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Abstract17

We study in-depth those rings R for which, there exists a fixed n ≥ 1,18
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1. Introduction and motivation30

In this paper, let R denote an associative ring with identity element, which is31

not necessarily commutative. For such a ring R, the sets U(R), Nil(R), C(R)32

and Id(R) represent the set of invertible elements, the set of nilpotent elements,33

the set of central elements, and the set of idempotent elements in R, respectively.34

Additionally, J(R) denotes the Jacobson radical of R. The ring of n×n matrices35

over R and the ring of n × n upper triangular matrices over R are denoted by36

Mn(R) and Tn(R), respectively. A ring is termed abelian if each its idempotent37

element is central.38

The main instrument of the present article plays the set ∆(R), which was39

introduced by Lam in [15, Exercise 4.24] and recently studied by Leroy-Matczuk40

in [16]. As pointed out by the authors in [16, Theorem 3 and 6], ∆(R) is the largest41

Jacobson radical’s subring of R which is closed with respect to multiplication42

by all units (quasi-invertible elements) of R. Also, J(R) ⊆ ∆(R). Moreover,43

∆(R) = J(T ), where T is the subring of R generated by units of R, and the44

equality ∆(R) = J(R) holds if, and only if, ∆(R) is an ideal of R. An element a45

in a ring R is from ∆(R) if 1− ua is invertible for all invertible u ∈ R.46

A ring R is said to be n-UJ provided u − un ∈ J(R) for each unit u of47

R, where n ≥ 2 is a fixed integer; that is, for any u ∈ U(R), un − 1 ∈ J(R).48

This notion was initially introduced by Danchev in [5] on 2019 and after that,49

hopefully independently, by Koşan et al. in [10] on 2020; note that these rings are50

a common generalization for n = 1 of the so-termed JU rings which were firstly51

defined by Danchev in [3] on 2016 and later redefined in [9] on 2018 under the52

name UJ rings. They showed that for (2n)-UJ rings the notions of semi-regular,53

exchange and clean rings are equivalent.54

Likewise, letting n ≥ 2 be fixed, a ring R is called n-UU if, for any u ∈55

U(R), un − 1 ∈ Nil(R). This concept was introduced by Danchev (see [4]), and56

furthermore studied in more details in [6]. It is principally known that a ring57

R is said to be strongly π-regular provided that, for any a ∈ R, there exists an58

integer n ≥ 1 depending on a such that an ∈ an+1R. In [6], the authors showed59

that a ring R is simultaneously (n− 1)-UU and strongly π-regular if, and only if,60

R is strongly n-nil-clean (that is, the sum of an n-potent and a nilpotent which61

commute each other).62

A ringR is said to be regular (resp., unit-regular) in the sense of von Neumann63

if, for every a ∈ R, there is x ∈ R (resp., x ∈ U(R)) such that axa = a, and R is64

said to be strongly regular if, for every a ∈ R, a ∈ a2R. Recall also that a ring R65

is exchange if, for each a ∈ R, there exists e2 = e ∈ aR such that 1−e ∈ (1−a)R,66

and a ring R is clean if every element of R is a sum of an idempotent and an unit67

(cf. [19]). Notice that every clean ring is exchange, but the converse is manifestly68

not true in general; however, it is true in the abelian case (see [19, Proposition69
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1.8]). In this aspect, a ring R is called semi-regular provided R/J(R) is regular70

and idempotents lift modulo J(R). It is well known that semi-regular rings are71

always exchange, but the opposite is generally untrue (see, for instance, [19]). In72

2019, Fatih Karabacak et al. introduced new rings that are a proper expansion73

of UJ rings. They called these rings ∆U in [8], namely a ring R is said to be ∆U74

if 1 + ∆(R) = U(R).75

So, as a possible non-trivial extension of ∆U rings, we introduce the concept76

of an n-∆U ring. A ring R is called n-∆U if, for each u ∈ U(R), un − 1 ∈ ∆(R),77

where n ≥ 2 is a fixed integer. Clearly, all ∆U rings and rings with only two78

units are n-∆U. Also, every n-UJ ring is n-∆U, but the reciprocal implication79

does not hold in all generality.80

Our basic material is organized as follows: In the next section, we examine81

the behavior of n-∆U rings comparing their crucial properties with these of the82

∆U rings (see, for instance, Theorems 2.15, 2.23, 2.27 and 2.28, respectively). In83

the third section, we concentrate on the structure of some key extensions of n-∆U84

ring demonstrating that there is an abundance of their critical properties (see,85

e.g., Propositions 3.1, 3.2, 3.4, 3.7, 3.8, 3.12, 3.14, etc. and Theorem 3.5). In86

closing, we pose a challenging question which, hopefully, will motivate a further87

research study of the explored subject.88

2. n-∆U rings89

In this section, we begin by introducing the notion of n-∆U rings and investigate90

its elementary properties. We now give our main tools.91

Definition 2.1. A ring R is called n-∆U if, for each u ∈ U(R), un − 1 ∈ ∆(R),92

where n ≥ 2 is a fixed integer.93

Definition 2.2. A ring R is called π-∆U if, for any u ∈ U(R), there exists i ≥ 294

depending on u such that ui − 1 ∈ ∆(R).95

According to the above two definitions, we observe that every ∆U ring is96

obviously an n-∆U ring and that every n-∆U ring is a π-∆U ring. Besides, it is97

easy to see that if R is a finite π-∆U ring, then one can find some number m ∈ N98

such that R is an m-∆U ring.99

We now arrive at the following construction.100

Example 2.3. Once again, it is clear that n-UJ rings are always n-∆U. However,101

the converse claim is generally invalid. For example, consider the ring R =102

F2〈x, y〉/〈x
2〉. Then, one calculates that J(R) = {0}, ∆(R) = F2x + xRx and103

U(R) = 1 + F2x+ xRx. Thus, R is ∆U in view of [8, Example 2.2] and hence it104

is n-∆U. But, evidently, R is not n-UJ.105
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We continue with the following technicalities.106

Proposition 2.4. Let R be an n-∆U ring, where n is an odd number. Then,107

2 ∈ ∆(R).108

Proof. Writing −1 = (−1)n ∈ 1 + ∆(R) whence −2 ∈ ∆(R), we apply [16,109

Lemma 1(2)] to conclude that 2 ∈ ∆(R), as formulated.110

Remark 2.5. The condition ”n is an odd number” in Proposition 2.4 is essential.111

For instance, Z6 is a 2-∆U ring, but a simple computation shows that 2 /∈ ∆(Z6).112

