Article in press
Authors:
Title:
Rings such that, for each unit $u, u^n - 1$ belongs to the $\Delta(R)$
PDFSource:
Discussiones Mathematicae - General Algebra and Applications
Received: 2024-11-01 , Revised: 2024-12-10 , Accepted: 2024-12-10 , Available online: 2025-07-30 , https://doi.org/10.7151/dmgaa.1483
Abstract:
We study in-depth those rings R for which, there exists a fixed n \geq 1, such that u^n-1 lies in the subring \Delta(R) of R for every unit u in R. We succeeded to describe for any n \geq 1 all reduced \pi-regular (2n - 1)-\DeltaU rings by showing that they satisfy the equation x^{2n} = x as well as to prove that the property of
being exchange and clean are tantamount in the class of (2n-1)-\DeltaU rings. These achievements considerably extend results established by Danchev (Rend. Sem. Mat. Univ. Pol. Torino, 2019) and Kosan et al. (Hacettepe J. Math. & Stat., 2020). Some other closely related results of this branch are also established.
Keywords:
$n$-$\Delta$U ring, $\Delta$U ring, $n$-JU ring, JU ring, (semi-)regular ring, clean ring
References:
- A. Badawi, On abelian $\pi$-regular rings, Commun. Algebra 25(4) (1997) 1009–1021.
https://doi.org/10.1080/00927879708825906 - W. Chen, On constant products of elements in skew polynomial rings, Bull. Iran. Math. Soc. 41(2) (2015) 453–462.
- P.V. Danchev, Rings with Jacobson units, Toyama Math. J. 38(1) (2016) 61–74.
- P. V. Danchev, On exchange $\pi$-UU unital rings, Toyama Math. J. 39(1) (2017) 1–7.
- P.V. Danchev, On exchange $\pi$-JU unital rings, Rend. Sem. Mat. Univ. Pol. Torino 77(1) (2019) 13–23.
- P.V. Danchev, A. Javan and A. Moussavi, Rings with $u^n-1$ nilpotent for each unit $u$, J. Algebra Appl. 25 (2026).
https://doi.org/10.1142/S0219498826500295 - A.J. Diesl, Nil clean rings, J. Algebra 383 (2013) 197–211.
https://doi.org/10.1016/j.jalgebra.2013.02.020 - F. Karabacak, M.T. Koşan, T. Quynh and D. Tai, A generalization of UJ-rings, J. Algebra Appl. 20 (2021).
https://doi.org/10.1142/S0219498821502170 - M.T. Koşan, A. Leroy and J. Matczuk, On UJ-rings, Commun. Algebra 46(5) (2018) 2297–2303.
https://doi.org/10.1080/00927872.2017.1388814 - M.T. Koşan, T.C. Quynh, T. Yildirim and J. $\check{Z}$emli$\check{c}$ka, Rings such that, for each unit $u$, $u - u^n$ belongs to the Jacobson radical, Hacettepe J. Math. Stat. 49(4) (2020) 1397–1404.
https://doi.org/10.15672/hujms.542574 - M.T. Koşan, Y.C. Quynh and J. $\check{Z}$emli$\check{c}$ka, UNJ-Rings, J. Algebra Appl. 19 (2020).
https://doi.org/10.1142/S0219498820501704 - M.T. Koşan and J. $\check{Z}$emli$\check{c}$ka, Group rings that are UJ rings, Commun. Algebra 49(6) (2021) 2370–2377.
https://doi.org/10.1080/00927872.2020.1871000 - P.A. Krylov, Isomorphism of generalized matrix rings, Algebra Logic 47(4) (2008) 258–262.
https://doi.org/10.1007/s10469-008-9016-y - T.Y. Lam, A First Course in Noncommutative Rings, Second Edition (Springer Verlag, New York, 2001).
- T.Y. Lam, Exercises in Classical Ring Theory, Second Edition (Springer Verlag, New York, 2003).
- A. Leroy and J. Matczuk, Remarks on the Jacobson radical, Rings, Modules and Codes, Contemp. Math. 727, Am. Math. Soc. (Providence, RI, 2019) 269–276.
https://doi.org/10.1090/conm/727/14640 - J. Levitzki, On the structure of algebraic algebras and related rings, Trans. Am. Math. Soc. 74 (1953) 384–409.
- A.R. Nasr-Isfahani, On skew triangular matrix rings, Commun. Algebra 39(11) (2011) 4461–4469.
https://doi.org/10.1080/00927872.2010.520177 - W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Am. Math. Soc. 229 (1977) 269–278.
https://doi.org/10.2307/1998510 - G. Tang, C. Li and Y. Zhou, Study of Morita contexts, Commun. Algebra 42(4) (2014) 1668–1681.
https://doi.org/10.1080/00927872.2012.748327 - G. Tang and Y. Zhou, A class of formal matrix rings, Linear Algebra Appl. 438 (2013) 4672–4688.
https://doi.org/10.1016/j.laa.2013.02.019 - Y. Zhou, On clean group rings, Advances in Ring Theory, Treads in Mathematics, Birkhauser (Verlag Basel/Switzerland, 2010) 335–345.
https://doi.org/10.1007/978-3-0346-0286-0-22
Close