Discussiones Mathematicae General Algebra and Applications 45 (2025) 407–419 https://doi.org/10.7151/dmgaa.1485

m-ORDERED SEMIGROUPS

Carla Mendes¹ and Paula Mendes Martins

DMAT – Departamento de Matemática Universidade do Minho

e-mail: cmendes@math.uminho.pt pmendes@math.uminho.pt

Abstract

In this paper we define and study m-ordered semigroups. In particular, idempotents and subsemigroups of m-ordered semigroups are studied and is established a characterization of inverse semigroups that, under natural order, are m-ordered semigroups.

Keywords: ordered semigroup, minimum element.

2020 Mathematics Subject Classification: O6F05.

1. Introduction

An ordered semigroup is a semigroup together with a compatible order. For standard notation in semigroup theory, we refer the reader to [4] and [1]. In particular, for a semigroup S, E(S) denotes the set of idempotents of S and V(x) denotes the set of inverses of an element $x \in S$. In an ordered semigroup S, for $x \in S$, x^{\uparrow} denotes the set $\{y \in S : x \leq y\}$. Recall that the natural order on a regular semigroup S, represented by \leq_n , is defined by, for all $x, y \in S$,

$$x \leq_n y \Leftrightarrow x = ey = yf$$
 for some $e, f \in E(S)$.

Restricted to the set of idempotents E(S), it simplifies to

$$\forall e, f \in E(S), \quad e \leq_n f \Leftrightarrow e = ef = fe.$$

In the case of an inverse semigroup S, we have that, for all $x, y \in S$,

$$x \le_n y \Leftrightarrow x = ey$$
 for some $e \in E(S)$
 $\Leftrightarrow x = yf$ for some $f \in E(S)$.

¹Corresponding author.

In [2], the study is dedicated to the class of regular ordered semigroups S such that, for every $x \in S$, there exists $x^* = \max\{y \in S : xyx \leq x\}$. These semigroups are called principally ordered semigroups. Motivated by this study, we consider the class of regular semigroups S such that, for every $x \in S$, there exists $\min\{y \in S : xyx \leq x\}$.

Definition. An m-ordered semigroup is a regular ordered semigroup S such that, for every $x \in S$, there exists

$$x^+ = \min\{y \in S : xyx \le x\}.$$

In what follows, S is, unless otherwise is specified, an m-ordered semigroup.

2. Basic properties

We begin our study of m-ordered semigroups by establishing some basic properties for the operation $x \mapsto x^+$. Considering the definition of this operation, it is immediate the following result.

Theorem 1. Let S be an m-ordered semigroup. Then, for every $x \in S$,

$$xx^+x < x$$
.

In [2], they have proved that in a principally ordered semigroup T, for $x \in T$, $x = xx^*x$ and therefore $x^\circ = x^*xx^*$ is the largest inverse of x. However, in an m-ordered semigroup S, it is not necessarily true that, for every $x \in S$, $x = xx^+x$, as the following example shows.

Example 2. Let $S = (\{e, a, b, c, u\}, \cdot)$ be the Klein 4-group $(\{e, a, b, c\}, \cdot)$ with an additional identity u adjoined. Consider the order defined in S by the following Hasse diagram

Simple calculations prove that $x^+ = x$ for $x \in \{e, a, b, c\}$, and $u^+ = e$. Therefore S is an m-ordered semigroup. Moreover, $uu^+u = e \neq u$.

About the operation $x \mapsto x^+$ defined in an *m*-ordered semigroup S, it is interesting to observe that, for every $x \in S$, x^+ is a minimal element of S.

Theorem 3. Let S be an m-ordered semigroup. If $y \le x^+$, then $y = x^+$ for every $x, y \in S$.

Proof. If $y \le x^+$, we have $xyx \le xx^+x \le x$. Thus $x^+ \le y$ and so $y = x^+$.

Let $x \in S$. Since $xx^+xx^+x \le xx^+x \le x$, $x^+ \le x^+xx^+$. For $x \in S$, we denote the element x^+xx^+ by x^{\diamond} ,

$$x^{\diamond} = x^+ x x^+$$
.

Hence, the following result holds.

Theorem 4. Let S be an m-ordered semigroup. Then $x^+ \leq x^{\diamond}$ for every $x \in S$.

Considering Theorems 1 and 4, we can now verify that x is an associate of x^{\diamond} .