Proposition 2.6. Let R be an n-∆U ring and k ∈ N such that n|k. Then, R is113

a k-∆U ring.114

Proof. Since R is an n-∆U ring, for any u ∈ U(R) we may write that un = 1+r,115

where r ∈ ∆(R). Since n|k, there exists an integer t such that k = tn. Thus,116

uk = (un)t = (1 + r)t = 1 + r′,117

where r′ = (1 + r)t − 1, which is obviously in ∆(R) because it is a subring of R.118

Therefore, uk = 1 + r′, where r′ ∈ ∆(R). Hence, R is a k-∆U ring, as stated.119

Proposition 2.7. A division ring D is n-∆U if, and only if, un = 1 for every120

u ∈ U(D).121

Proof. It is straightforward by noticing that for any division ring D we have122

∆(D) = {0}.123

Lemma 2.8. Suppose F is a field. Then, F is n-∆U if, and only if, F is finite124

and (|F| − 1)|n.125

Proof. Let f(x) = 1− xn ∈ F[x]. Since F is a field, the polynomial f(x) has at126

most n roots in F
∗. So, if we suppose A to be the set of all roots of f in F

∗, we127

will have F
∗ = A. Consequently, |F∗| = |A| < n.128

On the other hand, as F
∗ is a cyclic group, there exists a ∈ F

∗ such that129

F
∗ = 〈a〉. Since an = 1, we get o(a)|n, and hence n = o(a)q = |F∗|q. Therefore,130

|F∗||n and, finally, (|F| − 1)|n, as pursued.131

The reverse implication is elementary.132

Lemma 2.9. Let D be a division ring and n ≥ 2. If D is n-∆U, then D is a133

finite field and (|D| − 1)|n.134

Proof. Certainly, ∆(D) = {0}. So, for any a ∈ D, we have an = 1, whence135

a = an+1. Furthermore, appealing to the famous Jacobson’s Theorem [14, 12.10],136

we detect that D must be commutative, and thus a field, as expected.137

The second part follows at once from Lemma 2.8.138
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Corollary 2.10. If D is a division ring which is π-∆U, then D is a field.139

Example 2.11. Consider the ring Z. Knowing that U(Z) = {1,−1}, it is not too140

hard to see that ∆(Z) = {0}. Hence, Z is an n-∆U. Nevertheless, for an arbitrary141

prime number p, the ring Zp is not n-∆U for every n unless p − 1 divides n by142

Lemma 2.8.143

Proposition 2.12. A direct product
∏

i∈I Ri of rings Ri is n-∆U if, and only if,144

each direct component Ri is n-∆U.145

Proof. As the equalities ∆(
∏

i∈I Ri) =
∏

i∈I ∆(Ri) and U(
∏

i∈I Ri) =
∏

i∈I U(Ri)146

are fulfilled, the result follows at once.147

Proposition 2.13. Let R be an n-∆U ring. If T is an epimorphic image of R148

such that all units of T lift to units of R, then T is n-∆U.149

Proof. Suppose that f : R → T is a ring epimorphism. Let v ∈ U(T ). Then,150

there exists u ∈ U(R) such that v = f(u) and un = 1 + r ∈ 1 + ∆(R). Thus, we151

have152

vn = (f(u))n = f(un) = f(1 + r) = f(1) + f(r) = 1 + f(r) ∈ 1 + ∆(T ),153

as asked for.154

Proposition 2.14. Let R be an n-∆U. For any unital subring S of R, if S ∩155

∆(R) ⊆ ∆(S), then S is an n-∆U ring. In particular, the center of R is an156

n-∆U ring.157

Proof. Let v ∈ U(S) ⊆ U(R). Since R is n-∆U, we have vn − 1 ∈ ∆(R) ∩ S ⊆158

∆(S). So, S is necessarily an n-∆U ring. The rest of the statement follows159

directly from [16, Corollary 8].160

Our first major assertion is the following necessary and sufficient condition.161

Theorem 2.15. Let I ⊆ J(R) be an ideal of a ring R. Then R is n-∆U if, and162

only if, so is R/I.163

Proof. Let R be n-∆U and u + I ∈ U(R/I). Then, u ∈ U(R) and thus un =164

1 + r, where r ∈ ∆(R). Now, (u + I)n = un + I = (1 + I) + (r + I), where165

r + I ∈ ∆(R)/I = ∆(R/I) in virtue of [16, Proposition 6].166

Conversely, let R/I is n-∆U and u ∈ U(R). Then, u + I ∈ U(R/I) whence167

(u+I)n = (1+I)+(r+I), where r+I ∈ ∆(R/I). Thus, un+I = (1+r)+I and168

so un − (1 + r) ∈ I ⊆ J(R) ⊆ ∆(R). Therefore, un = 1 + r′, where r′ ∈ ∆(R).169

Hence, R is n-∆U, as required.170

As an automatic consequence, we extract:171
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Corollary 2.16. A ring R is n-∆U if, and only if, R/J(R) is n-∆U.172

We next proceed by proving the following structural affirmations.173

Proposition 2.17. Let R be an n-∆U (resp., a π-∆U) ring and let e be an174

idempotent of R. Then, eRe is an n-∆U (resp., a π-∆U) ring.175

Proof. Let u ∈ U(eRe). Thus, u+ (1− e) ∈ U(R). By hypothesis,176

(u+ (1− e))n = un + (1− e) = 1 + r ∈ 1 + ∆(R).177

So, we have un − e ∈ ∆(R). Now, we show that un − e ∈ ∆(eRe). Let v be an178

arbitrary unit of eRe. Apparently, v + 1 − e ∈ U(R). Note that un − e ∈ ∆(R)179

gives us that un − e+ v + 1− e ∈ U(R) utilizing the definition of ∆(R). Taking180

un − e+ v + 1− e = t ∈ U(R), one checks that181

et = te = ete = un − e+ v,182

and so ete ∈ U(eRe). It now follows that un − e + U(eRe) ⊆ U(Re). Then, we183

deduce un − e ∈ ∆(eRe) implying un ∈ e+∆(eRe) which yields that the corner184

ring eRe is an n-∆U ring, as wanted.185

The case of π-∆U rings is quite similar, so we omit the arguments.186

Proposition 2.18. For any ring R 6= {0} and any integer n ≥ 2, the ring Mn(R)187

is not a (2k − 1)-∆U ring whenever k ≥ 1.188

Proof. Since it is long known thatM2(R) is isomorphic to a corner ring ofMn(R)189

for n ≥ 2, it suffices to show that M2(R) is not a (2k − 1)-∆U ring bearing in190

mind Proposition 2.17. To this goal, consider the matrix191

A =

(

0 −1
1 0

)

