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Abstract9

In this paper we define and study m-ordered semigroups. In particular,10

idempotents and subsemigroups of m-ordered semigroups are studied and11

is established a characterization of inverse semigroups that, under natural12

order, are m-ordered semigroups.13
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1. Introduction16

An ordered semigroup is a semigroup together with a compatible order. For17

standard notation in semigroup theory, we refer the reader to [4] and [1]. In18

particular, for a semigroup S, E(S) denotes the set of idempotents of S and19

V (x) denotes the set of inverses of an element x ∈ S. In an ordered semigroup20

S, for x ∈ S, x↑ denotes the set {y ∈ S : x ≤ y}. Recall that the natural order21

on a regular semigroup S, represented by ≤n, is defined by, for all x, y ∈ S,22

x ≤n y ⇔ x = ey = yf for some e, f ∈ E(S).23

Restricted to the set of idempotents E(S), it simplifies to24

∀e, f ∈ E(S), e ≤n f ⇔ e = ef = fe.25

In the case of an inverse semigroup S, we have that, for all x, y ∈ S,26

x ≤n y ⇔ x = ey for some e ∈ E(S)
⇔ x = yf for some f ∈ E(S).

27
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In [2], the study is dedicated to the class of regular ordered semigroups S28

such that, for every x ∈ S, there exists x∗ = max{y ∈ S : xyx ≤ x}. These29

semigroups are called principally ordered semigroups. Motivated by this study,30

we consider the class of regular semigroups S such that, for every x ∈ S, there31

exists min{y ∈ S : xyx ≤ x}.32

Definition. Anm-ordered semigroup is a regular ordered semigroup S such that,33

for every x ∈ S, there exists34

x+ = min{y ∈ S : xyx ≤ x}.35

In what follows, S is, unless otherwise is specified, an m-ordered semigroup.36

2. Basic properties37

We begin our study of m-ordered semigroups by establishing some basic proper-38

ties for the operation x 7→ x+. Considering the definition of this operation, it is39

immediate the following result.40

Theorem 1. Let S be an m-ordered semigroup. Then, for every x ∈ S,41

xx+x ≤ x.42

In [2], they have proved that in a principally ordered semigroup T , for x ∈ T ,43

x = xx∗x and therefore x◦ = x∗xx∗ is the largest inverse of x. However, in an44

m-ordered semigroup S, it is not necessarily true that, for every x ∈ S, x = xx+x,45

as the following example shows.46

Example 2. Let S = ({e, a, b, c, u}, ·) be the Klein 4-group ({e, a, b, c}, ·) with an47

additional identity u adjoined. Consider the order defined in S by the following48

Hasse diagram49

50

b

e

b

u

b

a
b

b
b

c
51

Simple calculations prove that x+ = x for x ∈ {e, a, b, c}, and u+ = e. Therefore52

S is an m-ordered semigroup. Moreover, uu+u = e 6= u.53

About the operation x 7→ x+ defined in an m-ordered semigroup S, it is54

interesting to observe that, for every x ∈ S, x+ is a minimal element of S.55

Theorem 3. Let S be an m-ordered semigroup. If y ≤ x+, then y = x+ for56

every x, y ∈ S.57

Proof. If y ≤ x+, we have xyx ≤ xx+x ≤ x. Thus x+ ≤ y and so y = x+.58
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Let x ∈ S. Since xx+xx+x ≤ xx+x ≤ x, x+ ≤ x+xx+. For x ∈ S, we denote59