Theorem 5. Let S be an m-ordered semigroup. Then $x^{\diamond} = x^{\diamond}xx^{\diamond}$ for every $x \in S$.

Proof. Applying Theorem 4, we have $x^{\diamond} = x^+ x x^+ \leq x^{\diamond} x x^{\diamond}$ and, by Theorem 1,

$$x^{\diamond}xx^{\diamond} = x^{+}xx^{+}xx^{+}xx^{+} \leq x^{+}xx^{+} = x^{\diamond}.$$

Thus, $x^{\diamond} = x^{\diamond}xx^{\diamond}$.

In the subsequent theorems, we present a set of properties that follows from the preceding results.

Theorem 6. Let S be an m-ordered semigroup. Then, for every $x \in S$.

- (i) $x^+x = x^{\diamond}x$ is idempotent.
- (ii) $xx^+ = xx^{\diamond}$ is idempotent.
- (iii) $x^+ = x^+x^{++}x^+ = (xx^+x)^+$.
- (iv) $x^{\diamond +} = x^{++}$.
- (v) $x^{++} < x$.
- (vi) $x^{+++} = x^+$.
- (vii) $x^{+\diamond} = x^{++}$.
- (viii) $x^{++} \le x^{\diamond\diamond}$.
 - (ix) $x^{\diamond\diamond} \leq x$.
 - (x) $x^{\diamond} = x^{\diamond\diamond\diamond}$.
 - (xi) $x^+ \le x'$ for all $x' \in V(x)$.
- (xii) x^{++} is the least inverse of x^{+} .

Proof. (i) By Theorems 4 and 1 we have $x^+x \le x^{\diamond}x = x^+xx^+x \le x^+x$. Hence $x^+x = x^{\diamond}x$ and $x^+x = x^+xx^+x$. Then x^+x is an idempotent element.

- (ii) The proof is similar to that of (i).
- (iii) Considering Theorem 1, we have $x^+x^{++}x^+ \le x^+$. So, by Theorem 3, it follows that $x^+x^{++}x^+ = x^+$.

By (ii), we have $xx^+xx^+x^+x = xx^+x$, whence $(xx^+x)^+ \le x^+$. Consequently, by Theorem 3, we have $(xx^+x)^+ = x^+$.

(iv) By (i) and (iii), we have $x^{+}xx^{+}x^{++}x^{+}xx^{+} = x^{+}xx^{+}$. So,

$$x^{\diamond +} = (x^+ x x^+)^+ \le x^{++}$$

and, considering Theorem 3, it follows that $x^{\diamond +} = x^{++}$.

- (v) By Theorem 5, we have $x^{\diamond}xx^{\diamond}=x^{\diamond}$, whence $x^{\diamond+}\leq x$. Thus, by (iv), we obtain $x^{++}\leq x$.
- (vi) By (v), we have $x^{+++} \le x^+$. Hence, by Theorem 3, $x^{+++} = x^+$.
- (vii) This follows immediately from (vi) and (iii), since

$$x^{+\diamond} = x^{++}x^{+}x^{++} = x^{++}x^{+++}x^{++} = x^{++}$$

(viii) Using the previous properties we have

$$\begin{array}{lll} x^{++} &= x^{++}x^{+++}x^{++} & [\text{by (iii)}] \\ &= x^{++}x^{+}x^{++} & [\text{by (vi)}] \\ &= x^{\diamond +}x^{+}x^{\diamond +} & [\text{by (iv)}] \\ &\leq x^{\diamond +}x^{\diamond}x^{\diamond +} & [\text{by Theorem 4}] \\ &= x^{\diamond \diamond}. & [\text{by definition of } x^{\diamond \diamond}]. \end{array}$$

(ix) We have

$$x^{\diamond\diamond} = x^{\diamond+}x^{\diamond}x^{\diamond+}$$
 [by definition of $x^{\diamond\diamond}$]
 $= x^{++}x^{\diamond}x^{++}$ [by (iv)]
 $\leq xx^{\diamond}x$ [by (v)]
 $= xx^{+}xx^{+}x$ [by definition of x^{\diamond}]
 $\leq x$ [by definition of x^{+}].