∈ U(M2(R)).192

Thus, A2k−1 = A or A2k−1 = −A. Now, let M2(R) be (2k − 1)-∆U. If firstly193

A2k−1 = A, then we conclude that194

B := A− I =

(

−1 −1
1 −1

)

∈ ∆(M2(R)).195

But, we know that B is a unit. So, utilizing [16, Lemma 1], we infer that BB−1 ∈196

∆(M2(R)) and hence I ∈ ∆(M2(R)). This, however, is an obvious contradiction.197

If now A2k−1 = −A, it can be concluded that I ∈ ∆(M2(R)) and again this198

is a contraposition. So, M2(R) is really not a (2k − 1)-∆U ring, as desired.199
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Example 2.19. Consider the matrix ring R =M2(Z2). We have200

U(R) =

(

1 0
0 1

)

,

(

0 1
1 0

)

,

(

0 1
1 1

)

,

(

1 0
1 1

)

,

(

1 1
0 1

)

,

(

1 1
1 0

)

.201

With a simple calculation at hand, we may derive that, for any u ∈ U(R),202

u6 − 1 ∈ ∆(R). So, R is a 6-∆U ring. In general, Mn(R) (n ≥ 2) is not n-∆U if203

n is an odd number. However, this observation does not hold in general for even204

values of n.205

Let us now recollect that a set {eij : 1 ≤ i, j ≤ n} of non-zero elements of R is206

said to be a system of n2 matrix units if eijest = δjseit, where δjj = 1 and δjs = 0207

for j 6= s. In this case, e :=
∑n

i=1 eii is an idempotent of R and eRe ∼= Mn(S),208

where209

S = {r ∈ eRe : reij = eijr for all i, j = 1, 2, . . . , n}.210

Recall also that a ring R is said to be Dedekind-finite provided ab = 1 implies211

ba = 1 for any two a, b ∈ R. In other words, all one-sided inverse elements in the212

ring must be two-sided.213

We are now prepared to establish the following.214

Proposition 2.20. Every (2k − 1)-∆U ring is Dedekind-finite, provided k ≥ 1.215

Proof. If we assume the contrary that R is not a Dedekind-finite ring, then216

there exist elements a, b ∈ R such that ab = 1 but ba 6= 1. Assuming eij = ai(1−217

ba)bj and e =
∑n

i=1 eii, there exists a non-zero ring S such that eRe ∼= Mn(S).218

However, owing to Proposition 2.17, eRe is a (2k− 1)-∆U ring, so Mn(S) has to219

be a (2k − 1)-∆U ring too, which contradicts Proposition 2.18, as expected.220

Recall that a ring R is said to be semi-local if R/J(R) is a left artinian ring221

or, equivalently, if R/J(R) is a semi-simple ring.222

Proposition 2.21. Let R be a ring and n ≥ 1. Then, the following two condi-223

tions are equivalent for a semi-local ring:224

(i) R is a (2n− 1)-∆U ring.225

(ii) R/J(R) ∼=
∏m

i=1 Fpki , where (pki − 1)|n and Fpki is a field with pki elements.226

Proof. (i) ⇒ (ii) Since R is semi-local, R/J(R) is semi-simple, so we have227

R/J(R) ∼=

m
∏

i=1

Mni
(Di),228

where each Di is a division ring. Then, employing Corollary 2.16 and Proposition229

2.18, we deduce that R/J(R) ∼=
∏m

i=1Di. On the other hand, invoking Lemma230

2.9, we derive that Di
∼= Fpki , where p

ki − 1 divides n, as claimed.231
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(ii)⇒ (i) According to Lemma 2.8, we conclude that every Fpki is (2n−1)-∆U232

for all i. Then, taking into account Proposition 2.12, we receive that
∏m

i=1 Fpki233

is (2n− 1)-∆U and hence R/J(R) is (2n− 1)-∆U. Thus, R is a (2n− 1)-∆U ring234

in accordance with Corollary 2.16, as asserted.235

Lemma 2.22. Let R be a (2n − 1)-∆U ring for some n ≥ 1. If J(R) = {0}236

and every non-zero right ideal of R contains a non-zero idempotent, then R is237

reduced.238

Proof. Suppose the reverse that R is not reduced. Then, there exists a non-239

zero element a ∈ R such that a2 = 0. Referring to [17, Theorem 2.1], there240

is an idempotent e ∈ RaR such that eRe ∼= M2(T ) for some non-trivial ring241

T . However, thanks to Proposition 2.17, eRe is a (2n − 1)-∆U ring and hence242

M2(T ) is a (2n− 1)-∆U ring as well. This, in turn, contradicts Proposition 2.18,243

as expected.244

It is well known that a ringR is called π-regular if, for each a inR, an ∈ anRan245

for some integer n. So, regular rings are always π-regular. Also, strongly π-regular246

rings are themselves π-regular.247

Our second main statement is the following.248

Theorem 2.23. Let R be a ring and n ≥ 1. The following three items are249

equivalent:250

(i) R is a regular (2n − 1)-∆U ring.251

(ii) R is a π-regular reduced (2n − 1)-∆U ring.252

(iii) R has the identity x2n = x.253

Proof. (i) ⇒ (ii) Since R is regular, J(R) = {0} and thus every non-zero right254

ideal contains a non-zero idempotent. So, Lemma 2.22 applies to get that R255

is reduced. Moreover, every regular ring is known to be π-regular and so the256

implication follows immediately, as promised.257

(ii) ⇒ (iii) Notice that reduced rings are always abelian, so R is abelian258

regular by [1, Theorem 3] and hence it is strongly regular. Then, R is unit-259

regular and so ∆(R) = {0} by [16, Corollary 16]. Thus, we have Nil(R) =260

J(R) = ∆(R) = {0}.261

On the other hand, one observes that R is strongly π-regular. Let x ∈ R. In262

view of [7, Proposition 2.5], there is an idempotent e ∈ R and a unit u ∈ R such263

that x = e+ u, ex = xe ∈ Nil(R) = {0}. So, it must be that264

x = x− xe = x(1− e) = u(1− e) = (1− e)u.265

But, since R is a (2n − 1)-∆U ring, u2n−1 = 1. It follows now that266

x2n−1 = ((1 − e)u)2n−1 = u2n−1(1− e)2n−1 = (1− e).267



n-∆U rings 9

Hence, x = x(1− e) = x.x2n−1 = x2n, and we are done.268

(iii) ⇒ (i) It is trivial that R is regular. Let u ∈ U(R). Then, we have269

u2n = u forcing that u2n−1 = 1 and thus R is a (2n−1)-∆U ring, as promised.270

We now can record the following interesting consequence.271

Corollary 2.24. Suppose n ≥ 1. The following four conditions are equivalent272

for a ring R:273

(i) R is a regular (2n − 1)-∆U ring.274

(ii) R is a strongly regular (2n− 1)-∆U ring.275

(iii) R is a unit-regular (2n− 1)-∆U ring.276

(iv) R has the identity x2n = x.277

Proof. (i)⇒ (ii) In virtue of Lemma 2.22, R is reduced and hence abelian. Then,278

