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1. Introduction29

Posner’s theorems [21] served as a foundation for Algebraists to investigate deriva-30

tions in prime rings, semiprime rings and other algebraic structures. Researchers31

have extended the concept of derivations in many directions by defining Lie32

derivations [17], Jordan derivations [11, 14], inner derivations [18], reverse deriva-33

tions [12, 14], generalized derivations [5], generalized reverse derivations [1, 12],34

semiderivations [6, 19] and many more in various algebraic structures. For more35

details on derivations in rings and semirings one may read [2] and [9] respec-36

tively. A part of our research work is motivated by the classical results due to37

Herstein [15, 16]. He proved that if a derivation of a prime ring (characteristic38

not two) commutes, then the ring is a commutative integral domain [15]. Further,39

he proved that if a fixed element of a prime ring (characteristic not two) com-40

mutes with the derivation then it must be in the centre [16]. Inspired by these41

works, we prove the analogous results in additively cancellative prime semirings.42

In 1983, Bergen [6] introduced a class of functions, called as semiderivations,43

which are more general than derivations. Several articles explored the structure44

of semiderivations and established commutativity conditions in prime rings with45

semiderivations [3, 4, 7, 8] (and references within). In 2015, Sindhu, et al. [20] de-46

fined semiderivations in semirings and generalized some properties of prime rings47

with derivations to semiprime semirings with semiderivations. Recently, Kim &48

Lee [19] introduced the notion of orthogonal reverse semiderivations in prime49

semirings and investigated conditions for two reverse semiderivations to be or-50

thogonal. In this article, we generalize the results obtained by Chang in [7] to the51

class of additively cancellative prime semirings by obtaining some commutativity52

conditions.53

2. Definitions and examples54

In this section we define the concept of semiderivation in semirings. We adopt55

the basic definitions in semirings from Golan [13]. In particular, the following56

definitions are useful throughout the paper.57

Definition 2.1 [13]. Let R be an additively cancellative semiring and then the58

corresponding ring of difference, denoted by R∆ is defined as follows59

R∆ = {a− b : a, b ∈ R}.60

In R∆, we have a − b = c − d if and only if there exists r, r′ ∈ R such that61

a + r = c + r′ and b + r = d + r′. The zero element and multiplicative identity62

of R∆ are r − r and 1 − 0 respectively. For a − b, c − d ∈ R∆, addition and63
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multiplication is given by64

(a− b) + (c− d) = (a+ c)− (b+ d)65

(a− b)(c− d) = (ac+ bd)− (ad+ bc).66

We also note that the embedding of R to the ring of differences R∆ is due to the67

map r 7→ r − 0, for each r ∈ R.68

Definition 2.2 [13]. A function d of R into R is called a derivation of a semiring69

R if it satisfies the following conditions.70

(i) d(r + s) = d(r) + d(s), ∀ r, s ∈ R and71

(ii) d(rs) = d(r)s+ rd(s), ∀ r, s ∈ R.72

Ganesh and Selvan [10] extended the above definition by defining deriva-73

tion d∆ in the ring of differences (R∆) of a semiring (R) corresponding to the74

derivation d in R.75

Definition 2.3 [10]. Let R be a semiring and d be a derivation from R into R.76

Let R∆ be the ring of differences of the semiring R. Then, d∆ is a function in77

R∆ induced by d, defined as follows78

d∆ : R∆ → R∆
79

d∆(a− b) = d(a)− d(b), ∀ a, b ∈ R.80

It is easy to see that d∆ is indeed a derivation in R∆ [10].81

Definition 2.4. Let R be a semiring. An additive mapping σ from R into R is82

called a semiderivation if there exists a map f also from R into R such that it83

satisfies the following conditions.84

(i) σ(rs) = σ(r)f(s) + rσ(s), ∀ r, s ∈ R,85

(ii) σ(rs) = σ(r)s+ f(r)σ(s), ∀ r, s ∈ R and86

(iii) σ(f(r)) = f(σ(r)), ∀ r ∈ R.87

The following example demonstrate the existence of maps that are semideriva-88

tion but not derivation and serves as motivation to study such maps.89

Example 2.5. Let S be a semiring and define R :=

{(

a 0
0 b

)