(x) This follows from the observation that

$$x^{\diamond} = x^{+}xx^{+} = x^{+}x^{+}x^{+}x^{+}x^{+}x^{+} + x^{+}$$
 [by (iii)]
$$= x^{+}x^{++}x^{\diamond}x^{++}x^{+}$$
 [by definition of x^{\diamond}]
$$= x^{+}x^{\diamond}x^{+} + x^{\diamond}x^{+} + x^{\diamond$$

- (xi) This is immediate since xx'x = x.
- (xii) By (iii) and (vi) we have

$$x^+x^{++}x^+ = x^+$$
 and $x^{++}x^+x^{++} = x^{++}x^{+++}x^{++} = x^{++}$.

So, $x^{++} \in V(x^+)$ and, by (xi), x^{++} is the least inverse of x^+ .

The reverse of the inequality established at Theorem 4 and the reverse inequalities of Theorem 6(v), (viii), (ix) do not necessarily hold in an m-ordered semigroup. In Example 2, we have $u^{\diamond \diamond} = e \neq u$, which illustrates the last case. For the others, consider the following example.

Example 7. Let $S = (\{e, a, u\}, \cdot)$ be the group $(\{e, a\}, \cdot)$ with an additional identity u adjoined. Consider the order defined in S by the following Hasse diagram

Easily we verify that $e^+ = u$, $a^+ = a$ and $u^+ = u$ and so S is an m-ordered semigroup. Moreover, $e^{\diamond} = e \neq e^+$, $e^{++} = u \neq e$ and $e^{\diamond \diamond} = e \neq e^{++}$.

Let S be an m-ordered semigroup. By Theorem 3 we know that, for every $x \in S$, x^{++} is a minimal element of S and by Theorem 6(v) we also know that, for every $x \in S$, x is greater than or equal to the minimal element x^{++} . Furthermore, x^{++} is the only minimal element less than or equal to x. In fact, by the one hand, we know that if m is a minimal element of S, then $m \in S^+ = \{s^+ : s \in S\}$ (since $m^{++} \le m$ and m is minimal, we have $m = m^{++}$). By the other hand, for every $x, y \in S$, if $y^+ \le x$ then $x^\diamond y^+ x^\diamond \le x^\diamond x x^\diamond = x^\diamond$ and so $(x^\diamond)^+ \le y^+$. Thus, by Theorem 3 and Theorem 6(iv), we have $y^+ = x^{\diamond +} = x^{++}$.

Based on the previous observations, we derive the following result.

Theorem 8. Let S be an m-ordered semigroup. Then for every $x, y \in S$,

- (i) If $z^+ \le x$ and $z^+ \le y$, for some $z \in S$, then $x^+ = y^+$.
- (ii) If $x \le y$, then $x^+ = y^+$.
- (iii) If $x \leq y$, then $x^{\diamond} \leq y^{\diamond}$.

Proof. (i) If x, y are elements of S such that $z^+ \leq x$ and $z^+ \leq y$, for some $z \in S$, then

$$x^{++} = z^+ = y^{++},$$

considering the previous observation and that z^+ is a minimal element of S. From Theorem 6(vi) we get $x^+ = y^+$.

- (ii) Follows from (i) and Theorem 6(v).
- (iii) It follows from (ii).

Theorem 9. Let S be an m-ordered semigroup. Then

$$S = \biguplus_{x \in S^+} (x)^{\uparrow}.$$

Proof. Considering Theorem 8(ii) and Theorem 6(vi), the union $\bigcup_{x \in S^+}(x)^{\uparrow}$ is a disjoint union. By Theorem 6(v), it is immediate that $S \subseteq \biguplus_{x \in S^+}(x)^{\uparrow}$. Since the converse inclusion is obvious, the equality follows.

3. Idempotents in m-ordered semigroups

By Theorem 6(i),(ii) we know that the set of idempotents of an m-ordered semi-group S is not empty. Our purpose now is to study this set of elements.

Theorem 10. Let S be an m-ordered semigroup. Then for all e, f in E(S),

- (i) $e^{+} \leq e$.
- (ii) $e^{++} = e^{+}$.
- (iii) $e^+ \in E(S)$.
- (iv) $e^+ = f^+$.
- (v) $(ef)^+ \in E(S)$.
- (vi) $e^{\diamond} \leq e$.
- (vii) $e^{\diamond \diamond} = e^{\diamond}$.
- (viii) $(ef)^{\diamond} \in E(S)$.
 - (ix) $e^{\diamond} \in E(S)$.