the element x+xx+ by x⋄,60

x⋄ = x+xx+.61

Hence, the following result holds.62

Theorem 4. Let S be an m-ordered semigroup. Then x+ ≤ x⋄ for every x ∈ S.63

Considering Theorems 1 and 4, we can now verify that x is an associate of x⋄.64

Theorem 5. Let S be an m-ordered semigroup. Then x⋄ = x⋄xx⋄ for every65

x ∈ S.66

Proof. Applying Theorem 4, we have x⋄ = x+xx+ ≤ x⋄xx⋄ and, by Theorem 1,67

x⋄xx⋄ = x+xx+xx+xx+ ≤ x+xx+ = x⋄.68

Thus, x⋄ = x⋄xx⋄.69

In the subsequent theorems, we present a set of properties that follows from70

the preceding results.71

Theorem 6. Let S be an m-ordered semigroup. Then, for every x ∈ S.72

(i) x+x = x⋄x is idempotent.73

(ii) xx+ = xx⋄ is idempotent.74

(iii) x+ = x+x++x+ = (xx+x)+.75

(iv) x⋄+ = x++.76

(v) x++ ≤ x.77

(vi) x+++ = x+.78

(vii) x+⋄ = x++.79

(viii) x++ ≤ x⋄⋄.80

(ix) x⋄⋄ ≤ x.81

(x) x⋄ = x⋄⋄⋄.82

(xi) x+ ≤ x′ for all x′ ∈ V (x).83

(xii) x++ is the least inverse of x+.84

Proof. (i) By Theorems 4 and 1 we have x+x ≤ x⋄x = x+xx+x ≤ x+x. Hence85

x+x = x⋄x and x+x = x+xx+x. Then x+x is an idempotent element.86

(ii) The proof is similar to that of (i).87

(iii) Considering Theorem 1, we have x+x++x+ ≤ x+. So, by Theorem 3, it88

follows that x+x++x+ = x+.89
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By (ii), we have xx+xx+xx+x = xx+x, whence (xx+x)+ ≤ x+. Consequently,90

by Theorem 3, we have (xx+x)+ = x+.91

(iv) By (i) and (iii), we have x+xx+x++x+xx+ = x+xx+. So,92

x⋄+ = (x+xx+)+ ≤ x++
93

and, considering Theorem 3, it follows that x⋄+ = x++.94

(v) By Theorem 5, we have x⋄xx⋄ = x⋄, whence x⋄+ ≤ x. Thus, by (iv), we95

obtain x++ ≤ x.96

(vi) By (v), we have x+++ ≤ x+. Hence, by Theorem 3, x+++ = x+.97

(vii) This follows immediately from (vi) and (iii), since98

x+⋄ = x++x+x++ = x++x+++x++ = x++.99

(viii) Using the previous properties we have100

x++ = x++x+++x++ [by (iii)]
= x++x+x++ [by (vi)]
= x⋄+x+x⋄+ [by (iv)]
≤ x⋄+x⋄x⋄+ [by Theorem 4]
= x⋄⋄. [by definition of x⋄⋄].

101

(ix) We have102

x⋄⋄ = x⋄+x⋄x⋄+ [by definition of x⋄⋄]
= x++x⋄x++ [by (iv)]
≤ xx⋄x [by (v)]
= xx+xx+x [by definition of x⋄]
≤ x [by definition of x+].

103

(x) This follows from the observation that104

x⋄ = x+xx+ = x+x++x+xx+x++x+ [by (iii)]
= x+x++x⋄x++x+ [by definition of x⋄]
= x+x⋄+x⋄x⋄+x+ [by (iv)]
= x+x⋄⋄x+ [by definition of x⋄⋄]
= x+++x⋄⋄x+++ [by (vi)]
= x⋄⋄+x⋄⋄x⋄⋄+ [by (iv)]
= x⋄⋄⋄ [by definition of x⋄⋄⋄].

105

(xi) This is immediate since xx′x = x.106

(xii) By (iii) and (vi) we have107

x+x++x+ = x+ and x++x+x++ = x++x+++x++ = x++.108

So, x++ ∈ V (x+) and, by (xi), x++ is the least inverse of x+.109
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The reverse of the inequality established at Theorem 4 and the reverse in-110

equalities of Theorem 6(v), (viii), (ix) do not necessarily hold in an m-ordered111

semigroup. In Example 2, we have u⋄⋄ = e 6= u, which illustrates the last case.112