: a, b ∈ S

}

. It is90

easy to note that R is a semiring. Now we define maps σ and f both from R to91

R as follows92

93

σ

(

a 0
0 b

)

=

(

a 0
0 0

)

; and f

(

x 0
0 y

)

=

(

0 0
0 y

)

,94
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Then, for A,B ∈ R, where A =

(

a 0
0 b

)

, a, b ∈ S and B =

(

x 0
0 y

)

, x, y ∈ S we95

have the following.96

(i) σ(AB) 6= σ(A)B +Aσ(B), implying that σ is not a derivation.97

(ii) σ(AB) = σ(A)f(B) +Aσ(B), satisfying condition (i) in Definition 2.4.98

(iii) σ(AB) = σ(A)B + f(A)σ(B), satisfying condition (ii) in Definition 2.4.99

(iv) σ(f(A)) = f(σ(A)), satisfying condition (iii) in Definition 2.4.100

Thus, σ is a semiderivation (associated with f) but not a derivation.101

3. Some results on semiderivations in semirings102

In this section, we introduce a map σ∆ in R∆ induced by a map σ in R. We first103

prove that σ∆ is a semiderivation in the ring of differences (R∆) corresponding to104

a semiderivation σ of a semiring (R). We present some of the basic properties of105

semiderivations in semirings. In particular, we prove that sum of two semideriva-106

tions of a semiring is again a semiderivation of the semiring (if the underlying107

map remains same). We move on to prove the main result for this section: a map108

associated with the semiderivation is always a homomorphism. Throughout the109

section we assume the underlying semiring to be additively cancellative (unless110

stated otherwise) whenever the ring R∆ is being used.111

Definition 3.1. Let R be a semiring and σ be a map from R into R. Let R∆ be112

the corresponding ring of differences of the semiring R. Then, σ∆ is a function113

in R∆ induced by σ, defined as follows114

σ∆ : R∆ → R∆
115

σ∆(a− b) = σ(a)− σ(b), ∀ a, b ∈ R.116

In the following lemma we prove that σ∆ is indeed a semiderivation in R∆, if σ117

is a semiderivation in R.118

Lemma 3.2. Let R be a semiring and R∆ be the corresponding ring of differ-119

ences of R. Let σ be a semiderivation corresponding to a map f of R. Then,120

σ∆ is a semiderivation of R∆ (corresponding to σ) associated with the map f∆
121

(corresponding to f).122

Proof. Let x, y ∈ R∆ where x = a− b and y = c − d for a, b, c, d ∈ R. Then we123

have124

σ∆(xy) = σ∆ ((a− b)(c− d))125
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= σ∆ ((ac+ bd)− (ad+ bc))126

= σ(ac+ bd)− σ(ad+ bc)127

= σ(ac) + σ(bd) − σ(ad)− σ(bc)128

= σ(a)f(c) + aσ(c) + σ(b)f(d) + bσ(d)129

− σ(a)f(d) − aσ(d)− σ(b)f(c) − bσ(c)130

= σ(a) ((f(c)− f(d))− σ(b) ((f(c)− f(d))131

+ a(σ(c) − σ(d)) − b(σ(c) − σ(d))132

= ((σ(a) − σ(b)) ((f(c)− f(d)) + (a− b) ((σ(c)− σ(d))133

= σ∆(x)f∆(y) + xσ∆(y).134

We also have135

σ∆(xy) = σ∆ ((a− b)(c − d))136

= σ∆ ((ac+ bd)− (ad+ bc))137

= σ(a)c + f(a)σ(c) + σ(b)d + f(b)σ(d)138

− σ(a)d− f(a)σ(d) − σ(b)c − f(b)σ(c)139

= σ(a)(c − d)− σ(b)(c − d) + f(a) (σ(c)− σ(d)) − f(b) (σ(c)− σ(d))140

= (σ(a)− σ(b)) (c− d) + (f(a)− f(b)) (σ(c) − σ(d))141

= σ∆(x)y + f∆(x)σ(y).142

Thus conditions (i) and (ii) in the Definition 2.4 are true. Now let us prove the143