Proof. (i) Since $e \in E(S)$, we have eee = e. So $e^+ < e$.

- (ii) This is an immediate consequence of (i) and Theorem 8.
- (iii) Considering (i), we have $ee^+e^+e \le eeee = e$ and so $e^+ \le e^+e^+$. Thus $e^+e^+ \le e^+e^+e^+$. Moreover, by (ii) and Theorem 6(iii) we have

$$e^{+}e^{+}e^{+} = e^{+}e^{++}e^{+} = e^{+}$$

So $e^+e^+ \le e^+$ and equality $e^+e^+ = e^+$ follows.

(iv) Since $e, f \in E(S), e^+, f^+ \in E(S)$. Moreover,

$$f^{+}(e^{+}f^{+})^{\diamond}e^{+}e^{+}f^{+}(e^{+}f^{+})^{\diamond}e^{+} = f^{+}(e^{+}f^{+})^{\diamond}e^{+}f^{+}(e^{+}f^{+})^{\diamond}e^{+} = f^{+}(e^{+}f^{+})^{\diamond}e^{+}.$$

Thus $(f^+(e^+f^+)^{\diamond}e^+)^+ \leq e^+$ and therefore $(f^+(e^+f^+)^{\diamond}e^+)^+ = e^+$. Similarly, we have $(f^+(e^+f^+)^{\diamond}e^+)^+ = f^+$. So $e^+ = f^+$.

- (v) By (i) we have $e^+ \leq e$ and $f^+ \leq f$. So $e^+ f^+ \leq ef$ and considering (iv) it follows that $e^+ e^+ \leq ef$. Now, taking into account (iii), we have $e^+ \leq ef$ and, by Theorem 8 and by (ii), we obtain $e^+ = (ef)^+$. So, $(ef)^+$ is an idempotent.
- (vi) By (i), we have $e^{\diamond} = e^+ e e^+ \leq e e e = e$.

(vii) We have

$$e^{\diamond \diamond} = (e^{\diamond})^+ e^{\diamond} (e^{\diamond})^+$$
 [by definition of $e^{\diamond \diamond}$]
 $= e^{++} e^{\diamond} e^{++}$ [by Theorem 6(iv)]
 $= e^+ e^{\diamond} e^+$ [by (ii)]
 $= e^+ e^+ e^+ e^+$ [by definition of e^{\diamond}]
 $= e^+ e^+$ [by (iii)]
 $= e^{\diamond}$ [by definition of e^{\diamond}]

(viii) By definition of $(ef)^{\diamond}$, (v) and Theorem 6(i), we have

$$(ef)^{\diamond}(ef)^{\diamond} = (ef)^{+}ef(ef)^{+}(ef)^{+}ef(ef)^{+}$$

= $(e^{f})^{+}ef(ef)^{+}ef(ef)^{+}$
= $(ef)^{+}ef(ef)^{+}$
= $(ef)^{\diamond}$.

So, $(ef)^{\diamond} \in E(S)$.

(ix) This follows from (viii).

Now, we observe that in an m-ordered semigroup S, it is not always the case that the equality $e^{\diamond} = f^{\diamond}$ holds for idempotents e and f. For instance, in Example 7, $u, e \in E(S)$ and $u^{\diamond} \neq e^{\diamond}$.

We also observe that, in the case of principally ordered semigroups, the corresponding conditions to Theorem 10 (ii), (iii) and (ix),

$$e^* \in E(S), e^* = e^{**}, e^{\circ} \in E(S)$$
 $(e \in E(S)),$

are not necessarily satisfied but are equivalent, as shown in [3, Theorem 2.2].

Based on the properties discussed earlier, we have the following result.

Theorem 11. Let S be an m-ordered semigroup. Then E(S) has a minimum element ω , and $\omega = e^+$, for every $e \in E(S)$.

Proof. Since $E(S) \neq \emptyset$, let $e \in E(S)$. From Theorem 10(iii), we know that $e^+ \in E(S)$ and, as a consequence of Theorem 10(iv), (i), it follows that, for all $f \in E(S)$, $e^+ \leq f$. So, E(S) has a minimum element ω , and $\omega = e^+$, for every $e \in E(S)$.

Considering the existence of a minimum idempotent for every m-ordered semigroup, we have the following results.

