DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in press


Authors:

P. Danchev

Peter Danchev

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

email: pvdanchev@yahoo.com

A. Javan

Arash Javan

Department of Mathematics
Tarbiat Modares University
14115-111 Tehran Jalal AleAhmad Nasr, Iran

email: a.darajavan@modares.ac.ir

O. Hasanzadeh

Omid Hasanzadeh

Department of Mathematics
Tarbiat Modares University
14115-111 Tehran Jalal AleAhmad Nasr, Iran

email: o.hasanzade@modares.ac.ir

M. Doostalizadeh

Mina Doostalizadeh

Department of Mathematics
Tarbiat Modares University
14115-111 Tehran Jalal AleAhmad Nasr, Iran

email: m.doostalizadeh@gmail.com

A. Moussavi

Ahmad Moussavi

Department of Mathematics
Tarbiat Modares University
14115-111 Tehran Jalal AleAhmad Nasr, Iran

email: moussavi.a@modares.ac.ir

Title:

Rings such that, for each unit $u, u^n - 1$ belongs to the $\Delta(R)$

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications

Received: 2024-11-01 , Revised: 2024-12-10 , Accepted: 2024-12-10 , Available online: 2025-07-30 , https://doi.org/10.7151/dmgaa.1483

Abstract:

We study in-depth those rings R for which, there exists a fi xed n \geq 1, such that u^n-1 lies in the subring \Delta(R) of R for every unit u in R. We succeeded to describe for any n \geq 1 all reduced \pi-regular (2n - 1)-\DeltaU rings by showing that they satisfy the equation x^{2n} = x as well as to prove that the property of being exchange and clean are tantamount in the class of (2n-1)-\DeltaU rings. These achievements considerably extend results established by Danchev (Rend. Sem. Mat. Univ. Pol. Torino, 2019) and Kosan et al. (Hacettepe J. Math. & Stat., 2020). Some other closely related results of this branch are also established.

Keywords:

$n$-$\Delta$U ring, $\Delta$U ring, $n$-JU ring, JU ring, (semi-)regular ring, clean ring

References:

  1. A. Badawi, On abelian $\pi$-regular rings, Commun. Algebra 25(4) (1997) 1009–1021.
    https://doi.org/10.1080/00927879708825906
  2. W. Chen, On constant products of elements in skew polynomial rings, Bull. Iran. Math. Soc. 41(2) (2015) 453–462.
  3. P.V. Danchev, Rings with Jacobson units, Toyama Math. J. 38(1) (2016) 61–74.
  4. P. V. Danchev, On exchange $\pi$-UU unital rings, Toyama Math. J. 39(1) (2017) 1–7.
  5. P.V. Danchev, On exchange $\pi$-JU unital rings, Rend. Sem. Mat. Univ. Pol. Torino 77(1) (2019) 13–23.
  6. P.V. Danchev, A. Javan and A. Moussavi, Rings with $u^n-1$ nilpotent for each unit $u$, J. Algebra Appl. 25 (2026).
    https://doi.org/10.1142/S0219498826500295
  7. A.J. Diesl, Nil clean rings, J. Algebra 383 (2013) 197–211.
    https://doi.org/10.1016/j.jalgebra.2013.02.020
  8. F. Karabacak, M.T. Koşan, T. Quynh and D. Tai, A generalization of UJ-rings, J. Algebra Appl. 20 (2021).
    https://doi.org/10.1142/S0219498821502170
  9. M.T. Koşan, A. Leroy and J. Matczuk, On UJ-rings, Commun. Algebra 46(5) (2018) 2297–2303.
    https://doi.org/10.1080/00927872.2017.1388814
  10. M.T. Koşan, T.C. Quynh, T. Yildirim and J. $\check{Z}$emli$\check{c}$ka, Rings such that, for each unit $u$, $u - u^n$ belongs to the Jacobson radical, Hacettepe J. Math. Stat. 49(4) (2020) 1397–1404.
    https://doi.org/10.15672/hujms.542574
  11. M.T. Koşan, Y.C. Quynh and J. $\check{Z}$emli$\check{c}$ka, UNJ-Rings, J. Algebra Appl. 19 (2020).
    https://doi.org/10.1142/S0219498820501704
  12. M.T. Koşan and J. $\check{Z}$emli$\check{c}$ka, Group rings that are UJ rings, Commun. Algebra 49(6) (2021) 2370–2377.
    https://doi.org/10.1080/00927872.2020.1871000
  13. P.A. Krylov, Isomorphism of generalized matrix rings, Algebra Logic 47(4) (2008) 258–262.
    https://doi.org/10.1007/s10469-008-9016-y
  14. T.Y. Lam, A First Course in Noncommutative Rings, Second Edition (Springer Verlag, New York, 2001).
  15. T.Y. Lam, Exercises in Classical Ring Theory, Second Edition (Springer Verlag, New York, 2003).
  16. A. Leroy and J. Matczuk, Remarks on the Jacobson radical, Rings, Modules and Codes, Contemp. Math. 727, Am. Math. Soc. (Providence, RI, 2019) 269–276.
    https://doi.org/10.1090/conm/727/14640
  17. J. Levitzki, On the structure of algebraic algebras and related rings, Trans. Am. Math. Soc. 74 (1953) 384–409.
  18. A.R. Nasr-Isfahani, On skew triangular matrix rings, Commun. Algebra 39(11) (2011) 4461–4469.
    https://doi.org/10.1080/00927872.2010.520177
  19. W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Am. Math. Soc. 229 (1977) 269–278.
    https://doi.org/10.2307/1998510
  20. G. Tang, C. Li and Y. Zhou, Study of Morita contexts, Commun. Algebra 42(4) (2014) 1668–1681.
    https://doi.org/10.1080/00927872.2012.748327
  21. G. Tang and Y. Zhou, A class of formal matrix rings, Linear Algebra Appl. 438 (2013) 4672–4688.
    https://doi.org/10.1016/j.laa.2013.02.019
  22. Y. Zhou, On clean group rings, Advances in Ring Theory, Treads in Mathematics, Birkhauser (Verlag Basel/Switzerland, 2010) 335–345.
    https://doi.org/10.1007/978-3-0346-0286-0-22

Close