condition (iii) as follows.144

σ∆(f∆(x)) = σ∆(f(a)− f(b))145

= σ(f(a))− σ(f(b))146

= f(σ(a))− f(σ(b))147

= f∆(σ(a) − σ(b))148

= f∆(σ∆(a− b))149

= f∆(σ∆(x)).150

151

Remark 3.3. We denote σf as the semiderivation associated with the map f of152

a semiring R and σ∆

f∆ be the semiderivation of R∆ corresponding to σ, where f∆
153

is a map of R∆ corresponding to f of R.154

We now present some of the basic properties of semiderivations in semirings155

and in ring of differences. Proof of these properties can be obtained through a156

routine procedure and hence not shown.157



6 S. Ganesh and V. Selvan

Lemma 3.4. If σf and τf are semiderivations of R, then (σ + τ)f is also a158

semiderivation of R.159

Remark 3.5. In general, if σf and τg are two semiderivations then one might160

expect σ+ τ to be a semiderivation of f + g, which turns out to be false. That is,161

if the underlying map is different, then the sum of the semiderivation need not162

be a semiderivation.163

Lemma 3.6. If σf and τf are semiderivations of R and if σ∆

f∆ and τ∆
f∆ are the164

corresponding semiderivations of R∆ respectively, then we have165

(σ + τ)∆(a− b) = (σ∆ + τ∆)(a− b), ∀ a− b ∈ R∆, a, b ∈ R.166

Remark 3.7. We note the following.167

(i) Since every derivation is a semi-derivation, it is easy to note that the iterative168

of a semiderivation need not be a semiderivation again.169

(ii) If the iterative στ of semiderivations is a semiderivation, then it is an easy170

routine to check that (στ)
∆

is also a semiderivation of R∆. One may follow171

along the lines of proof in Lemma 2.8 [10] to verify the same.172

Lemma 3.8. Let σf and τf be semiderivations of R and σ∆

f∆ and τ∆
f∆ be the cor-173

responding semiderivations of R∆ respectively. If the iterative of semiderivations174

στ is also a semiderivation, then we have175

(στ)∆(a− b) = σ∆τ∆(a− b), ∀ a− b ∈ R∆, a, b ∈ R.176

Lemma 3.9. Let R be an additively cancellative prime semiring and σf be a177

non-zero semiderivation of R. Let R∆ be the corresponding ring of differences178

of R and σ∆

f∆ be the semiderivations of R∆ corresponding to σf of R. If f is179

surjective then so is f∆.180

Now we prove that in an additively cancellative yoked prime semiring, the181

map f associated with the semiderivation σ is always a semiring homomorphism.182

This extends the result of Chang (Theorem 1) in [7]. The following lemma is183

crucial to prove this result.184

Lemma 3.10. Let R be an additively cancellative yoked prime semiring. Let185

a, b, c ∈ R,186

(i) if a 6= 0 and arb = arc for all r ∈ R, then b = c187

(ii) if c 6= 0 and arc = brc for all r ∈ R, then a = b.188
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Proof. We only prove (i) and the proof of (ii) can be obtained in a similar189

manner. Let a 6= 0 ∈ R. Since R is yoked, for any b, c in R we have either b = c+s190

or c = b+ s for some s ∈ R. If b = c+ s, then arc = arb = ar(c+ s) = arc+ ars191

implies that ars = 0 for all r ∈ R (since R is additively cancellative). Now, by192

the primeness of R we must have s = 0 (since a 6= 0) and thus we get b = c. On193

the other hand, if c = b + s, then arb = arc = ar(b + s) = arb+ ars and citing194

the same reasons mentioned earlier we get s = 0 implying b = c.195

Theorem 3.11. Let R be an additively cancellative yoked prime semiring and196

σf be a non-zero semiderivation of R, then f is a homomorphism of R.197

Proof. Let r, s, t ∈ R. Then we note the following198

σ(r(s + t)) = σ(rs+ rt)199

σ(r)f(s+ t) + rσ(s+ t) = σ(rs) + σ(rt) (by Definition 2.4(i))200

σ(r)f(s+ t) + rσ(s) + rσ(t) = σ(r)f(s) + rσ(s) + σ(r)f(t) + rσ(t)201

σ(r)f(s+ t) = σ(r)f(s) + σ(r)f(t)202

uσ(r)f(s+ t) = uσ(r)f(s) + σ(r)f(t), for u ∈ R.203

Now we apply Lemma 3.10(i) to see that f(s + t) = f(s) + f(t),∀s, t ∈ R,204

proving additive nature of f . Next, to prove multiplicative property we again let205

