¹ Discussiones Mathematicae

² General Algebra and Applications xx (xxxx) 1–15

3

4

5

10

22

A NOTE ON TRI-CLEAN RINGS

SAURAV J. GOGOI AND HELEN K. SAIKIA

6 Department of Mathematics 7 Gauhati University 8 Guwahati-14, Assam, India 9 **e-mail:** sauravjyoti53@gmail.com hsaikia@yahoo.com

Abstract

We introduce a new class of rings, in which elements are sum of units 11 and tripotents. This class of rings is called tri-clean (T-clean) rings which 12 is a generalized structure of clean rings and invo tri-clean rings. We derive 13 several properties of T-clean rings. We show that if an element a is T-clean 14 in a corner ring eRe for some idempotent e then it is also a T-clean element 15 in R. If 2 is an unit in R then R is a T-clean ring if and only if $\frac{R}{T}$ is a T-clean 16 ring for every nil ideal I of R. We also prove that all the upper triangular 17 matrix rings over *T*-clean ring is a *T*-clean ring. 18

Keywords: clean rings, T-clean rings, tripotents, lifting tripotents, ideal
 extension.

21 **2020** Mathematics Subject Classification: 16E50, 16U99, 16N40.

1. INTRODUCTION

In this discussion R denotes a ring with 1 unless specified. An element $a \in$ 23 R is called clean if a = u + e for some unit u and idempotent e in R. The 24 concept of clean elements were first introduced 47 years back by Nicholson [19]. 25 Hongbo introduced the generalized clean rings (G - clean) and showed several 26 relationships of clean rings and (s, 2) rings in the paper [21]. In 2008 Chen [5] 27 extended clean elements of commutative reduced rings to arbitrary abelian rings. 28 In 2017 Danchev [6] defined a ring R to be invo clean if each element of R can 29 be expressed as a sum of an involution element and idempotent element. In the 30 paper the author completely described the algebraic structure of invo-clean rings. 31 Later in 2018 Danchev [9] gave some important criterion when a commutative 32

group ring is invo-clean ring. For further details on invo clean rings and related
topics, we refer to [7, 8]. Following in 2022 Ahmad *et al.* [1] extended the concept
to involution tri clean rings and showed many applications in graph theory.

Meanwhile several authors have studied various properties of rings widely where every element of R can be splitted into two parts. For better insight into these rings the readers are referred to [3, 12, 20, 13, 15] etc.

All clean elements in a ring R satisfies the property (P_1) : $a \in R$ is clean 39 if and only if a-1 is clean. It is well known that the clean elements in R are 40 not closed under additive inverse means it does not satisfy the property (P_2) : 41 a is clean in R if and only if -a is clean in R. Rings satisfying property P_2 is 42 investigated by Grigore and Horia in the paper [4]. But the tri-clean rings or T-43 clean ring satisfies property P_2 and does not satisfy property P_1 . In this article, 44 we characterize the tri-clean rings which satisfy property P_2 and do not satisfy 45 property P_1 . Apart from this, the core objective of this article is to study several 46 properties of T-clean rings. 47

We denote idem(R), T(R), U(R) are set of all idempotents, tripotents and 48 group of units in a ring R respectively. $UT_n(R)$ denotes the $n \times n$ upper triangular 49 matrix ring over R with the usual addition and multiplication of the matrix. 50 We also recall J(R) the Jacobson radical, which is equal to the intersection of 51 all maximal right/left ideals in a ring R. It is well known that $J(R) = \{x \in$ 52 $R: 1 + yxz \in U(R), \forall y, z \in R$ which is indeed an ideal of R. Interestingly 53 J(R) + U(R) = U(R). P(R) denotes the set of all elements $x \in R$ such that 54 $x^n = x$ for some positive integer n, called the potent elements. For any $a \in R$, 55 $I(a) = \{r \in R : ara = a\}$ is called the inner inverses of a in R. We also noticed 56 that semi-tripotent rings are T-clean but the converse is not true. We know that 57 idempotents can be lifted modulo every nil ideal in a ring R ([14], Theorem 2). 58 However, the same is not true for tripotent elements. For example, $\overline{2} \in \frac{\mathbb{Z}_8}{2\mathbb{Z}_8}$ is 59 a tripotent but 2 is not a tripotent in \mathbb{Z}_8 . Khurana [14] studied the generalize 60 conditions on a ring R for which potent elements lifted modulo every nil ideals. 61 With this motivation we are inspired to establish the notion of T-clean rings and 62 deduce several noteworthy findings. 63