R is strongly regular.279

(ii) ⇒ (iii) This is pretty obvious, so we leave out the argumentation.280

(iii) ⇒ (iv) Let x ∈ R. Then, x = ue for some u ∈ U(R) and e ∈ Id(R).281

We know that every unit-regular ring is by definition regular, so R is regular282

(2n− 1)-∆U whence R is abelian. On the other hand, [16, Corollary 16] leads us283

to ∆(R) = {0}. Therefore, for any u ∈ U(R), we have u2n−1 = 1 which means284

that x2n−1 = u2n−1e2n−1 = e. So, we detect that x2n = x, as required.285

(iv) ⇒ (i) It is clear by a direct appeal to Theorem 2.23.286

Let us recall that a ring R is called semi-potent if every one-sided ideal not287

contained in J(R) contains a non-zero idempotent.288

The next difficult question arises quite logical.289

Problem 2.25. Characterize semi-potent n-∆U rings for an arbitrary n ≥ 1.290

The following technical claim is useful.291

Proposition 2.26. Suppose k ≥ 1. Then, a ring R is ∆U if, and only if,292

(i) 2 ∈ ∆(R),293

(ii) R is a 2k-∆U ring.294

(iii) If, for every x ∈ R, x2
k

∈ ∆(R), then x ∈ ∆(R).295

Proof. ”⇒” As R is a ∆U ring, then −1 = 1+r for some r ∈ ∆(R). This implies296

that −2 ∈ ∆(R) and so 2 ∈ ∆(R). Besides, every ∆U ring is 2k-∆U. Now, the297

asked result follows from [8, Proposition 2.4(3)].298

”⇐” Let u ∈ U(R). By (ii), we have u2
k

∈ 1+∆(R) and hence, combining [16,299

Theorem 3(2) and Lemma 1(3)] with (i), we conclude that (u−1)2
k

= 1+u2k+ r300

for some r ∈ ∆(R). So, (u − 1)2
k

∈ ∆(R). Thus, with the help of (iii), we301

conclude that u− 1 ∈ ∆(R), which ensures that R is a ∆U -ring, as required.302
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We now come to the next two pivotal assertions.303

Theorem 2.27. Let R be a (2n − 1)-∆U ring. Then, the following two points304

are equivalent:305

(i) R is an exchange ring.306

(ii) R is a clean ring.307

Proof. (ii) ⇒ (i) This is obvious, because each clean ring is always exchange.308

(i) ⇒ (ii) If R is simultaneously exchange and (2n − 1)-∆U, then R is re-309

duced thanking to Lemma 2.22, and hence it is abelian. Therefore, R is abelian310

exchange, so it is clean.311

Theorem 2.28. Let R be a (2k−1)-∆U ring for some k ≥ 1. Then, the following312

three statements are equivalent:313

(i) R is a semi-regular ring.314

(ii) R is an exchange ring.315

(iii) R is a clean ring.316

Proof. Observe that (ii) and (iii) are equivalent employing Theorem 2.27.317

(i) ⇒ (ii) This is obvious, since every semi-regular ring is always exchange.318

(iii) ⇒ (i) First, we show that 2 ∈ J(R). To this end, Proposition 2.4 assures319

that 2 ∈ ∆(R). Let r ∈ R and r = e + u be a clean decomposition for r. We320

know that 2e− 1 ∈ U(R) and hence (2e− 1) = (2e− 1)2
k−1 ∈ 1 +∆(R), so that321

2e ∈ ∆(R). Thus, 2r = 2e+ 2u ∈ ∆(R) +∆(R) ⊆ ∆(R). So, 1− 2r ∈ U(R) and322

hence 2 ∈ J(R), as claimed.323

On the other hand, r2
k

= e+ 2f + u2
k

, where f ∈ R. So,324

r − r2
k

= (e+ u)−
(

e+ 2f + u2
k
)

= (e+ u)−
(

e+ 2f + u
(

u2
k−1
))

= (e+ u)− (e+ 2f + u+ d),
325

whence326

r − r2
k

= −(2f + d) ∈ ∆(R),327

where d ∈ ∆(R). Consider now R = R/J(R), where R is reduced and so abelian328

enabled via Lemma 2.22.329

Now, we prove that ∆(R) = J(R). Letting d ∈ ∆(R) and e ∈ Id(R), we330

have 1 − ed = f + u, where f ∈ Id(R) and u ∈ U(R). So, 1 − ed = f + u and331

multiplying by the expression (1− e) on the left the previous equality, we derive332

that (1− e) = (1− e)f + (1− e)u. Then, one inspects that333

(1− e) (1− f) = (1− e)u ∈ U((1− e) R (1− e)) ∩ Id((1− e) R (1− e)).334
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Consequently, (1− e) (1− f) = (1− e), so again using this trick for the expres-335

sion f on the right of the previous equality, we deduce that (1− e)f = 0, so that336

f = ef ∈ eRe.337

Furthermore, if we multiply the equation 1− ed = f + u by e on the left, we338

will have e− ed = ef + eu = f + eu. Hence,339

e− f = e(u+ d) ∈ U(eRe) ∩ Id(eRe),340

and so e − f = e concluding that f = 0. Then, f ∈ J(R) ∩ Id(R) = {0}. Thus,341

f = 0 and hence 1− ed ∈ U(R).342

On the other side,343

1− rd = 1− ed− ud ∈ U(R) + ∆(R) ⊆ U(R),344

and we infer that d ∈ J(R). Hence, r − r2
k

∈ J(R). Thus, the quotient R
J(R)345

is regular and also idempotents lift modulo J(R), because by hypothesis R is a346

clean ring, whence finally R is a semi-regular ring, as required.347

3. Some extensions of n-∆U rings348

As usual, we say that B is an unital subring of a ring A if ∅ 6= B ⊆ A and, for349

any x, y ∈ B, the relations x− y, xy ∈ B and 1A ∈ B hold. Let A be a ring and350

let B an unital subring of A, we denote by R[A,B] the set351

{(a1, . . . , an, b, b, . . .) : ai ∈ A, b ∈ B, 1 ≤ i ≤ n} .352

Then, a routine check establishes that R[A,B] forms a ring under the usual353

component-wise addition and multiplication. The ring R[A,B] is called the tail354

ring extension.355

We start our considerations here with the following helpful statement.356

Proposition 3.1. R[A,B] is an n-∆U ring if, and only if, both A and B are357

n-∆U rings.358

Proof. Suppose R[A,B] is an n-∆U rings. Firstly, we prove that A is an n-359

∆U ring. Let u ∈ U(A). Then, ū = (u, 1, 1, . . .) ∈ U(R[A,B]). By hypothesis,360

we have (un − 1, 0, 0, . . .) ∈ ∆(R[A,B]), so (un − 1, 0, 0, . . .) + U(R[A,B]) ⊆361