r, s, t ∈ R. Then we have206

σ((rs)t) = σ(r(st))207

f(rs)σ(t) + σ(rs)t = f(r)σ(st) + σ(r)st208

f(rs)σ(t) + f(r)σ(s)t+ σ(r)st = f(r)f(s)σ(t) + f(r)σ(s)t+ σ(r)st209

(by Definition 2.4(ii))210

f(rs)σ(t) = f(r)f(s)σ(t)211

f(rs)σ(t)u = f(r)f(s)σ(t)u, for u ∈ R.212

Now we apply Lemma 3.10(ii) to see that f(rs) = f(r)f(s),∀r, s ∈ R.213

Before we present the commutativity theorems, we shall state a basic result214

of Chang from [7] (Lemma 1).215

Lemma 3.12 [7]. Let R be a prime ring and σ be a non-zero semiderivation of216

R. If rσ(s) = 0 (or σ(s)r = 0) for all s ∈ R, then r = 0.217

We extend the above result to prime semirings as follows.218

Lemma 3.13. Let R be an additively cancellative prime semiring and σ be a219

non-zero semiderivation of R. If rσ(s) = 0 (or σ(s)r = 0) for all s ∈ R, then220

r = 0.221
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Proof. Let r ∈ R. Then we have222

rσ(s) = 0223

rσ(st) = 0,∀t ∈ R224

rσ(s)f(t) + rsσ(t) = 0225

rsσ(t) = 0,∀s, t ∈ R226

rRσ(R) = 0.227

This imples r = 0 since R is prime and σ is non-zero.228

4. Commutativity conditions in semirings229

To begin with, we generalize two of the classical results of Herstein about deriva-230

tions in prime rings [15, 16] to prime semirings. Then, we move on to generalize231

the results about semiderivations in prime rings by Chang [7] to additively can-232

cellative prime semirings with semiderivations.233

Throughout this section we denote R to be an additively cancellative prime234

semiring, R∆ to be the corresponding prime ring of differences of the semiring R,235

Z(R) to be the centre of R, Z(R∆) to be the centre of R∆ and [x, y] = xy − yx,236

for x, y ∈ R∆, the commutator in R∆. We also assume the map f corresponding237

to semiderivation σ as surjective throughout unless stated otherwise.238

Remark 4.1. When R is additively cancellative semiring (which is not a ring),239

we observe that the characteristic of R∆ must be zero. Otherwise, if characteristic240

of R∆ is n, then nx = 0 for all x ∈ R∆ and in particular nr = 0 for all r ∈ R.241

This will imply that R is a ring and so R will coincide with R∆.242

Theorem 4.2. Let d 6= 0 be a derivation of R. If d(r)d(s) = d(s)d(r) for all243

r, s ∈ R, then R is a commutative semi-integral domain (a semiring where the244

product of two non-zero elements is always non-zero).245

Proof. Let d∆ be the derivation of R∆ corresponding to the derivation d of R.246

We first prove that d∆(x)d∆(y) = d∆(y)d∆(x) for all x, y ∈ R∆. Let x = a − b247

and y = c− d be any two elements of R∆ where a, b, c, d ∈ R. Then we have248

d∆(x)d∆(y) = d∆(a− b)d∆(c− d)249

= (d(a) − d(b))(d(c) − d(d))250

= d(a)d(c) − d(a)d(d) − d(b)d(c) + d(b)d(d)251

= d(c)d(a) − d(d)d(a) − d(c)d(b) + d(d)d(b)252

= (d(c) − d(d))(d(a) − d(b))253
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= d∆(c− d)d∆(a− b)254