For the others, consider the following example.113

Example 7. Let S = ({e, a, u}, ·) be the group ({e, a}, ·) with an additional114

identity u adjoined. Consider the order defined in S by the following Hasse115

diagram116

b

u

b

e

b

a
117

Easily we verify that e+ = u, a+ = a and u+ = u and so S is an m-ordered118

semigroup. Moreover, e⋄ = e 6= e+, e++ = u 6= e and e⋄⋄ = e 6= e++.119

Let S be an m-ordered semigroup. By Theorem 3 we know that, for every120

x ∈ S, x++ is a minimal element of S and by Theorem 6(v) we also know that, for121

every x ∈ S, x is greater than or equal to the minimal element x++. Furthermore,122

x++ is the only minimal element less than or equal to x. In fact, by the one hand,123

we know that if m is a minimal element of S, then m ∈ S+ = {s+ : s ∈ S} (since124

m++ ≤ m and m is minimal, we have m = m++). By the other hand, for every125

x, y ∈ S, if y+ ≤ x then x⋄y+x⋄ ≤ x⋄xx⋄ = x⋄ and so (x⋄)+ ≤ y+. Thus, by126

Theorem 3 and Theorem 6(iv), we have y+ = x⋄+ = x++.127

Based on the previous observations, we derive the following result.128

Theorem 8. Let S be an m-ordered semigroup. Then for every x, y ∈ S,129

(i) If z+ ≤ x and z+ ≤ y, for some z ∈ S, then x+ = y+.130

(ii) If x ≤ y, then x+ = y+.131

(iii) If x ≤ y, then x⋄ ≤ y⋄.132

Proof. (i) If x, y are elements of S such that z+ ≤ x and z+ ≤ y, for some z ∈ S,133

then134

x++ = z+ = y++,135

considering the previous observation and that z+ is a minimal element of S. From136

Theorem 6(vi) we get x+ = y+.137

(ii) Follows from (i) and Theorem 6(v).138

(iii) It follows from (ii).139

Theorem 9. Let S be an m-ordered semigroup. Then140

S =
⊎

x∈S+

(x)↑.141
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Proof. Considering Theorem 8(ii) and Theorem 6(vi), the union
⋃

x∈S+(x)↑ is142

a disjoint union. By Theorem 6(v), it is immediate that S ⊆
⊎

x∈S+(x)↑. Since143

the converse inclusion is obvious, the equality follows.144

3. Idempotents in m-ordered semigroups145

By Theorem 6(i),(ii) we know that the set of idempotents of an m-ordered semi-146

group S is not empty. Our purpose now is to study this set of elements.147

Theorem 10. Let S be an m-ordered semigroup. Then for all e, f in E(S),148

(i) e+ ≤ e.149

(ii) e++ = e+.150

(iii) e+ ∈ E(S).151

(iv) e+ = f+.152

(v) (ef)+ ∈ E(S).153

(vi) e⋄ ≤ e.154

(vii) e⋄⋄ = e⋄.155

(viii) (ef)⋄ ∈ E(S).156

(ix) e⋄ ∈ E(S).157

Proof. (i) Since e ∈ E(S), we have eee = e. So e+ ≤ e.158

(ii) This is an immediate consequence of (i) and Theorem 8.159

(iii) Considering (i), we have ee+e+e ≤ eeee = e and so e+ ≤ e+e+. Thus160

e+e+ ≤ e+e+e+. Moreover, by (ii) and Theorem 6(iii) we have161

e+e+e+ = e+e++e+ = e+.162

So e+e+ ≤ e+ and equality e+e+ = e+ follows.163

(iv) Since e, f ∈ E(S), e+, f+ ∈ E(S). Moreover,164

f+(e+f+)⋄e+e+f+(e+f+)⋄e+ = f+(e+f+)⋄e+f+(e+f+)⋄e+

= f+(e+f+)⋄e+.
165

Thus (f+(e+f+)⋄e+)+ ≤ e+ and therefore (f+(e+f+)⋄e+)+ = e+. Similarly, we166

have (f+(e+f+)⋄e+)+ = f+. So e+ = f+.167

(v) By (i) we have e+ ≤ e and f+ ≤ f . So e+f+ ≤ ef and considering (iv) it168

follows that e+e+ ≤ ef . Now, taking into account (iii), we have e+ ≤ ef and, by169