U(R[A,B]). Thus, for all v ∈ U(A),362

(un − 1 + v, 1, 1, . . .) = (u2 − 1, 0, 0, . . .) + (v, 1, 1, . . .) ∈ U(R[A,B]).363

Hence, un−1+v ∈ U(A), which insures that un−1 ∈ ∆(A). Now, we show that B364

is an n-∆U ring. To this target, choose v ∈ U(B). Then, (1, . . . , 1, 1, v, v, . . . ) ∈365

U(R[A,B]). By hypothesis, (0, . . . , 0, vn − 1, vn − 1, . . . ) ∈ ∆(R[A,B]), so366

(0, . . . , 0, vn − 1, vn − 1, . . . ) + U(R[A,B]) ⊆ U(R[A,B]).367
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Thus, for all u ∈ U(B),368

(1, 1, . . . , vn − 1 + u, vn − 1 + u, . . . ) ∈ U(R[A,B]).369

We have vn − 1 + u ∈ U(B) and hence vn − 1 ∈ ∆(B), as required. The case of370

A is treated absolutely analogously, so we remove the arguments.371

Conversely, assume that A and B are both n-∆U rings. Let372

ū = (u1, u2, . . . , ut, v, v, . . .) ∈ U(R[A,B]),373

where ui ∈ U(A) and v ∈ U(B) ⊆ U(A). We must show that ūn − 1 +374

U(R[A,B]) ⊆ U(R[A,B]). In fact, for all ā = (a1, . . . , am, b, b, . . .) ∈ U(R[A,B])375

with ai ∈ U(A) and b ∈ U(B) ⊆ U(A), take z = max{m, t}. Then, we obtain376

ūn − 1 + ā = (un1 − 1 + a1, . . . , u
2
z − 1 + az, v

n − 1 + b, vn − 1 + b, . . . ).377

Note that uni −1+ai ∈ U(A) for all 1 ≤ i ≤ z and vn−1+b ∈ U(B) ⊆ U(A). We,378

thereby, deduce that ūn − 1 + ā ∈ U(R[A,B]). Thus, ūn − 1 ∈ ∆(R[A,B]) and379

ūn ∈ 1 + ∆(R[A,B]). This unambiguously enables us that R[A,B] is an n-∆U380

ring, as asserted.381

Let R be a ring and suppose that α : R → R is a ring endomorphism.382

Traditionally, R[[x;α]] denotes the ring of skew formal power series over R; that383

is, all formal power series in x having coefficients from R with multiplication384

defined by xr = α(r)x for all r ∈ R. In particular, R[[x]] = R[[x; 1R]] is the ring385

of formal power series over R.386

Proposition 3.2. The ring R[[x;α]] is n-∆U if, and only if, so is R.387

Proof. Consider I = R[[x;α]]x. Then, a plain check gives that I is an ideal388

of R[[x;α]]. Note that J(R[[x;α]]) = J(R) + I, so I ⊆ J(R[[x;α]]). Since389

R[[x;α]]/I ∼= R, the result follows at once exploiting Theorem 2.15.390

As an automatic consequence, we yield.391

Corollary 3.3. The ring R[[x]] is n-∆U if, and only if, so is R.392

Let R be a ring and suppose that α : R→ R is a ring endomorphism. Stan-393

dardly, R[x;α] denotes the ring of skew polynomials over R with multiplication394

defined by xr = α(r)x for all r ∈ R. In particular, R[x] = R[x; 1R] is the ring of395

polynomials over R. For an endomorphism α of a ring R, R is called α-compatible396

if, for any a, b ∈ R, ab = 0 ⇐⇒ aα(b) = 0, as in this case α is evidently injective.397

Let Nil∗(R) denote the prime radical (or, in other terms, the lower nil-398

radical) of a ring R, i.e., the intersection of all prime ideals of R. We know that399

Nil∗(R) is a nil-ideal of R. It is long known that a ring R is called 2-primal if its400

lower nil-radical Nil∗(R) consists precisely of all the nilpotent elements of R. For401

instance, it is well known that both reduced and commutative rings are 2-primal.402
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Proposition 3.4. Let R be a 2-primal and α-compatible ring. Then, the equality403

∆(R[x, α]) = ∆(R) +Nil∗(R[x, α])x is valid.404

Proof. Assuming f =
∑n

i=0 aix
i ∈ ∆(R[x, α]), then, for every u ∈ U(R), we405

have that 1 − uf ∈ U(R[x, α]). Thus, [2, Corollary 2.14] employs to get that406

1 − ua0 ∈ U(R) and, for every 1 ≤ i ≤ n, the relation uai ∈ Nil∗(R) is true.407

Since Nil∗(R) is an ideal, it must be that a0 ∈ ∆(R) and, for every 1 ≤ i ≤ n,408

the relation ai ∈ Nil∗(R) holds. But, as R is a 2-primal ring, [2, Lemma 2.2] is409

applicable to conclude that Nil∗(R)[x, α] = Nil∗(R[x, α]), as required.410

Reciprocally, assume f ∈ ∆(R) +Nil∗(R[x, α])x and u ∈ U(R[x, α]). Then,411

owing to [2, Corollary 2.14], we have u ∈ U(R) + Nil∗(R[x, α])x. Since R is a412

2-primal ring, one has that413

1− uf ∈ U(R) +Nil∗(R[x, α])x ⊆ U(R[x, α]),414

and thus f ∈ ∆(R[x, α]), as needed.415

We are now in a position to establish the following criterion.416

Theorem 3.5. Let R be a 2-primal ring and α an endomorphism of R such that417

R is α-compatible. The following are equivalent:418

(i) R[x;α] is an n-∆U ring.419

(ii) R is an n-∆U ring.420

Proof. (ii) ⇒ (i) Let f =
∑n

i=0 uix
i ∈ U(R[x, α]), so in view of [2, Corollary421

2.14] one arrives at u0 ∈ U(R) and ui ∈ Nil(R) for each i ≥ 1. Then, by422

hypothesis, 1 − un0 ∈ ∆(R). Therefore, with [2, Corollary 2.14] at hand, there423