= d∆(y)d∆(x).255

Also, it is clear that char(R∆) 6= 2 by Remark 4.1. Now we see that the hy-256

potheses of Theorem 2 [15] are satisfied for R∆ and thus R∆ is a commutative257

integral domain. Hence we get the desired result since R is embedded in R∆ and258

the restriction of d∆ to R is simply the derivation d.259

Theorem 4.3. Let d 6= 0 be a derivation of R and suppose a ∈ R such that260

ad(r) = d(r)a for all r ∈ R. Then a ∈ Z(R).261

Proof. Let d∆ be the derivation of R∆ corresponding to the derivation d of R.262

We note that by Remark 4.1 R∆ must be of characteristic not two. Now let263

a ∈ R and then we prove that ad∆(x) = d∆(x)a for all x ∈ R∆. Let x = u − v264

for u, v ∈ R265

ad∆(x) = ad∆(u− v)266

= a(d(u)− d(v)267

= ad(u)− ad(v)268

= d(u)a− d(v)a269

= d∆(u− v)a270

= d∆(x)a.271

Now by part (1) of Herstein’s Theorem part in [16] we get that a ∈ Z(R∆) and272

thus a ∈ Z(R).273

Lemma 4.4. Let σf be a semiderivation of R and σ∆

f∆ be the corresponding274

semiderivation of R∆. Then, we have (σ(R))
∆

= σ∆(R∆).275

Proof. Let x ∈ (σ(R))
∆

such that x = a − b for a, b ∈ σ(R). Since a, b ∈ σ(R)276

there exists r, s such that σ(r) = a and σ(s) = b. Then, x = a−b = σ(r)−σ(s) =277

σ∆(r − s) and hence x ∈ σ∆(R∆). Thus we have (σ(R))
∆

⊆ σ∆(R∆).278

On the other had, let x ∈ σ∆(R∆). Then, x = σ∆(u−v) for some u−v ∈ R∆
279

where u, v ∈ R. So, x = σ(u) − σ(v) = a′ − b′, where a′, b′ ∈ σ(R) and hence280

x ∈ (σ(R))∆. Thus we have σ∆(R∆) ⊆ (σ(R))
∆

and so we are done.281

Lemma 4.5. Let σ 6= 0 be a semiderivation of R such that σ(R) ⊂ Z(R), then282

R is a commutative semi-integral domain.283

Proof. Let x ∈ σ∆(R∆) where σ∆ is the semiderivation of R∆ corresponding284

to σ of R. Let x = a − b where a, b ∈ σ(R). If we let y ∈ R∆, such that285

y = c− d for c, d ∈ R, then we have xy = (a− b)(c− d) = (ac+ bd)− (ad+ bc) =286
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(ca + db) − (da + cb) = (c − d)(a − b) = yx. Thus we have x ∈ Z(R∆) implying287

that σ∆(R∆) ⊂ Z(R∆). Hence, by Lemma 2 in [7] R∆ is a commutative integral288

domain. ThereforeRmust be semi-integral domain sinceR is embedded in R∆.289

Theorem 4.6. Let σ 6= 0 be a semiderivation of R such that σ(r)σ(s) = σ(s)σ(r)290

for all r, s ∈ R. Then R is a commutative semi-integral domain.291

Proof. Let σ∆ be the semiderivation of R∆ corresponding to the semiderivation292

σ of R. Note that by Remark 4.1 we have char(R∆) 6= 2. Next, let x, y ∈ R∆,293

we prove σ∆(x)σ∆(y) = σ∆(y)σ∆(x). Consider x = a − b and y = c − d for294

a, b, c, d ∈ R, then we have295

σ∆(x)σ∆(y) = σ∆(a− b)σ∆(c− d)296

= (σ(a) − σ(b))(σ(c) − σ(d))297

= σ(a)σ(c) − σ(a)σ(d) − σ(b)σ(c) + σ(b)σ(d)298

= σ(c)σ(a) − σ(d)σ(a) − σ(c)σ(b) + σ(d)σ(b)299

= (σ(c) − σ(d))(σ(a) − σ(b))300

= σ∆(c− d)σ∆(a− b)301

= σ∆(y)σ∆(x).302

Then by Theorem 2 in [7], we must have R∆ to be a commutative integral domain303

and thus R must be semi-integral domain since R is embedded in R∆.304

Theorem 4.7. Let σ 6= 0 be a semiderivation of R and r 6= 0 ∈ R. If rσ(R) ⊂305

Z(R) then R is commutative.306

Proof. Let σ∆ be the semiderivation of R∆ corresponding to the semiderivation307

σ of R. Let r 6= 0 ∈ R, x ∈ σ∆(R∆) and y ∈ R∆. Consider x = a−b and y = c−d308

where a, b ∈ σ(R) and c, d ∈ R. Then we have309

(rx)y = r(a− b)(c− d)310

= r(ac− ad− bc+ db)311

= rac− rad− rbc+ rbd312

= cra− dra− crb+ drb313

= (c− d)(r(a− b))314

= y(rx).315

Thus, rσ∆(R∆) ⊂ Z(R∆). Now, by Theorem 3 of Chang [7] we get R∆ is a316

commutative ring. Since R is embedded in R∆, R must be commutative as317

well.318
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Theorem 4.8. Let σ 6= 0 be a semiderivation of R and r ∈ R. If rσ(R) = σ(R)r319

