DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in press


Authors:

C. Mendes

Carla Albertina Mendes

DMAT – Departamento de Matem\'atica
Universidade do Minho

email: cmendes@math.uminho.pt

0000-0002-0025-580X

P. Mendes Martins

Paula Mendes Martins

DMAT – Departamento de Matem\'atica
Universidade do Minho

email: pmendes@math.uminho.pt

0000-0002-5136-9516

Title:

m-Ordered semigroups

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications

Received: 2024-07-08 , Revised: 2024-11-29 , Accepted: 2024-11-29 , Available online: 2025-08-13 , https://doi.org/10.7151/dmgaa.1485

Abstract:

In this paper we define and study $m$-ordered semigroups. In particular, idempotents and subsemigroups of $m$-ordered semigroups are studied and is established a characterization of inverse semigroups that, under natural order, are $m$-ordered semigroups.

Keywords:

ordered semigroup, minimum element

References:

  1. T.S. Blyth, Lattices and Ordered Algebraic Structures (Springer, 2005).
    https://doi.org/10.1007/b139095
  2. T.S. Bltyh and G.A. Pinto, Principally ordered regular semigroups, Glasgow Math. J. 32 (1990) 349–364.
    https://doi.org/10.1017/S0017089500009435
  3. T.S. Blyth and G.A. Pinto, Idempotents in Principally ordered regular semigroups, Commun. Algebra 19(5) (1991) 1549–1563.
    https://doi.org/10.1080/00927879108824220
  4. Howie, J.M., Fundamentals of Semigroup Theory (Claredon Press, Oxford, 1995).
    https://doi.org/10.1093/oso/9780198511946.001.0001

Close