2. Preliminaries

⁶⁵ In this section, we provide the fundamental definitions and findings that are ⁶⁶ necessary for our work. We start with the definition of tri-clean elements and ⁶⁷ tri-clean rings.

Definition. An element a of a ring R is called tri-clean or T-clean if a can be written as a sum of an unit and a tripotent. If every element of R is tri-clean then R is called a T-clean ring.

64

We denote $T(R) = \{x \in R : x^3 = x\}$ and $T - clean(R) = \{a \in R : a = u + t, for some u \in U(R) and t \in T(R)\}$. If R = T - clean(R) then R is a T-clean ring. We will often refer the equation a = u + t for some $u \in U(R)$ and $t \in T(R)$ as tri-clean or T-clean decomposition of a.

Example 1. \mathbb{Z}_4 is *T*-clean as well as clean. However, \mathbb{Z} is not *T*-clean.

Example 2. If $a \in R$ is a *T*-clean then by simple computations we have -a is also a *T*-clean.

It is clear that all clean rings are T-clean but the converse is not true. Here r9 is an example.

Example 3. Let $A = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$ in the ring $UT_2(\mathbb{Z})$. Then A is T-clean by the decomposition given by

$$\begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

⁸⁰ but A is not clean by Proposition 11 of [4].

There may be more than one T-clean decomposition of $a \in R$. If there is 81 only one T-clean decomposition then it is called uniquely T-clean. Again, if the 82 unit and the tripotent of the T-clean decomposition of a commute, then it is 83 called strongly T-clean. However, we will not go into great detail about these 84 properties of T-clean ring. In addition, determining all the T-clean or number of 85 T-clean decompositions for a is a matter of another significant work. The matrix 86 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & -n \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & n \\ 0 & -1 \end{pmatrix}$ in the ring $UT_2(\mathbb{Z})$ is T-clean with infinitely 87 many T-clean decomposition. 88

⁸⁹ **Definition** [15]. A ring R is called semi - n - potent if each element of R can ⁹⁰ be written as a sum of an element from Jacobson's radical and an n - potent.

Example 4. Semi-tripotent (semi-3-potent) rings are *T*-clean ring. If *R* is a semi-tripotent ring then for any $a \in R$, a + 1 = j + f for some $j \in J(R)$ and $f^3 = f$. Then a = (j - 1) + f is a *T*-clean decomposition as $j - 1 \in U(R)$. However, the reverse implication does not hold. Here is an example.

Example 5. Let $R = M_2(\mathbb{Q})$. Then

$$\begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}$$

is a T-clean in R but not semi-tripotent ([15], Remark 1).

Remark 6. ([16], Ex. 1.4) For any ring R. If $ab, ba \in U(R)$ then $a, b \in U(R)$. If R is a dedekind domain then only $ab \in U(R)$ is enough to conclude both $a, b \in U(R)$.

Let $a \in R$ be a tripotent (unit) element and I be an ideal of R. We say alifts modulo I if there exists a tripotent (unit) element $t \in R$ ($u \in R$) such that $t - a \in I$ ($u - a \in I$).

The following lemmas are about the units and tripotents that can be lifted modulo every nil ideal of R.

Lemma 7. For any ring R and I is a nil ideal of R. If $\bar{a} \in U(\frac{R}{I})$, then there exists $u \in U(R)$ such that $a - u \in I$.

