DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in press


Authors:

G. Swaminathan

Ganesh Swaminathan

Department of Mathematics
Guru Nanak College
Velachery, Chennai – 600042, India

email: madmaths007@gmail.com

0000-0003-3411-8907

S. Venkatachalam

Selvan Venkatachalam

Department of Mathematics
RKM Vivekananda College
Mylapore, Chennai – 600004, India

email: venselvan@gmail.com

0000-0001-8183-3423

Title:

Derivations and semiderivations in semirings

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications

Received: 2024-07-22 , Revised: 2024-09-02 , Accepted: 2024-09-02 , Available online: 2025-06-10 , https://doi.org/10.7151/dmgaa.1482

Abstract:

In this paper, we prove that if a non-trivial derivation of a semiring commutes then the semiring is commutative. We define semiderivation in semirings and derive some of its fundamental results. We prove that a map associated with a semiderivation is always a homomorphism in an additively cancellative yoked prime semiring. We also prove that a semiderivation σ of a semiring R induces a corresponding semiderivation σΔ in RΔ, the ring of differences of the semiring R. This serves as a passage between rings and semirings and enable us to establish other conditions for commutativity of semirings with semiderivations. Our results generalizes the classical results in prime rings.

Keywords:

derivations, semiderivations, semirings and commutativity

References:

  1. A. Aboubakr and S. González, Generalized reverse derivation on semiprime rings, Siberian Math. J. 56 (2) (2015) 199–205.
    https://doi.org/10.1134/S0037446615020019
  2. M. Ashraf, S. Ali and C. Haetinger, On derivations in rings and their applications, Aligarh Bull. Math. 25(2) (2006) 79–107.
  3. H.E. Bell and W.S. Martindale, Semiderivations and commutativity in prime rings, Canad. Math. Bull. 31(4) (1988) 500–508.
    https://doi.org/10.4153/CMB-1988-072-9
  4. M. Bre\u{s}ar, Semiderivations of Prime rings, Proc. Amer. Math. Soc. 108(4) (1990) 859-860.
    https://doi.org/10.1090/S0002-9939-1990-1007488-X
  5. M. Bre\u{s}ar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33(1) (1991) 89–93.
    https://doi.org/10.1017/S0017089500008077
  6. J. Bergen, Derivations in prime rings, Canad. Math. Bull. 26(3) (1983) 267–270.
    https://doi.org/10.4153/CMB-1983-042-2
  7. J.C. Chang, On Semi-derivations of Prime Rings, Chinese J. Math. 12(4) (1984) 255–262.
    https://www.jstor.org/stable/43836229
  8. C.L. Chuang, On the structure of semiderivations in prime rings, Proc. Amer. Math. Soc. 108(4) (1990) 867–869.
    https://doi.org/10.1090/S0002-9939-1990-1002154-9
  9. S.I. Dimitrov, Derivations on semirings, Appl. Math. Eng. and Econ. – 43th. Int. Conf., AIP Conf. Proc. 1910 (2017) 060011.
    https://doi.org/10.1063/1.5014005
  10. S. Ganesh and V. Selvan, Posner's theorems in Semirings, Indian J. Pure and Appl. Math. 55(2) (2024) 597–602.
    https://doi.org/10.1007/s13226-023-00388-0
  11. S. Ganesh and V. Selvan, Jordan Structures in Semirings, Rend. Circ. Mat. Palermo II. Ser 72(7) (2023) 3587–3596.
    https://doi.org/10.1007/s12215-022-00838-4
  12. S. Ganesh and V. Selvan, Reverse derivations and generalized reverse derivations in semirings, Discuss. Math. Gen. Alg. and Appl. 44 (1) (2024) 217–232.
    https://doi.org/10.7151/dmgaa.1439
  13. J.S. Golan, Semirings and Their Applications (Kluwer Academic Publishers, 1999).
  14. I.N. Herstein, Jordan Derivations of Prime Rings, Proc. Amer. Math. Soc. 08(6) (1957) 1104–1110.
    https://doi.org/10.1090/S0002-9939-1957-0095864-2
  15. I.N. Herstein, A note on Derivations, Canad. Math. Bull. 21(3) (1978) 369–370.
    https://doi.org/10.4153/CMB-1978-065-x
  16. I.N. Herstein, A note on Derivations II, Canad. Math. Bull. 22(4) (1979) 509–511.
    https://doi.org/10.4153/CMB-1979-066-2
  17. I.N. Herstein, Lie and Jordan structures in simple, associative rings, Bull. Amer. Math. Soc. 67(6) (1961) 517–531.
  18. B. Hvala, Generalized Lie derivations in prime rings, Taiwanese J. Math. 11(5) (2007) 1425–1430.
  19. K.H. Kime and Y.H. Lee, On orthogonal reverse semiderivations on prime semirings, Gulf J. Math. 5(1) ((2017)) 63–72.
    https://doi.org/10.56947/gjom.v5i1.87
  20. K. Kanak Sindhu, R. Murugesan and P. Namasivayam, Some results on Semiderivations of Semiprime Semirings, Int. J. Sci. and Res. Publ. 5(6) (2015).
    http://www.ijsrp.org/research-paper-0615.php?rp=P424147
  21. E.C. Posner, Derivations in Prime Rings, Proc. Amer. Math. Soc. 8(6) (1985) 1093-1100.
    https://doi.org/10.1090/S0002-9939-1957-0095863-0

Close