Theorem 12. Let S be an m-ordered semigroup and ω be the minimum element of E(S). Then, for all $x \in S$, $x^{\diamond}\omega = x^{\diamond} = \omega x^{\diamond}$.

Proof. Considering Theorem 6(ii) and Theorem 5, we have that, for every $x \in S$, $x^{\diamond}\omega \leq x^{\diamond}xx^{\diamond} = x^{\diamond}$ and $xx^{\diamond}\omega x \leq xx^{\diamond}xx^{\diamond}x = xx^{+}x \leq x$, so $x^{+} \leq x^{\diamond}\omega$. Then

$$x^{\diamond} = x^{+}xx^{+} \le x^{\diamond}\omega xx^{\diamond}\omega \le x^{\diamond}xx^{\diamond}xx^{\diamond}\omega = x^{\diamond}\omega.$$

Hence $x^{\diamond} = x^{\diamond}\omega$, and likewise $\omega x^{\diamond} = x^{\diamond}$.

We establish the following theorem, whose results are relevant to the next section.

Theorem 13. Let S be an m-ordered semigroup and ω be the minimum element of E(S). Then for all $x, y \in S$,

- (i) $(y(xy)^{\diamond})^+ \leq x$.
- (ii) $((xy)^{\diamond}x)^+ \leq y$.
- (iii) $x^+ = (y(xy)^\diamond)^{++} \le y(xy)^\diamond$.
- (iv) $y^+ = ((xy)^{\diamond}x)^{++} \le (xy)^{\diamond}x$.
- (v) $(xy)^+ \le y^+x^+$.
- (vi) $(xy)^+ = (y^+x^+)^{++}$.
- (vii) $(xx)^+ = x^+$ if and only if x^+ is an idempotent.
- (viii) $xx^{\diamond} = xx^{+} \le xy(xy)^{\diamond} = xy(xy)^{+}$.
- (ix) $y^{\diamond}y = y^{+}y \le (xy)^{\diamond}xy = (xy)^{+}xy$.
- (x) $x^{\diamond\diamond} = \omega x \omega$.
- (xi) $(xx^{\diamond})^{\diamond} = x^{\diamond \diamond}x^{\diamond}$.
- (xii) $(x^{\diamond}x)^{\diamond} = x^{\diamond}x^{\diamond\diamond}$.

Proof. (i) We have $y(xy)^{\diamond}xy(xy)^{\diamond} = y(xy)^{\diamond}$ and so $(y(xy)^{\diamond})^{+} \leq x$.

- (ii) The proof is similar to that of (i).
- (iii) By (i) we have $(y(xy)^{\diamond})^+ \leq x$ and by Theorem 8(ii) and Theorem 6(v) it follows that $x^+ = (y(xy)^{\diamond})^{++} \leq y(xy)^{\diamond}$.
- (iv) The proof is similar to that of (iii).
- (v) From (iv) we have

$$xyy^+x^+xy \le xy(xy)^{\diamond}xx^+xy \le xy(xy)^{\diamond}xy \le xy$$

and so $(xy)^+ \le y^+x^+$.

- (vi) By (v) and Theorem 8, we have $(xy)^{++} = (y^+x^+)^+$. Then by Theorem 6(vi), it follows that $(xy)^+ = (y^+x^+)^{++}$.
- (vii) If $(xx)^+ = x^+$ then by (vi) and Theorem 6(vi) it follows that

$$(x^{++}x^{++})^+ = x^+.$$

Thus $(x^{++}x^{++})^{++} = x^{++}$ and so $x^{++} \le x^{++}x^{++}$ by Theorem 6(v). Therefore $x^+ = x^+x^{++}x^+ \le x^+x^{++}x^{++}$

and by Theorem (8) it follows that $x^{++} = (x^{+}x^{++}x^{++}x^{+})^{+}$; so,

$$x^{+} = (x^{+}x^{++}x^{++}x^{+})^{++}.$$

Hence, since x^+x^{++} and $x^{++}x^{+}$ are idempotents, $(x^+x^{++}x^{++}x^{+})^{++}$ is also idempotent by Theorem 10(v); thus x^+ is idempotent. Conversely, if x^+ is idempotent, by (v) we have

$$x(xx)^+ x < xx^+ x^+ x = xx^+ x < x$$

whence $x^+ \leq (xx)^+$. Thus, by Theorem 3 it follows that $x^+ = (xx)^+$.

(viii) This follows immediately from Theorem 6(ii) and by (iii).