Proof. We consider $\bar{v} \in \frac{R}{I}$ such that $\bar{a}\bar{v} = \bar{1}$ in $\frac{R}{I}$. Thus, $av-1 \in I$ and $va-1 \in I$ and hence we get $av \in 1+I$ and $va \in 1+I$. But as I is nil ideal we have $1+I \subseteq U(R)$. So, $av, va \in U(R)$ and hence by Remark 6 $a, v \in U(R)$. Now we consider $u = v^{-1}$ then we get $a+I = (1+I)(v+I)^{-1} = (1+I)(v^{-1}+I) = (v^{-1}+I) = u+I$. Therefore, $a - u \in I$.

Lemma 8. For any ring R and Jacobson's radical J(R) of R. If $\bar{a} \in U(\frac{R}{J(R)})$, then there exists $u \in U(R)$ such that $a - u \in J(R)$.

113 **Proof.** The proof is similar to Lemma 7 because for any $x \in J(R)$, 1 + x is an 114 unit.

Lemma 9. ([14], Theorem 8) Let $I \subseteq R$ be an one sided nil ideal and $a \in R$ is such that $a^3 - a \in I$. If $2 \in R$ is an unit, then there exists $t \in R$ with $t^3 = t$ such that $a - t \in I$.

The following lemma determines all the tripotent elements of $\mathbb{Z}_p[i]$, where pis a prime. If $p \equiv 3 \pmod{4}$ then $\mathbb{Z}_p[i]$ is a field and hence contains only the trivial tripotents $\{0, 1, p - 1\}$.

Lemma 10. ([2], Proposition 1) Let p be a prime number such that $p \equiv 1 \pmod{4}$ and $x = a + ib \in \mathbb{Z}_p[i]$. Then x is a tripotent if and only if $a^2 = \frac{1-p}{4}$ and $b^2 = \frac{p-1}{4}$.

123 **Lemma 11.** Let $a \in R$ be such that $a^n = a$ for some $n \in \mathbb{N}$. Then a is T-clean.

Proof. We consider $a^n = a$, $n \ge 2$ is a potent element in a ring R. Then by Lemma 2.1 of [15] we have x = ue where $e^2 = e$, $u^{n-1} = 1$ and ue = eu. Now we suppose v = ue - (1 - e) which is an unit in R with $v^{-1} = u^{n-2}e - (1 - e)$. Leaving f = 1 - e we get a = v + f is a clean decomposition. Therefore, a is clean and hence T-clean.

129 **Remark 12.** Any potent ring is a *T*-clean ring.

137

Lemma 13. ([12], Theorem 1) The following statements are equivalent for any
ring R.

- 132 (1) The ring R satisfies the identity $a^3 = a$.
- 133 (2) The ring R is commutative such that for every $a \in R$, a = e + f for some 134 $e, f \in idem(R)$.
- (3) For any $a \in R$ we have a = e + f for some $e, f \in idem(R)$ such that ef = fe.

3. Main results

¹³⁸ In this section, we present the main results. We start with a proposition that can ¹³⁹ be used for an alternative definition of *T*-clean rings.

Proposition 14. Let R be a ring. Then R is a T-clean ring if and only if for every $a \in R$ we get a = t - u for some $t \in T(R)$ and $u \in U(R)$.

Proof. We suppose R is a T-clean ring and -a = t+u is a T-clean decomposition for some $t \in T(R)$ and $u \in U(R)$. Then we can write a = (-t) - u where $(-t)^3 = -t^3 = -t \in T(R)$. Conversely, we suppose that for every $a \in R$, -a = t - u for some $t \in T(R)$ and $u \in U(R)$. Then a = (-t) + u where, $-t \in T(R)$ is a T-clean decomposition. So, R is a T-clean ring.

Proposition 15. Let R be a ring with char(R) = 3. Then x is a T-clean if and only if x - 1 is a T-clean.