then r ∈ Z(R).320

Proof. Let σ∆ be the semiderivation of R∆ corresponding to the semiderivation321

σ of R. Let r ∈ R and let x ∈ σ∆(R∆). Consider x = a − b where a, b ∈ σ(R).322

Then we have rx = r(a − b) = ra − rb = ar − br = (a − b)r = xr. Hence we323

get [r, σ∆(R∆)] = 0. So, by Theorem 4 in [7] we have r ∈ Z(R∆) and hence324

r ∈ Z(R).325

Theorem 4.9. Let σ 6= 0 be a semiderivation of R and r ∈ R. For all s, u ∈ R,326

if rσ(s)u+ uσ(s)r = urσ(s) + σ(s)ru then r ∈ Z(R).327

Proof. Let σ∆ be the semiderivation of R∆ corresponding to the semiderivation328

σ of R. Let r ∈ R and let x, y ∈ R∆. We now prove that [r, σ∆(R∆)] ⊂ Z(R∆).329

That is, we need to prove the following equation330

(rσ∆(x)− σ∆(x)r)y = y(rσ∆(x)− σ∆(x)r), for all x, y ∈ R∆.331

That is, to prove332

rσ∆(x)y + yσ∆(x)r = yrσ∆(x) + σ∆(x)ry, for all x, y ∈ R∆.333

Assume x = a− b, y = c− d where a, b, c, d ∈ R. Then we have334

rσ∆(x)y + yσ∆(x)r = r(σ∆(a− b))(c − d) + (c− d)(σ∆(a− b))r335

= r(σ(a) − σ(b))(c − d) + (c− d)(σ(a) − σ(b))r336

= (rσ(a) − rσ(b))(c − d) + (c− d)(σ(a)r − σ(b)r)337

= rσ(a)c − rσ(a)d− rσ(b)c+ rσ(b)d338

+ cσ(a)r − cσ(b)r − dσ(a)r + dσ(b)r339

= (crσ(a) + σ(a)rc) + (drσ(b) + σ(b)rd)340

− (drσ(a) + σ(a−)rd)− (crσ(b) + σ(b)rc)341

= (c− d)(rσ(a) − rσ(b)) + (σ(a)r − σ(b)r)(c − d)342

= yrσ∆(x) + σ∆(x)ry.343

Thus by Theorem 5 in [7], we have r ∈ Z(R∆) which implies that r ∈ R.344

Theorem 4.10. Let σ 6= 0 be a semiderivation of R such that σ(r)σ(s)u +345

uσ(s)σ(r) = σ(s)σ(r)u+ uσ(r)σ(s) for all r, s, u ∈ R. Then R is commutative.346

Proof. Applying Theorem 4.9 we see that σ(r) ⊂ Z(R) and then Lemma 4.5347

implies that R must be commutative.348

Theorem 4.11. Let σ 6= 0 be a semiderivation of R. If σ2(R) ⊂ Z(R), then R349

is commutative.350
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Proof. Let g = σ∆ be the semiderivation of R∆ corresponding to the semideriva-351

tion σ of R. Let r ∈ R and by hypothesis we have σ2(r)s = sσ2(r) for all352

r, s ∈ R. Now, let x, y ∈ R∆ and x = a− b, y = c− d for a, b, c, d ∈ R. We prove353

g2(R∆) ⊂ Z(R∆) as follows354

g2(x)y = (g2(a− b))(c− d)355

= (σ2(a)− σ2(b))(c − d)356

= σ2(a)c − σ2(a)d − σ2(b)c− σ2(b)d357

= cσ2(a)− dσ2(a)− cσ2(b)− dσ2(b)358

= (c− d)(σ2(a)σ2(b))359

= (c− d)(g2(a− b))360

= yg2(x).361

Hence by Theorem 7 in [7], we must have R∆ to be commutative and so is R.362

Theorem 4.12. Let σf , τf 6= 0 be two semiderivation of R. If στ(R) ⊂ Z(R)363

and if the iterative (στ)f is also a semiderivation of R, then R is commutative.364