- (ix) Using Theorem 6(i) and considering (iv), the proof is similar to that of (viii).
- (x) On the one hand, $\omega x \omega \leq x^{\diamond \diamond} x^{\diamond} x x^{\diamond} x^{\diamond} = x^{\diamond \diamond} x^{\diamond} x^{\diamond} = x^{\diamond \diamond}$. On the other hand,

$$\omega x \omega = (xx^+)^+ x (x^+ x)^+ \qquad \text{[by Theorem 11]}$$

$$\geq (xx^+)^+ x x^+ x (x^+ x)^+ \qquad \text{[by Theorem 1]}$$

$$= (xx^\diamond)^\diamond x x^\diamond x (x^\diamond x)^\diamond \qquad \text{[by Theorem 6(i),(ii)]}$$

$$\geq (xx^\diamond)^\diamond x x^\diamond x^\diamond \qquad \qquad \text{[by (viii)]}$$

$$\geq x^\diamond x^\diamond x^\diamond x^\diamond \qquad \qquad \text{[by (ix)]}$$

$$= x^\diamond \qquad \qquad \text{[by Theorem 5]}.$$

Thus $x^{\diamond\diamond} = \omega x \omega$.

(xi) Considering Theorem 6(ii), Theorems 11 and 12 and by (x), we have

$$(xx^{\diamond})^{\diamond} = (xx^{\diamond})^{+}xx^{\diamond}(xx^{\diamond})^{+} = \omega xx^{\diamond}\omega = \omega x\omega x^{\diamond} = x^{\diamond}x^{\diamond}.$$

(xii) The proof is similar to (xi).

4. Subsemigroups of *m*-ordered semigroups

In this section, we focus on the subsemigroups of m-ordered semigroups. Specifically, we aim to determine whether for an m-ordered semigroup S, the sets $S^+ = \{x^+ | x \in S\}$ and $S^{\diamond} = \{x^{\diamond} | x \in S\}$ are subsemigroups of S. We also explore the relationship between the class of m-ordered semigroups and the well-known class of inverse semigroups ordered by natural order. In particular, we provide a characterization of inverse semigroups that, under their natural order, are also m-ordered semigroups.

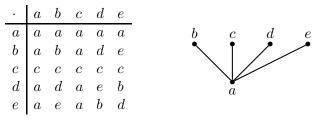
We already know that the set of idempotents of an m-ordered semigroup S is not empty. Moreover, given $e \in E(S)$, we have that, for all $f \in E(S)$, $f \in (e^+)^{\uparrow}$ and $(f^+)^{\uparrow} = (e^+)^{\uparrow}$ and we can state that, for every $e \in E(S)$, $(e^+)^{\uparrow}$ is a subsemigroup of S.

Theorem 14. Let S be an m-ordered semigroup. For every $e \in E(S)$, $(e^+)^{\uparrow}$ is a subsemigroup of S.

Proof. If $a, b \in (e^+)^{\uparrow}$, then $e^+ \leq a, b$. So, $e^+ = e^+e^+ \leq ab$ and therefore $ab \in (e^+)^{\uparrow}$.

It was observed that, for every $e \in E(S)$, $E(S) \subseteq (e^+)^{\uparrow}$, but, as can be seen in the next example, the semigroup $(e^+)^{\uparrow}$ contains other elements than idempotents.

Example 15. Consider the ordered semigroup S described by the following Cayley table and Hasse diagram



It is readily seen that, for every $x \in S$, there exists $x^+ = \min\{y \in S : xyx \le x\}$. Moreover, we have $a \in E(S)$, $a^+ = a$ and $(a^+)^{\uparrow} = S$ and it is evident that not all elements of $(a^+)^{\uparrow}$ are idempotents.

Theorem 16. Let S be an m-ordered semigroup. If U is a subsemigroup of S such that $U \subseteq (x^+)^{\uparrow}$, for some $x \in S$, then $U \subseteq (e^+)^{\uparrow}$ for every $e \in E(S)$.

Proof. If U is a subsemigroup of S such that $U \subseteq (x^+)^{\uparrow}$ then there exists some $a \in U$ such that $x^+ \leq a$ and $x^+ \leq aa$. Then, by Theorem 8, we have $x^{++} = a^+$ and $x^{++} = (aa)^+$. So $a^+ = (aa)^+$ and, by Theorem 13(vii), it follows that a^+ is an idempotent of S. Hence, by Theorem 10(iii) and Theorem 6(vi), the element $x^+ = a^{++}$ is also an idempotent of S. Thus, considering Theorem 10(iv),(ii) and Theorem 6(vi), for every $e \in E(S)$, we have $e^+ = x^+$.