Theorem 8 and by (ii), we obtain e+ = (ef)+. So, (ef)+ is an idempotent.170

(vi) By (i), we have e⋄ = e+ee+ ≤ eee = e.171
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(vii) We have172

e⋄⋄ = (e⋄)+e⋄(e⋄)+ [by definition of e⋄⋄]
= e++e⋄e++ [by Theorem 6(iv)]
= e+e⋄e+ [by (ii)]
= e+e+ee+e+ [by definition of e⋄]
= e+ee+ [by (iii)]
= e⋄ [by definition of e⋄]

173

(viii) By definition of (ef)⋄, (v) and Theorem 6(i), we have174

(ef)⋄(ef)⋄ = (ef)+ef(ef)+(ef)+ef(ef)+

= (ef )+ef(ef)+ef(ef)+

= (ef)+ef(ef)+

= (ef)⋄.

175

So, (ef)⋄ ∈ E(S).176

(ix) This follows from (viii).177

Now, we observe that in an m-ordered semigroup S, it is not always the178

case that the equality e⋄ = f⋄ holds for idempotents e and f . For instance, in179

Example 7, u, e ∈ E(S) and u⋄ 6= e⋄.180

We also observe that, in the case of principally ordered semigroups, the cor-181

responding conditions to Theorem 10 (ii), (iii) and (ix),182

e∗ ∈ E(S), e∗ = e∗∗, e◦ ∈ E(S) (e ∈ E(S)),183

are not necessarily satisfied but are equivalent, as shown in [3, Theorem 2.2].184

Based on the properties discussed earlier, we have the following result.185

Theorem 11. Let S be an m-ordered semigroup. Then E(S) has a minimum186

element ω, and ω = e+, for every e ∈ E(S).187

Proof. Since E(S) 6= ∅, let e ∈ E(S). From Theorem 10(iii), we know that188

e+ ∈ E(S) and, as a consequence of Theorem 10(iv), (i), it follows that, for all189

f ∈ E(S), e+ ≤ f . So, E(S) has a minimum element ω, and ω = e+, for every190

e ∈ E(S).191

Considering the existence of a minimum idempotent for every m-ordered192

semigroup, we have the following results.193

Theorem 12. Let S be an m-ordered semigroup and ω be the minimum element194

of E(S). Then, for all x ∈ S, x⋄ω = x⋄ = ωx⋄.195
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Proof. Considering Theorem 6(ii) and Theorem 5, we have that, for every x ∈ S,196

