Then there exist some a4,/ € C and ¢’ € U such that ad + 316 = ad;.

Since d is outer, 81 # 0 and hence §(z) = Ad(x) + [¢, z], where A = —a; 87 and
q=pr'q.
From (4.1), we obtain

a| F@)F(r) + 26d(f (1)) + ([ (1)) + ef (1) + Ad(f (7))
(4.7) + [0,/ (). f(r)] € C.

Again by applying Fact 2.4, we can replace d(r;) by y; for i = 1,...,n and
d*(r;) by t; for i =1,...,n in (4.7) and then U satisfies blended components

(4.8) a[zi:f(rl,...,ti,...,rn),f(rj,...,rn)} eC.

This equation is same as (4.3) and hence we have contradiction as before.

5. PROOF OF THEOREM 1.2.

In all that follows, we assume that R is a prime ring with char (R) # 2, U
the Utumi ring of quotients of R and C' = Z(U) the extended centroid of R.
By [21, Theorem 3|, .#(z) = bx + d(z), 4 (z) = cx + d(z) for some b,c € U and
d, ¢ are derivations of U.

If char (R) = 2 and R satisfies s4, then we have our conclusion (5).

Thus we assume that either char (R) # 2 or R does not satisfy s4. Then
by [14, Remark 1], there exists a nonzero ideal I of R such that [I,I] C L. Hence
by hypothesis, we have

a[y(b) [s, 4] -+ 2bd([s, 1]) + d2([s, 1]) + c[s, 8] + ([, 1]), [s, t]} eC

for all s,t € I. If char (R) # 2, then by Theorem 1.1, we have our conclusions.
Thus we assume that char (R) = 2. Then R can not satisfy s4. By Fact 2.1
and Fact 2.2, we have

(5.1) a[y(b) (5, 4] + d2([s, 1]) + c[s, t] + 6([s,1]), [s, t]] eC

for all s,t € U.

Moreover, if d(z) = [p,z] and 6(x) = [¢,z] are all inner derivations, then
from above

a| ZO)s. 1] + [P [5.8]) + cls. 1] + [g [s, 1)) [s,4)| € €
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that is
a[(y’(b) +p° +c+q)ls ] — [s,](p° +q), [s, t]] eC
for all s,t € U. This can be written as
a| Z®) +p? + e+ q.[s,]|[s.1] = [s.4] [p? + q. s, 1] € C

for all s,t € U.

By [14, Theorem 2.7], #(b) + p> +c+q € C and p> +q € C, i.e., F(b) +
e,p*+qeC.

Thus the following three cases may occur.

Case 1. d are inner, § is outer.
Let for some p € U, d(z) = [p, ] for all z € R. By (5.1), U satisfies

(5.2) a|F(b)[s,t] + [p?, [s, 1] + c[s, t] + 6([s, t]), [s, t]| € C.

By Fact 2.4, we can replace d([s,t]) by [z,t] + [s,y] in (5.2) and then U
satisfies blended component

(5.3) alle, ] + 15,9, 5.4 € C.
Replacing z by [q, s] and y by [q, t] for some ¢ ¢ C, we have that
alla.[s, 4. 1s.4] e €

for all s,t € U. Then by [14, Theorem 2.7], ¢ € C, a contradiction.

Case 2. § is inner, d is outer.
Let for some g € U, d(x) = [q, ] for all z € R. By (5.1), U satisfies

(5.4) al|Z(b)[s,t] + [d*(s),t] + [s,d*(t)] + c[s, t] + [q, [s, t]], [s,t]] e C.

Since d is outer, by Fact 2.4, we can replace d?(s) by x and d?(t) by y and
then U satisfies blended component

(5.5) allz,t] + [s,y], [s,t]| € C.

This is same as (5.3) and hence a contradiction follows.

Case 3. d,0 all are outer.
Assume first that, d and 0 are linearly C-independent modulo inner derivations
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of U. Then by Fact 2.4, we can replace d?([s,t]) by [z,t] + [s,y] and &([s,t]) by
[u,t] + [s,v] in (5.1) and then U satisfies blended components

(5.6) a|le,t) + [s,), [s.1]] € C.

This is same equation as (5.3) and hence it leads to a contradiction as above.

Assume next that, d and ¢ are linearly C-dependent modulo inner derivations
of U. Then there exist o/, 8" € C, ¢’ € U such that o/d + 8’0 = adj,. Since d is
outer, 8’ # 0 and hence, we can write §(x) = A\d(z) + [q, ], where A = —a/B'~}
and ¢ = '~

From (5.1), we obtain
(5.7) a[ﬁ’:(b) [s,t] + d?([s,t]) + c[s, t] + Md([s, t]) + [q, [, 1]], [s,t]] e C.

By Fact 2.4, we can replace d([s, t]) by [u, t]+[s, v] and d?([s, t]) by [z, t]+]s, ]
in (5.7) and then U satisfies blended components

(5.8) allw, ]+ [s,).s.4] € C.

This is same equation as (5.3) and then by same argument we have a contradic-

tion. Thus the Theorem is proved. O
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