Despite the previous result, an m-ordered semigroup S can have other subsemigroups that are not necessarily contained in subsemigroups $(e^+)^{\uparrow}$, with $e \in E(S)$.

Example 17. Consider the *m*-ordered semigroup *S* presented in Example 2. We have $e \in E(S)$, $(e^+)^{\uparrow} = \{e, u\}$, $S^{\diamond} = \{e, a, b, c\}$ is a subsemigroup of *S* and $S^{\diamond} \nsubseteq (e^+)^{\uparrow}$.

From Example 7, we know that the subset S^+ of an m-ordered semigroup S is not necessarily a subsemigroup of S: clearly $S^+ = \{a, u\}$ is not a subsemigroup of S. So, our aim now is to establish under which conditions the subset S^+ of an m-ordered semigroup S is a subsemigroup of S.

Theorem 18. Let S be an m-ordered semigroup. Then

- (i) S^+ is a subsemigroup of S if and only if $x^+y^+ = (yx)^+$, for all $x, y \in S$.
- (ii) If S^+ is a subsemigroup of S, then S^+ is a regular semigroup.

Proof. (i) Let $x, y \in S$. If S^+ is a subsemigroup of S, we have $x^+y^+ = s^+$ for some $s \in S$. Then, by Theorem 13(v), $(yx)^+ \le s^+$ and from Theorem 3 it follows that $s^+ = (yx)^+$. The converse implication is obvious.

(ii) This follows immediately from Theorem 6(iii).

Although S^+ is not necessarily a subsemigroup of an m-ordered semigroup S, we can prove that S^{\diamond} is always a subsemigroup of S.

Theorem 19. Let S be an m-ordered semigroup and ω be the minimum element of E(S). Then $S^{\diamond} = \omega S \omega$ and is an inverse submonoid of S with identity ω . Moreover, S^{\diamond} is dually naturally ordered.

Proof. Considering that, for all $x \in S^{\diamond}$, $x = x^{\diamond \diamond}$ and, by Theorem 13(x), we have $x^{\diamond \diamond} = \omega x \omega$, it follows that $S^{\diamond} = \omega S \omega$. Clearly, S^{\diamond} is a subsemigroup of S^{\diamond} . The minimum element of E(S) is an element of S^{\diamond} , since $\omega^{\diamond} = \omega^{+} \omega \omega^{+} = \omega \omega \omega = \omega$, and obviously is the identity of S^{\diamond} . So, it remains to prove that S^{\diamond} is an inverse semigroup. To do that, it is sufficient to show that S^{\diamond} is a regular semigroup and that its idempotents commute. By Theorem 5, for all $x \in S^{\diamond}$, $xx^{\diamond}x = x^{\diamond \diamond} x^{\diamond}x^{\diamond} = x^{\diamond \diamond} = x$; so S^{\diamond} is a regular semigroup. Now, considering that S^{\diamond} is a subsemigroup of S and by Theorems 13(x) and 10(viii), for all $e, f \in E(S^{\diamond})$, we have $ef = (ef)^{\diamond} = \omega e f \omega \leq f e f e = (f e)^{\diamond} (f e)^{\diamond} = (f e)^{\diamond} = f e$. Similarly, $f e \leq e f$. Hence the idempotents of S^{\diamond} commute. Thus S^{\diamond} is an inverse semigroup. If now $e, f \in E(S^{\diamond})$ with $e \leq_n f$ then e = e f = f e gives $e = e f e \geq \omega f \omega = f$. Thus S^{\diamond} is dually naturally ordered.

Corollary 20. Let S be an m-ordered semigroup. Then $E(S^{\diamond})$ is a subsemigroup of S^{\diamond} .

We now characterize when a naturally ordered inverse semigroup is m-ordered.

Theorem 21. An inverse semigroup S, under its natural order \leq_n , is m-ordered if and only if it has a smallest idempotent. In this case, $S^{\diamond} = S^+$ and is a subgroup of S.