x⋄ω ≤ x⋄xx⋄ = x⋄ and xx⋄ωx ≤ xx⋄xx⋄x = xx⋄x = xx+x ≤ x, so x+ ≤ x⋄ω.197

Then198

x⋄ = x+xx+ ≤ x⋄ωxx⋄ω ≤ x⋄xx⋄xx⋄ω = x⋄ω.199

Hence x⋄ = x⋄ω, and likewise ωx⋄ = x⋄.200

We establish the following theorem, whose results are relevant to the next201

section.202

Theorem 13. Let S be an m-ordered semigroup and ω be the minimum element203

of E(S). Then for all x, y ∈ S,204

(i) (y(xy)⋄)+ ≤ x.205

(ii) ((xy)⋄x)+ ≤ y.206

(iii) x+ = (y(xy)⋄)++ ≤ y(xy)⋄.207

(iv) y+ = ((xy)⋄x)++ ≤ (xy)⋄x.208

(v) (xy)+ ≤ y+x+.209

(vi) (xy)+ = (y+x+)++.210

(vii) (xx)+ = x+ if and only if x+ is an idempotent.211

(viii) xx⋄ = xx+ ≤ xy(xy)⋄ = xy(xy)+.212

(ix) y⋄y = y+y ≤ (xy)⋄xy = (xy)+xy.213

(x) x⋄⋄ = ωxω.214

(xi) (xx⋄)⋄ = x⋄⋄x⋄.215

(xii) (x⋄x)⋄ = x⋄x⋄⋄.216

Proof. (i) We have y(xy)⋄xy(xy)⋄ = y(xy)⋄ and so (y(xy)⋄)+ ≤ x.217

(ii) The proof is similar to that of (i).218

(iii) By (i) we have (y(xy)⋄)+ ≤ x and by Theorem 8(ii) and Theorem 6(v) it219

follows that x+ = (y(xy)⋄)++ ≤ y(xy)⋄.220

(iv) The proof is similar to that of (iii).221

(v) From (iv) we have222

xyy+x+xy ≤ xy(xy)⋄xx+xy ≤ xy(xy)⋄xy ≤ xy223

and so (xy)+ ≤ y+x+.224

(vi) By (v) and Theorem 8, we have (xy)++ = (y+x+)+. Then by Theorem 6(vi),225

it follows that (xy)+ = (y+x+)++ .226

(vii) If (xx)+ = x+ then by (vi) and Theorem 6(vi) it follows that227

(x++x++)+ = x+.228
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Thus (x++x++)++ = x++ and so x++ ≤ x++x++ by Theorem 6(v). Therefore229

x+ = x+x++x+ ≤ x+x++x++x+230

and by Theorem (8) it follows that x++ = (x+x++x++x+)+; so,231

x+ = (x+x++x++x+)++.232

Hence, since x+x++ and x++x+ are idempotents, (x+x++x++x+)++ is also idem-233

potent by Theorem 10(v); thus x+ is idempotent. Conversely, if x+ is idempotent,234

by (v) we have235

x(xx)+x ≤ xx+x+x = xx+x ≤ x236

whence x+ ≤ (xx)+. Thus, by Theorem 3 it follows that x+ = (xx)+.237

(viii) This follows immediately from Theorem 6(ii) and by (iii).238

(ix) Using Theorem 6(i) and considering (iv), the proof is similar to that of (viii).239

(x) On the one hand, ωxω ≤ x⋄⋄x⋄xx⋄x⋄⋄ = x⋄⋄x⋄x⋄⋄ = x⋄⋄. On the other hand,240

ωxω = (xx+)+x(x+x)+ [by Theorem 11]
≥ (xx+)+xx+x(x+x)+ [by Theorem 1]
= (xx⋄)⋄xx⋄x(x⋄x)⋄ [by Theorem 6(i),(ii)]
≥ (xx⋄)⋄xx⋄x⋄⋄ [by (viii)]
≥ x⋄⋄x⋄x⋄⋄ [by (ix)]
= x⋄⋄ [by Theorem 5].

241

Thus x⋄⋄ = ωxω.242

(xi) Considering Theorem 6(ii), Theorems 11 and 12 and by (x), we have243

(xx⋄)⋄ = (xx⋄)+xx⋄(xx⋄)+ = ωxx⋄ω = ωxωx⋄ = x⋄⋄x⋄.244

(xii) The proof is similar to (xi).245

4. Subsemigroups of m-ordered semigroups246

In this section, we focus on the subsemigroups of m-ordered semigroups. Specif-247

ically, we aim to determine whether for an m-ordered semigroup S, the sets248

S+ = {x+|x ∈ S} and S⋄ = {x⋄|x ∈ S} are subsemigroups of S. We also249

explore the relationship between the class of m-ordered semigroups and the well-250

known class of inverse semigroups ordered by natural order. In particular, we251

provide a characterization of inverse semigroups that, under their natural order,252

are also m-ordered semigroups.253

We already know that the set of idempotents of an m-ordered semigroup254

S is not empty. Moreover, given e ∈ E(S), we have that, for all f ∈ E(S),255

f ∈ (e+)↑ and (f+)↑ = (e+)↑ and we can state that, for every e ∈ E(S), (e+)↑ is256

a subsemigroup of S.257
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Theorem 14. Let S be an m-ordered semigroup. For every e ∈ E(S), (e+)↑ is258

a subsemigroup of S.259

Proof. If a, b ∈ (e+)↑, then e+ ≤ a, b. So, e+ = e+e+ ≤ ab and therefore260

ab ∈ (e+)↑.261

It was observed that, for every e ∈ E(S), E(S) ⊆ (e+)↑, but, as can be seen in262

the next example, the semigroup (e+)↑ contains other elements than idempotents.263