exists g ∈ Nil∗(R)[x;α] such that424

fn = un0 + gx ∈ 1 + ∆(R) +Nil∗(R[x, α])x,425

and hence with the aid of Proposition 3.4 we obtain426

fn ∈ 1 + ∆(R[x;α]).427

(i) ⇒ (ii) Let u ∈ U(R) ⊆ U(R[x;α]). Hence,428

un ∈ 1 + ∆(R[x;α]) = 1 + ∆(R) +Nil∗(R[x, α])x.429

Thus, we have un ∈ 1 + ∆(R) whence R is an n-∆U ring, as wanted.430

As a valuable consequence, we arrive at the following.431

Corollary 3.6. Let R be a 2-primal ring. Then, the following are equivalent:432

(i) R[x] is an n-∆U ring.433
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(ii) R is an n-∆U ring.434

Let R be a ring and M a bi-module over R. The trivial extension of R and435

M is stated as436

T (R,M) = {(r,m) : r ∈ R and m ∈M},437

with addition defined component-wise and multiplication defined by438

(r,m)(s, n) = (rs, rn+ms).439

One knows that the trivial extension T (R,M) is isomorphic to the subring440

{(

r m
0 r

)

: r ∈ R and m ∈M

}

441

of the formal 2× 2 matrix ring

(

R M
0 R

)

. We also notice that the set of units of442

the trivial extension T (R,M) is precisely443

U(T (R,M)) = T (U(R),M).444

Also, by [8], one may exactly write that445

∆(T (R,M)) = T (∆(R),M).446

We are now ready to prove the following.447

Proposition 3.7. Let R be a ring andM a bi-module over R. Then, the following448

hold:449

(i) The trivial extension T(R,M) is an n-∆U ring if, and only if, R is an n-∆U450

ring.451

(ii) The upper triangular matrix ring Tn(R) is an n-∆U if, and only if, R is an452

n-∆U ring.453

Proof. (i) Set A = T(R,M) and consider the ideal I := T(0,M). Then, one454

finds that I ⊆ J(A) such that A
I

∼= R. So, the result follows directly from455

Theorem 2.15.456

(ii) Let I = {(aij) ∈ Tn(R) | aii = 0}. Then, one establishes that I ⊆ J(Tn(R))457

with Tn(R)/I ∼= Rn. Therefore, the desired result follows from a plain combina-458

tion of Theorem 2.15 and Proposition 2.12.459

Let α be an endomorphism of R and n a positive integer. It was defined by460

Nasr-Isfahani in [18] the skew triangular matrix ring like this461

Tn(R,α) =









































a0 a1 a2 · · · an−1

0 a0 a1 · · · an−2

0 0 a0 · · · an−3

. . .
. . .

. . .
...

. . .

0 0 0 · · · a0















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ai ∈ R



























462
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with addition point-wise and multiplication given by:463















a0 a1 a2 · · · an−1

0 a0 a1 · · · an−2

0 0 a0 · · · an−3

. . .
. . .

. . .
...

. . .

0 0 0 · · · a0





























b0 b1 b2 · · · bn−1

0 b0 b1 · · · bn−2

0 0 b0 · · · bn−3

. . .
. . .

. . .
...

. . .

0 0 0 · · · b0















=464















c0 c1 c2 · · · cn−1

0 c0 c1 · · · cn−2

0 0 c0 · · · cn−3

. . .
. . .

. . .
...

. . .

0 0 0 · · · c0















,465

where466

ci = a0α
0(bi) + a1α

1(bi−1) + · · ·+ aiα
i(b0), 1 ≤ i ≤ n− 1.467

We denote the elements of Tn(R,α) by (a0, a1, . . . , an−1). If α is the identity468

endomorphism, then one easily checks that Tn(R,α) is a subring of the upper469

triangular matrix ring Tn(R).470

All of the mentioned above guarantee the truthfulness of the following state-471

ment.472

Proposition 3.8. Let R be a ring and k ≥ 1. Then, the following are equivalent:473

(i) Tn(R,α) is a k-∆U ring.474

(ii) R is a k-∆U ring.475

Proof. Choose the set476

I :=





























0 a12 . . . a1n
0 0 . . . a2n
...

...
. . .

...
0 0 . . . 0











∣

∣

∣

∣

∣

∣

∣

∣

∣

aij ∈ R (i ≤ j)



















.477

Then, one easily verifies that I ⊆ J(Tn(R,α)) and Tn(R,α)
I

∼= R. Consequently,478

Theorem 2.15 directly applies to get the expected result.479

A simple manipulation with coefficients guarantees that there is a ring iso-480

morphism481

ϕ :
R[x, α]

(xn)
→ Tn(R,α),482

given by483

ϕ(a0 + a1x+ · · ·+ an−1x
n−1 + 〈xn〉) = (a0, a1, . . . , an−1)484
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with ai ∈ R, 0 ≤ i ≤ n − 1. So, one finds that Tn(R,α) ∼=
R[x,α]
(xn) , where (xn) is485

the ideal generated by xn.486

We, thus, proceed by discovering the following two claims.487

Corollary 3.9. Let R be a ring and k ≥ 1. Then, the following are equivalent:488

(i) R is a k-∆U ring.489

(ii) For n ≥ 2, the quotient-ring R[x;α]
(xn) is a k-∆U ring.490

(iii) For n ≥ 2, the quotient-ring R[[x;α]]
(xn) is a k-∆U ring.491

Corollary 3.10. Let R be a ring. Then, the following are equivalent:492

(i) R is a k-∆U ring.493

(ii) For n ≥ 2, the quotient-ring R[x]
(xn) is a k-∆U ring.494

(iii) For n ≥ 2, the quotient-ring R[[x]]
(xn) is a k-∆U ring.495

Consider now R to be a ring and M to be a bi-module over R. Let496

DT(R,M) := {(a,m, b, n)|a, b ∈ R,m,n ∈M}497

with addition defined component-wise and multiplication defined by498

(a1,m1, b1, n1)(a2,m2, b2, n2)

= (a1a2, a1m2 +m1a2, a1b2 + b1a2, a1n2 +m1b2 + b1m2 + n1a2).
499

Then, one claims that DT(R,M) is a ring which is isomorphic to T(T(R,M),500

T(R,M)). Also, we have501

DT(R,M) =























a m b n
0 a 0 b
0 0 a m
0 0 0 a









|a, b ∈ R,m,n ∈M















.502

Likewise, one asserts that the following map is an isomorphism of rings: R[x,y]
〈x2,y2〉

