DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in press


Authors:

S.J. Gogoi

Saurav J. Gogoi

Department of Mathematics
Gauhati University
Guwahati-14, Assam, India

email: sauravjyoti53@gmail.com

0009-0008-9702-8937

H.K. Saikia

Helen K. Saikia

Department of Mathematics
Gauhati University
Guwahati-14, Assam, India

email: hsaikia@yahoo.com

0000-0003-1971-9472

Title:

A note on tri-clean rings

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications

Received: 2024-08-27 , Revised: 2024-10-31 , Accepted: 2024-10-31 , Available online: 2025-05-29 , https://doi.org/10.7151/dmgaa.1481

Abstract:

We introduce a new class of rings, in which elements are sum of units and tripotents. This class of rings is called tri-clean ($T$-clean) rings which is a generalized structure of clean rings and invo tri-clean rings. We derive several properties of $T$-clean rings. We show that if an element $a$ is $T$-clean in a corner ring $eRe$ for some idempotent $e$ then it is also a $T$-clean element in $R$. If $2$ is an unit in $R$ then $R$ is a $T$-clean ring if and only if $\frac{R}{I}$ is a $T$-clean ring for every nil ideal $I$ of $R$. We also prove that all the upper triangular matrix rings over $T$-clean ring is a $T$-clean ring.

Keywords:

clean rings, $T$-clean rings, tripotents, lifting tripotents, ideal extension

References:

  1. S. Ahmad, AL N. Mohammed, A. Ali and R. Mahmood, Involution t-clean rings with applications, Eur. j. Pure Appl. Math. 15(4) (2022) 1637–1648.
    https://doi.org/10.29020/nybg.ejpam.v15i4.4530
  2. M. Aristidou and K. Hailemariam, Tripotent elements in quaternion rings over $\mathbb{Z}$, Acta Universitatis Sapientiae, Mathematica 13(1) (2021) 78–87.
    https://doi.org/10.2478/ausm-2021-0004
  3. N. Ashrafi and E. Nasibi, r-clean rings, Mathematical Reports 15(65) (2013) 125–132.
  4. G. Călugăreanu and H.F. Pop, Negative clean rings, {Analele ştiinţifice ale Universităţii" Ovidius" Constanţa. Seria Matematică} 30(2) (2022) 63–89.
    https://doi.org/10.2478/auom-2022-0019
  5. W. Chen, On clean rings and clean elements, South. Asian Bull. Math. 32(5) (2008) 00–06.
  6. P.V. Danchev, Invo-clean unital rings, Comm. Korean Math. Soc. 32(1) (2017) 19–27.
    https://doi.org/10.4134/CKMS.c160054
  7. P.V. Danchev, Invo-regular unital rings, Ann. Univ. Mariae Curie-Sklodowska Sect. A – Math. 72(1) (2018) 45–53.
    https://doi.org/10.17951/a.2018.72.1.45-53
  8. P.V. Danchev, Corners of invo-clean unital rings, Pure Math. Sci. 7(1) (2018) 27–31.
    https://doi.org/10.12988/pms.2018.877
  9. P.V. Danchev, Commutative invo-clean group rings, Univ. J. Math. $\&$ Math. Sci. 11(1) (2018) 1–6.
    https://doi.org/10.17654/UM011010001
  10. J.L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38(2) (1932) 85–88.
  11. M. Henriksen, Two classes of rings generated by their units, J. Algebra 31(1) (1974) 182–193.
  12. Y. Hirano and H. Tominaga, Rings in which every element is the sum of two idempotents, Bull. Austral. Math. Soc. 37(2) (1988) 161–164.
    https://doi.org/10.1017/S000497270002668X
  13. H.A. Khashan, NR-clean rings, Vietnam J. Math. 44 (2016) 749–759.
    https://doi.org/10.1007/s10013-016-0197-8
  14. D. Khurana, Lifting potent elements modulo nil ideals, J. Pure Appl. Algebra 225(11) (2021) 106762.
    https://doi.org/10.1016/j.jpaa.2021.106762
  15. M.T. Koşan, T. Yildiri and Y. Zhou, Rings whose elements are the sum of a tripotent and an element from the Jacobson radical, Can. Math. Bull. 62(4) (2019) 810–821.
    https://doi.org/10.4153/S0008439519000092
  16. T.Y. Lam, Exercises in Classical Ring Theory (Springer Science {\&} Business Media, 2006).
  17. T.Y. Lam, An introduction to q-central idempotents and q-abelian rings, Comm. Algebra 51(3) (2023) 1071–1088.
    https://doi.org/10.1080/00927872.2022.2123921
  18. A.R. Nasr-Isfahani, On skew triangular matrix rings, Comm. Algebra 39(11) (2011) 4461–4469.
    https://doi.org/10.1080/00927872.2010.520177
  19. W.K. Nicholson, Lifting idempotents and exchange rings, {Tran. Amer. Math. Soc.} 229 (1977) 269–278.
    https://doi.org/10.1090/S0002-9947-1977-0439876-2
  20. Z. Ying, T. Koşan and Y. Zhou, Rings in which every element is a sum of two tripotents, Can. Math. Bull. 59(3) (2016) 661–672.
    https://doi.org/10.4153/CMB-2016-009-0
  21. H. Zhang, Generalized clean rings, J. Nanjing Univ. Math. Biquarterly 22(2) (2005) 183–188.

Close