Example 15. Consider the ordered semigroup S described by the following264

Cayley table and Hasse diagram265

· a b c d e

a a a a a a

b a b a d e

c c c c c c

d a d a e b

e a e a b d

266

b

a

b
b

b
c

b
d

b
e

267

It is readily seen that, for every x ∈ S, there exists x+ = min{y ∈ S : xyx ≤ x}.268

Moreover, we have a ∈ E(S), a+ = a and (a+)↑ = S and it is evident that not269

all elements of (a+)↑ are idempotents.270

Theorem 16. Let S be an m-ordered semigroup. If U is a subsemigroup of S271

such that U ⊆ (x+)↑, for some x ∈ S, then U ⊆ (e+)↑ for every e ∈ E(S).272

Proof. If U is a subsemigroup of S such that U ⊆ (x+)↑ then there exists some273

a ∈ U such that x+ ≤ a and x+ ≤ aa. Then, by Theorem 8, we have x++ = a+274

and x++ = (aa)+. So a+ = (aa)+ and, by Theorem 13(vii), it follows that a+ is275

an idempotent of S. Hence, by Theorem 10(iii) and Theorem 6(vi), the element276

x+ = a++ is also an idempotent of S. Thus, considering Theorem 10(iv),(ii) and277

Theorem 6(vi), for every e ∈ E(S), we have e+ = x+.278

Despite the previous result, an m-ordered semigroup S can have other sub-279

semigroups that are not necessarily contained in subemigroups (e+)↑, with280

e ∈ E(S).281

Example 17. Consider the m-ordered semigroup S presented in Example 2.282

We have e ∈ E(S), (e+)↑ = {e, u}, S⋄ = {e, a, b, c} is a subsemigroup of S and283

S⋄ " (e+)↑.284

From Example 7, we know that the subset S+ of an m-ordered semigroup S285

is not necessarily a subsemigroup of S: clearly S+ = {a, u} is not a subsemigroup286

of S. So, our aim now is to establish under which conditions the subset S+ of an287

m-ordered semigroup S is a subsemigroup of S.288
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Theorem 18. Let S be an m-ordered semigroup. Then289

(i) S+ is a subsemigroup of S if and only if x+y+ = (yx)+, for all x, y ∈ S.290

(ii) If S+ is a subsemigroup of S, then S+ is a regular semigroup.291

Proof. (i) Let x, y ∈ S. If S+ is a subsemigroup of S, we have x+y+ = s+ for292

some s ∈ S. Then, by Theorem 13(v), (yx)+ ≤ s+ and from Theorem 3 it follows293

that s+ = (yx)+. The converse implication is obvious.294

(ii) This follows immediately from Theorem 6(iii).295

Although S+ is not necessarily a subsemigroup of an m-ordered semigroup296

S, we can prove that S⋄ is always a subsemigroup of S.297

Theorem 19. Let S be an m-ordered semigroup and ω be the minimum element298

of E(S). Then S⋄ = ωSω and is an inverse submonoid of S with identity ω.299

Moreover, S⋄ is dually naturally ordered.300

Proof. Considering that, for all x ∈ S⋄, x = x⋄⋄ and, by Theorem 13(x), we have301

x⋄⋄ = ωxω, it follows that S⋄ = ωSω. Clearly, S⋄ is a subsemigroup of S. The302

minimum element of E(S) is an element of S⋄, since ω⋄ = ω+ωω+ = ωωω = ω,303

and obviously is the identity of S⋄. So, it remains to prove that S⋄ is an inverse304

semigroup. To do that, it is sufficient to show that S⋄ is a regular semigroup305

and that its idempotents commute. By Theorem 5, for all x ∈ S⋄, xx⋄x =306

x⋄⋄x⋄x⋄⋄ = x⋄⋄ = x; so S⋄ is a regular semigroup. Now, considering that S⋄ is307

a subsemigroup of S and by Theorems 13(x) and 10(viii), for all e, f ∈ E(S⋄),308

we have ef = (ef)⋄⋄ = ωefω ≤ fefe = (fe)⋄⋄(fe)⋄⋄ = (fe)⋄⋄ = fe. Similarly,309

fe ≤ ef . Hence the idempotents of S⋄ commute. Thus S⋄ is an inverse semigroup.310