→503

DT(R,R), defined by504

a+ bx+ cy + dxy 7→









a b c d
0 a 0 c
0 0 a b
0 0 0 a









.505

We, thereby, detect the following.506
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Corollary 3.11. Let R be a ring and M a bi-module over R. Then, the following507

statements are equivalent:508

(i) R is an n-∆U ring.509

(ii) DT(R,M) is an n-∆U ring.510

(iii) DT(R,R) is an n-∆U ring.511

(iv) R[x,y]
〈x2,y2〉 is an n-∆U ring.512

Let A, B be two rings and M , N be (A,B)-bi-module and (B,A)-bi-module,513

respectively. Also, we consider the bi-linear maps φ : M ⊗B N → A and ψ :514

N ⊗A M → B that apply to the following properties:515

IdM ⊗B ψ = φ⊗A IdM , IdN ⊗A φ = ψ ⊗B IdN .516

For m ∈ M and n ∈ N , define mn := φ(m ⊗ n) and nm := ψ(n ⊗ m). Now517

the 4-tuple R =

(

A M
N B

)

becomes to an associative ring with obvious matrix518

operations that is called a Morita context ring. Denote two-side ideals Imφ and519

Imψ to MN and NM , respectively, that are called the trace ideals of the Morita520

context.521

We now have at our disposal all the ingredients necessary to establish the522

following.523

Proposition 3.12. Let R =

(

A M
N B

)

be a Morita context ring. Then, R is524

a (2n− 1)-∆U ring if, and only if, both A, B are (2n− 1)-∆U and MN ⊆ J(A),525

NM ⊆ J(B).526

Proof. Let R be a (2n− 1)-∆U ring. Consider e :=

(

1A 0
0 1B

)

. Then, one says527

that eRe ∼= A and (1 − e)R(1 − e) ∼= B. So, thankfully to Proposition 2.17, we528

get that A,B are both (2n− 1)-∆U. Obviously,

(

1 m
0 1

)

∈ U(R). Therefore,529

(

1 m
0 1

)2n−1

=

(

1 (2n− 1)m
0 1

)

∈ 1 + ∆(R)530

and hence

(

0 (2n− 1)m
0 0

)

∈ ∆(R). Similarly, we obtain

(

0 0
(2n − 1)m′ 0

)

∈531

∆(R), where m′ ∈ N . Since 2 ∈ ∆(R), 2n − 1 ∈ U(A), for any m ∈ M and532

m′ ∈ N we receive that533

(

(2n − 1)−1 0
0 1

)(

0 (2n− 1)m
0 0

)

∈ ∆(R).534
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Then, it must be that

(

0 m
0 0

)

∈ ∆(R). Also,535

(

0 0
(2n− 1)m′ 0

)(

(2n− 1)−1 0
0 1

)

∈ ∆(R).536

Thus,

(

0 0
m′ 0

)

∈ ∆(R). Since ∆(R) is a subring, we have

(

0 M
N 0

)

∈ ∆(R).537

Then, for any m ∈M and m′ ∈ N , we have538

(

0 m
0 0

)(

0 0
m′ 0

)

∈ ∆(R) ⇒

(

MN 0
0 0

)

∈ ∆(R),539

540
(

0 0
m′ 0

)(

0 m
0 0

)

∈ ∆(R) ⇒

(

0 0
0 NM

)

∈ ∆(R).541

Since ∆(R) is a subring, we can verify that I :=

(

MN M
N NM

)

⊆ ∆(R) and I542

is an ideal, whence I ⊆ J(R). Consequently, MN ⊆ J(A) and NM ⊆ J(B)543

invoking [20, Theorem 2.5], as required.544

Reciprocally, let A,B be (2n−1)-∆U, whereMN ⊆ J(A) and NM ⊆ J(B).545

Then, utilizing [20, Lemma 3.1], we derive that J(R) =

(

J(A) M
N J(B)

)

. Thus,546

the isomorphism R
J(R)

∼= A
J(A) ×

B
J(B) is fulfilled. Finally, that R is (2n − 1)-∆U547

is guaranteed by virtue of Proposition 2.12 and Corollary 2.16, as needed.548

The next comments are worthwhile.549

Remark 3.13. Exploiting Proposition 3.12, we have that if R is (2n)-∆U, then550

both A,B are (2n)-∆U and the containments (2n)MN ⊆ J(A), (2n)NM ⊆ J(B)551

hold. Now, a quite logical question arises that, if A,B are (2n)-∆U, where552

(2n)MN ⊆ J(A) and (2n)NM ⊆ J(B), can it be deduced that R is a (2n)-∆U553

ring?554

However, the answer is negative as the following construction illustrates:555

letting R := F2〈x, y|x
2 = 0〉, then it can be checked that R is 2-∆U and 2R = {0},556

but M2(R) is not 2-∆U.557

Moreover, an other natural question arises, namely that if R is a (2n)-∆U558

ring, whether it be derived that MN ⊆ J(A) and NM ⊆ J(B)?559

Again, the answer is contrapositive, because we know that M2(Z2) is 6-∆U;560

in fact, supposing A = B = M = N = Z2, then R = M2(Z2) is 6-∆U, but561

MN 6⊆ J(A) and NM 6⊆ J(B), as it can be verified without any difficulty.562

The following result could also be of some helpfulness and importance.563
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Proposition 3.14. Let R =

(

A M
N B

)

be a Morita context ring such that564

MN ⊆ J(A) and NM ⊆ J(B). Then, R is an n-∆U ring if, and only if, both A565

and B are n-∆U .566

Proof. In view of [20, Lemma 3.1], we argue that567

J(R) =

(

J(A) M
N J(B)

)

568

and hence the isomorphism R
J(R)

∼= A
J(A) ×

B
J(B) holds. Then, the result follows569

immediately from Corollary 2.16 and Proposition 2.12.570

Now, let R, S be two rings, and let M be an (R,S)-bi-module such that the571

operation (rm)s = r(ms) is valid for all r ∈ R, m ∈M and s ∈ S. Given such a572

bi-module M , we can set573

T(R,S,M) =

(

R M
0 S

)

=

{(

r m
0 s

)