Proof. Suppose that S is an inverse semigroup with a smallest idempotent ω under \leq_n . If $x,y\in S$ and $xyx\leq_n x$, then there exists $e\in E(S)$ such that xyx=ex. Consequently, $x^{-1}xyx=x^{-1}ex\in E(S)$. Then $\omega\leq_n x^{-1}xyx\leq_n yx$ whence $\omega x^{-1}\leq_n yxx^{-1}\leq_n y$. Since also $x\omega x^{-1}x=xx^{-1}x\omega=x\omega\leq_n x$ it follows that x^+ exists and is ωx^{-1} . Likewise, $x^+=x^{-1}\omega$ and so $x^+=\omega x^{-1}\omega$. The reverse implication is clear.

Finally, if S is an inverse and an m-ordered semigroup, we have $x^{\diamond} = x^+xx^+ = \omega x^{-1}xx^{-1}\omega = \omega x^{-1}\omega = x^+$, for all $x \in S$. Then $S^{\diamond} = S^+$ and is a subgroup since is an inverse submonoid of S and, for every $e \in E(S^{\diamond})$, $e = e^{\diamond} = e^{\diamond} = e^{+} = \omega$.

Example 22. Let $S = \mathbb{Z} \times \mathbb{N}_0$. The algebra S = (S, *), where * is the binary operation defined by

$$(a_1,b_1)*(a_2,b_2)=(a_1+a_2,\min(b_1,b_2)), \text{ for all } (a_1,b_1),(a_2,b_2)\in S,$$

is an inverse semigroup. For all $(a,b) \in S$, (-a,b) is the unique inverse of (a,b). Moreover, $E(S) = \{0\} \times \mathbb{N}_0$ and, under the natural order defined on S, (0,0) is the smallest idempotent. Hence, by the previous result, S is an m-ordered semigroup.

Consider now the subset

$$T = \{ x \in S \mid x^{\diamond} \in V(x) \}$$

of an m-ordered semigroup S.

Theorem 23. Let S be an m-ordered semigroup. Then T is an ideal of S.

Proof. If $x \in T$, then, by Theorem 12, for every $y \in S$,

$$xy(xy)^{\diamond}xy = xy(xy)^+xy \le xy$$

and

$$xy(xy)^{\diamond}xy = xx^{\diamond}xy(xy)^{\diamond}xy \ge xx^{\diamond}wxy = xx^{\diamond}xy = xy.$$

Consequently, by Theorem 5, $xy \in T$ and so T is a left ideal of S. Similarly, T is a right ideal. Thus T is a subsemigroup of S which is clearly regular.

Theorem 24. Let S be an m-ordered semigroup. Then for all $x \in T$,

$$x^{\diamond} = \min V(x).$$

Proof. Let $x \in T$ and $y \in V(x)$. Then xyx = x gives $x^+ \leq y$ whence

$$x^{\diamond} = x^+ x x^+ \le y x y = y.$$

Hence x^{\diamond} is the least inverse of x.

Theorem 25. Let S be an m-ordered semigroup and ω be the minimum element of E(S). Then $S^{\diamond} = \omega T \omega$ and is an inverse transversal of T.

419

Proof. Clearly, $S^{\diamond} = \omega T \omega$ and, for every $x \in T$, we have $x^{\diamond} \in S^{\diamond} \cap V(x)$. If now $y, z \in S^{\diamond} \cap V(x)$, then $y = yxy = yxzxy \geq \omega z\omega = z$, and similarly $z \geq y$. Hence y = z and consequently $S^{\diamond} \cap V(x) = \{x^{\diamond}\}$.

References

- [1] T.S. Blyth, Lattices and Ordered Algebraic Structures (Springer, 2005). https://doi.org/10.1007/b139095
- T.S. Bltyh and G.A. Pinto, Principally ordered regular semigroups, Glasgow Math.
 J. 32 (1990) 349–364.
 https://doi.org/10.1017/S0017089500009435
- [3] T.S. Blyth and G.A. Pinto, Idempotents in Principally ordered regular semigroups, Commun. Algebra 19(5) (1991) 1549–1563. https://doi.org/10.1080/00927879108824220
- [4] Howie, J.M., Fundamentals of Semigroup Theory (Claredon Press, Oxford, 1995). https://doi.org/10.1093/oso/9780198511946.001.0001

Received 8 July 2024 Revised 29 November 2024 Accepted 29 November 2024

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/