If now e, f ∈ E(S⋄) with e ≤n f then e = ef = fe gives e = efe ≥ ωfω = f .311

Thus S⋄ is dually naturally ordered.312

Corollary 20. Let S be an m-ordered semigroup. Then E(S⋄) is a subsemigroup313

of S⋄.314

We now characterize when a naturally ordered inverse semigroup ism-ordered.315

Theorem 21. An inverse semigroup S, under its natural order ≤n, is m-ordered316

if and only if it has a smallest idempotent. In this case, S⋄ = S+ and is a subgroup317

of S.318

Proof. Suppose that S is an inverse semigroup with a smallest idempotent ω319

under ≤n. If x, y ∈ S and xyx ≤n x, then there exists e ∈ E(S) such that320

xyx = ex. Consequently, x−1xyx = x−1ex ∈ E(S). Then ω ≤n x−1xyx ≤n yx321

whence ωx−1 ≤n yxx−1 ≤n y. Since also xωx−1x = xx−1xω = xω ≤n x it322

follows that x+ exists and is ωx−1. Likewise, x+ = x−1ω and so x+ = ωx−1ω.323

The reverse implication is clear.324



12 C. Mendes and P. Mendes Martins

Finally, if S is an inverse and an m-ordered semigroup, we have x⋄ =325

x+xx+ = ωx−1xx−1ω = ωx−1ω = x+, for all x ∈ S. Then S⋄ = S+ and326

is a subgroup since is an inverse submonoid of S and, for every e ∈ E(S⋄),327

e = e⋄⋄ = e⋄ = e+ = ω.328

Example 22. Let S = Z × N0. The algebra S = (S, ∗), where ∗ is the binary329

operation defined by330

(a1, b1) ∗ (a2, b2) = (a1 + a2,min(b1, b2)), for all (a1, b1), (a2, b2) ∈ S,331

is an inverse semigroup. For all (a, b) ∈ S, (−a, b) is the unique inverse of (a, b).332

Moreover, E(S) = {0} × N0 and, under the natural order defined on S, (0, 0)333

is the smallest idempotent. Hence, by the previous result, S is an m-ordered334

semigroup.335

Consider now the subset336

T = {x ∈ S |x⋄ ∈ V (x)}337

of an m-ordered semigroup S.338

Theorem 23. Let S be an m-ordered semigroup. Then T is an ideal of S.339

Proof. If x ∈ T , then, by Theorem 12, for every y ∈ S,340

xy(xy)⋄xy = xy(xy)+xy ≤ xy341

and342

xy(xy)⋄xy = xx⋄xy(xy)⋄xy ≥ xx⋄wxy = xx⋄xy = xy.343

Consequently, by Theorem 5, xy ∈ T and so T is a left ideal of S. Similarly, T is344

a right ideal. Thus T is a subsemigroup of S which is clearly regular.345

Theorem 24. Let S be an m-ordered semigroup. Then for all x ∈ T ,346

x⋄ = minV (x).347

Proof. Let x ∈ T and y ∈ V (x). Then xyx = x gives x+ ≤ y whence348

x⋄ = x+xx+ ≤ yxy = y.349

Hence x⋄ is the least inverse of x.350

Theorem 25. Let S be an m-ordered semigroup and ω be the minimum element351

of E(S). Then S⋄ = ωTω and is an inverse transversal of T .352
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Proof. Clearly, S⋄ = ωTω and, for every x ∈ T , we have x⋄ ∈ S⋄ ∩V (x). If now353

y, z ∈ S⋄ ∩ V (x), then y = yxy = yxzxy ≥ ωzω = z, and similarly z ≥ y. Hence354

y = z and consequently S⋄ ∩ V (x) = {x⋄}.355
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