Proof. Let σ∆ and τ∆ be the semiderivation ofR∆ corresponding to the semideriva-365

tion σ and τ respectively of R. Let r, s ∈ R and by the assumption of the the-366

orem we have (στ(r))s = s(στ(r)) for all r, s ∈ R. Now, let x, y ∈ R∆ and367

x = a− b, y = c− d for a, b, c, d ∈ R. We prove (στ)∆(R∆) ⊂ Z(R∆) as follows368

((στ)∆(x))y = ((στ)∆(a− b))(c − d)369

= (στ(a) − στ(b))(c − d)370

= στ(a)c − στ(a)d− στ(b)c − στ(b)d371

= cστ(a) − dστ(a)− cστ(b) − dστ(b)372

= (c− d)(στ(a) − στ(b))373

= (c− d)((στ)∆(a− b))374

= y((στ)∆(x)).375

Hence by Theorem 8 in [7], we must have R∆ to be commutative and so is R.376

Lemma 4.13. Let R be an additively cancellative yoked semiring. Let σf be a377

semiderivation of R such that rσ(r) = σ(r)r, for all r ∈ R, then378

(i) sσ(u) + uσ(s) = σ(s)u+ σ(u)s, for some u ∈ R379

(ii) rσ(s) + sσ(r) = σ(r)s+ σ(s)r, ∀r, s ∈ R380

Proof. Follow along the lines of the proof in Lemma 2.11 in [10].381
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Remark 4.14. In fact, the above result is true for any additive map of an382

additively cancellative yoked semiring R.383

We conclude this paper with a theorem that extends the results due to Posner384

[21] and Chang [7].385

Theorem 4.15. Let R be an additively cancellative yoked prime semiring. Let386

σf 6= 0 be a semiderivation of R. If rσ(r) = σ(r)r, then R is commutative.387

Proof. Let σ∆ be the semiderivation of R∆ corresponding to the semiderivation388

σ of R. Let r ∈ R and let x, y ∈ R∆. We first note that char(R∆) 6= 2 since389

R is additively cancellative (Remark 4.1). Next, we notice that R∆ is a prime390

ring since R is a prime semiring (Lemma 2.6 in [10]). Finally, we prove that391

[x, σ∆(x)] ∈ Z(R∆). That is, we need to prove the following equation392

(xσ∆(x)− σ∆(x)x)y = y(xσ∆(x)− σ∆(x)x), for all x, y ∈ R∆.393

That is, to prove394

xσ∆(x)y + yσ∆(x)x = yxσ∆(x) + σ∆(x)xy, for all x, y ∈ R∆.395

Assume x = a− b, y = c− d where a, b, c, d ∈ R. Then we have396

xσ∆(x)y + yσ∆(x)x = (a− b)(σ∆(a− b))(c − d) + (c− d)(σ∆(a− b))(a− b)397

= (a− b)(σ(a) − σ(b))(c − d) + (c− d)(σ(a) − σ(b))(a − b)398

= (aσ(a) − aσ(b)− bσ(a) + bσ(b))(c − d)399

+ (c− d)(σ(a)a − σ(a)b − σ(b)a+ σ(b)b)400

= (σ(a)a − σ(a)b− σ(b)a+ σ(b)b)(c − d)401

+ (c− d)(aσ(a) − aσ(b) − bσ(a) + bσ(b))402

[by hypothesis and by Lemma 4.13]403

= (σ(a) − σ(b))(a− b)(c − d) + (c− d)(a− b)(σ(a) − σ(b))404

= (σ∆(a− b))(a− b)(c − d) + (c− d)(a− b)(σ∆(a− b))405

= (σ∆(x))xy + yx(σ∆(x))406

= yxσ∆(x) + σ∆(x)xy.407

Now, we apply Theorem 9 of Chang [7] to see that R∆ is commutative and thus408

we obtain R to be commutative (since the R is embedded into R∆).409
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