Article in press
Authors:
Title:
A note on tri-clean rings
PDFSource:
Discussiones Mathematicae - General Algebra and Applications
Received: 2024-08-27 , Revised: 2024-10-31 , Accepted: 2024-10-31 , Available online: 2025-05-29 , https://doi.org/10.7151/dmgaa.1481
Abstract:
We introduce a new class of rings, in which elements are sum of units and
tripotents. This class of rings is called tri-clean ($T$-clean) rings which
is a generalized structure of clean rings and invo tri-clean rings. We derive
several properties of $T$-clean rings. We show that if an element $a$ is
$T$-clean in a corner ring $eRe$ for some idempotent $e$ then it is also a
$T$-clean element in $R$. If $2$ is an unit in $R$ then $R$ is a $T$-clean
ring if and only if $\frac{R}{I}$ is a $T$-clean ring for every nil ideal $I$
of $R$. We also prove that all the upper triangular matrix rings over $T$-clean
ring is a $T$-clean ring.
Keywords:
clean rings, $T$-clean rings, tripotents, lifting tripotents, ideal extension
References:
- S. Ahmad, AL N. Mohammed, A. Ali and R. Mahmood, Involution t-clean rings with applications, Eur. j. Pure Appl. Math. 15(4) (2022) 1637–1648.
https://doi.org/10.29020/nybg.ejpam.v15i4.4530 - M. Aristidou and K. Hailemariam, Tripotent elements in quaternion rings over $\mathbb{Z}$, Acta Universitatis Sapientiae, Mathematica 13(1) (2021) 78–87.
https://doi.org/10.2478/ausm-2021-0004 - N. Ashrafi and E. Nasibi, r-clean rings, Mathematical Reports 15(65) (2013) 125–132.
- G. Călugăreanu and H.F. Pop, Negative clean rings, {Analele ştiinţifice ale Universităţii" Ovidius" Constanţa. Seria Matematică} 30(2) (2022) 63–89.
https://doi.org/10.2478/auom-2022-0019 - W. Chen, On clean rings and clean elements, South. Asian Bull. Math. 32(5) (2008) 00–06.
- P.V. Danchev, Invo-clean unital rings, Comm. Korean Math. Soc. 32(1) (2017) 19–27.
https://doi.org/10.4134/CKMS.c160054 - P.V. Danchev, Invo-regular unital rings, Ann. Univ. Mariae Curie-Sklodowska Sect. A – Math. 72(1) (2018) 45–53.
https://doi.org/10.17951/a.2018.72.1.45-53 - P.V. Danchev, Corners of invo-clean unital rings, Pure Math. Sci. 7(1) (2018) 27–31.
https://doi.org/10.12988/pms.2018.877 - P.V. Danchev, Commutative invo-clean group rings, Univ. J. Math. $\&$ Math. Sci. 11(1) (2018) 1–6.
https://doi.org/10.17654/UM011010001 - J.L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38(2) (1932) 85–88.
- M. Henriksen, Two classes of rings generated by their units, J. Algebra 31(1) (1974) 182–193.
- Y. Hirano and H. Tominaga, Rings in which every element is the sum of two idempotents, Bull. Austral. Math. Soc. 37(2) (1988) 161–164.
https://doi.org/10.1017/S000497270002668X - H.A. Khashan, NR-clean rings, Vietnam J. Math. 44 (2016) 749–759.
https://doi.org/10.1007/s10013-016-0197-8 - D. Khurana, Lifting potent elements modulo nil ideals, J. Pure Appl. Algebra 225(11) (2021) 106762.
https://doi.org/10.1016/j.jpaa.2021.106762 - M.T. Koşan, T. Yildiri and Y. Zhou, Rings whose elements are the sum of a tripotent and an element from the Jacobson radical, Can. Math. Bull. 62(4) (2019) 810–821.
https://doi.org/10.4153/S0008439519000092 - T.Y. Lam, Exercises in Classical Ring Theory (Springer Science {\&} Business Media, 2006).
- T.Y. Lam, An introduction to q-central idempotents and q-abelian rings, Comm. Algebra 51(3) (2023) 1071–1088.
https://doi.org/10.1080/00927872.2022.2123921 - A.R. Nasr-Isfahani, On skew triangular matrix rings, Comm. Algebra 39(11) (2011) 4461–4469.
https://doi.org/10.1080/00927872.2010.520177 - W.K. Nicholson, Lifting idempotents and exchange rings, {Tran. Amer. Math. Soc.} 229 (1977) 269–278.
https://doi.org/10.1090/S0002-9947-1977-0439876-2 - Z. Ying, T. Koşan and Y. Zhou, Rings in which every element is a sum of two tripotents, Can. Math. Bull. 59(3) (2016) 661–672.
https://doi.org/10.4153/CMB-2016-009-0 - H. Zhang, Generalized clean rings, J. Nanjing Univ. Math. Biquarterly 22(2) (2005) 183–188.
Close