: r ∈ R,m ∈M,s ∈ S

}

,574

where it forms a ring with the usual matrix operations. The so-stated formal575

matrix T(R,S,M) is called a formal triangular matrix ring. In Proposition 3.14,576

if we set N = {0}, then we will obtain the following.577

Corollary 3.15. Let R,S be rings and let M be an (R,S)-bi-module. Then, the578

formal triangular matrix ring T(R,S,M) is an n-∆U ring if, and only if, both R579

and S are n-∆U .580

Given a ring R and a central element s of R, the 4-tuple

(

R R
R R

)

becomes581

a ring with addition component-wise and with multiplication defined by582

(

a1 x1
y1 b1

)(

a2 x2
y2 b2

)

=

(

a1a2 + sx1y2 a1x2 + x1b2
y1a2 + b1y2 sy1x2 + b1b2

)

.583

This ring is denoted by Ks(R). A Morita context

(

A M
N B

)

with A = B =M =584

N = R is called a generalized matrix ring over R. It was observed by Krylov in585

[13] that a ring S is a generalized matrix ring over R if, and only if, S = Ks(R)586

for some s ∈ C(R). Here, MN = NM = sR, so MN ⊆ J(A) ⇐⇒ s ∈ J(R),587

NM ⊆ J(B) ⇐⇒ s ∈ J(R).588

We, thus, have all the instruments to prove the following.589

Corollary 3.16. Let R be a ring and s ∈ C(R) ∩ J(R). Then, Ks(R) is an590

n-∆U ring if, and only if, R is n-∆U .591
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Following Tang and Zhou (cf. [21]), for n ≥ 2 and for s ∈ C(R), the n × n592

formal matrix ring over R, defined with the usage of s and denoted by Mn(R; s),593

is the set of all n × n matrices over R with the usual addition of matrices and594

with the multiplication defined below:595

For (aij) and (bij) in Mn(R; s),596

(aij)(bij) = (cij), where (cij) =
∑

sδikjaikbkj.597

Here, δijk = 1+ δik− δij − δjk, where δjk, δij , δik are the standard Kroncker delta598

symbols.599

We now offer the validity of the following.600

Corollary 3.17. Let R be a ring and s ∈ C(R) ∩ J(R). Then, for any k ≥ 1,601

Mn(R; s) is a k-∆U ring if, and only if, R is k-∆U .602

Proof. If n = 1, then Mn(R; s) = R. So, in this case, there is nothing to603

prove. Let n = 2. By the definition of Mn(R; s), we have M2(R; s) ∼= Ks2(R).604

Apparently, s2 ∈ J(R) ∩ C(R), so the claim holds for n = 2 with the help of605

Corollary 3.16.606

To proceed by induction, assume now that n > 2 and that the claim holds607

for Mn−1(R; s). Set A := Mn−1(R; s). Then, Mn(R; s) =

(

A M
N R

)

is a Morita608

context, where609

M =







M1n
...

Mn−1,n






and N = (Mn1 . . .Mn,n−1)610

with Min =Mni = R for all i = 1, . . . , n − 1, and611

ψ : N ⊗M → N, n⊗m 7→ snm612

φ :M ⊗N →M, m⊗ n 7→ smn.613

Besides, for x =







x1n
...

xn−1,n






∈M and y = (yn1 . . . yn,n−1) ∈ N , we write614

xy =











s2x1nyn1 sx1nyn2 . . . sx1nyn,n−1

sx2nyn1 s2x2nyn2 . . . sx2nyn,n−1
...

...
. . .

...
sxn−1,nyn1 sxn−1,nyn2 . . . s2xn−1,nyn,n−1











∈ sA615
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and616

yx = s2yn1x1n + s2yn2x2n + · · ·+ s2yn,n−1xn−1,n ∈ s2R.617

Since s ∈ J(R), we see that MN ⊆ J(A) and NM ⊆ J(A). Thus, we obtain that618

Mn(R; s)

J(Mn(R; s))
∼=

A

J(A)
×

R

J(R)
.619

Finally, the induction hypothesis and Proposition 3.14 yield the claim after all.620

A Morita context

(

A M
N B

)

is called trivial if the context products are trivial,621

i.e., MN = (0) and NM = (0). Consulting with [11], we now are able to state622

that623
(

A M
N B

)

∼= T(A×B,M ⊕N),624

where

(

A M
N B

)

is a trivial Morita context. We, therefore, begin the proof-check625

of the following.626

Corollary 3.18. The trivial Morita context

(

A M
N B

)

is an n-∆U ring if, and627

only if, both A and B are n-∆U .628

Proof. It is apparent to see that the two isomorphisms629

(

A M
N B

)

∼= T(A×B,M ⊕N) ∼=

(

A×B M ⊕N
0 A×B

)

630

are true. Then, the rest of the proof follows by combining Proposition 3.7(i) and631

2.12, as needed.632

As usual, for an arbitrary ring R and an arbitrary group G, the symbol RG633

stands for the group ring of G over R. Standardly, ε(RG) designates the kernel634

of the classical augmentation map ε : RG→ R, defined by635

ε

(

∑

g∈G

agg

)

=
∑

g∈G

ag,636

and this ideal is traditionally called the augmentation ideal of RG.637

Here we will explore group rings that are n-∆U , as for the case of JU group638

rings we refer the interested reader to [12]. Specifically, we continue by establish-639

ing the next three technicalities.640

Lemma 3.19. If RG is an n-∆U ring, then R is too n-∆U .641
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Proof. Choosing u ∈ U(R), then u ∈ U(RG). Thus, un = 1 + r, where r ∈642

∆(RG). Since r = 1 − un ∈ R, it suffices to show that r ∈ ∆(R), which is643

obviously true, because, for any v ∈ U(R) ⊆ U(RG), we have v−r ∈ U(RG)∩R ⊆644

U(R). Therefore, r ∈ ∆(R), as required.645

We say that a group G is a p-group if every element of G is a power of the646

prime number p. Besides, a group G is said to be locally finite if every finitely647

generated subgroup is finite.648

In this light, the following two statements hold.649

Lemma 3.20 [22, Lemma 2]. Let p be a prime with p ∈ J(R). If G is a locally650

finite p-group, then ε(RG) ⊆ J(RG).651

Lemma 3.21. If R is an n-∆U ring and G is a locally finite p-group, where p652

is a prime number such that p ∈ J(R), then RG is an n-∆U ring.653

Proof. One looks that Lemma 3.20 tells us that ε(RG) ⊆ J(RG). On the other654

hand, since the isomorphism RG/ε(RG) ∼= R holds, Theorem 2.15 is a guarantor655

that RG is an n-∆U ring, as stated.656

We close our work with the following intriguing problem.657

Problem. Describe the structure of those rings R whose elements are a sum of658

a tripotent (or even of a potent) and an element from ∆(R) which commute each659

other.660
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