149 **Proof.** (=>) We assume, x = u + t for some $u \in U(R)$ and $t \in T(R)$. Then 150 x - 1 = u + (t - 1). As, char(R) = 3 we have $(t - 1)^3 = t^3 - 3t^2 + 3t - 1 = t^3 - 1 = t - 1 \in T(R)$.

152 (<=) we assume x-1 = u+t for some $u \in U(R)$ and $t \in T(R)$. Then x = u+(t+1)153 1). Again as, char(R) = 3 we obtain $(t+1)^3 = t^3 + 3t^2 + 3t + 1 = t + 1 \in T(R)$. 154 Hence the result.

155 **Proposition 16.** Any homomorphic image of a T-clean ring is a T-clean.

Proof. We suppose $\phi: R \to S$ is an epimorphism and R is T-clean. Let $x \in S$ is any element. Then there exists $a \in R$ such that $\phi(a) = x$. So writing a = u + tfor some $u \in U(R)$ and $t \in T(R)$ we get $x = \phi(u + t) = \phi(u) + \phi(t)$. Since any ring homomorphism sends unit to unit we have $\phi(u) \in U(S)$ and $(\phi(t))^3 = \phi(t^3) = \phi(t) \in T(S)$. Therefore, S is a T-clean ring. **Remark 17.** From Proposition 16 we have for any ring R and ideal I of R. If R is a T-clean ring then $\frac{R}{I}$ is T-clean too. But the reverse implication does not hold. For we take the following example.

Example 18. $\frac{\mathbb{Z}}{8\mathbb{Z}}$ is a *T*-clean ring but \mathbb{Z} is not a *T*-clean ring.

Proposition 19. Let R be a ring and $e \in idem(R)$. If $a \in eRe$ is a T-clean then a is T-clean in R.

Proof. We consider a = u' + t is a *T*-clean decomposition in eRe, where $t^3 = t \in eRe$ and $u' \in U(eRe)$ with inverse u'w = e = wu' in eRe. Then we can easily prove that u = u' - (1 - e) is an unit with its inverse $u^{-1} = w - (1 - e)$ in *R*. Now a - u = (u' + t) - u = u' + t - u' + (1 - e) = t + (1 - e). Here,

$$\begin{aligned} (t+(1-e))^3 &= (t+(1-e))(t^2+(1-e)t+t(1-e)+(1-e)) \\ &= (t+(1-e))(t^2+t-et+t-te+(1-e)) \\ &= (t+(1-e))(t^2+(1-e)) \ (as,t\in eRe => et=t=te) \\ &= (t+(1-e))\in T(R). \end{aligned}$$

Therefore, a = u + (t + (1 - e)) is a *T*-clean decomposition in *R* and hence *a* is a *T*-clean in *R*.

Theorem 20. Let R be any ring and I be a nil ideal such that $2 \in U(R)$. Then R is a T-clean ring if and only if $\frac{R}{T}$ is a T-clean ring.

175 **Proof.** (=>) It is clear from the proposition 16 using the canonical ring epimor-176 phism from R to $\frac{R}{T}$.

¹⁷⁷ (<=) We consider $\frac{R}{I}$ is a *T*-clean ring. Let $a \in R$, $\bar{a} \in \frac{R}{I}$. So there exists ¹⁷⁸ $\bar{u} \in U(\frac{R}{I})$ and $\bar{t} \in T(\frac{R}{I})$ such that $\bar{a} = \bar{u} + \bar{t}$. Since *I* is a nil ideal and by Lemma ¹⁷⁹ 7 we have units are lifted modulo *I*. Therefore, we may consider $u \in U(R)$ and ¹⁸⁰ a - u is a tripotent modulo *I*. Since 2 is an unit in *R*, so by Lemma 9 we have ¹⁸¹ that tripotents are lifted modulo *I*. Therefore, a - u is a tripotent. So *R* is a ¹⁸² *T*-clean ring.

We may wonder if 2 is not an unit, does the Theorem 20 still hold. This is unfavorable. Here is an example.

Example 21. Let $R = \mathbb{Z}[x]$ with $(x^2 - 1)^2 = 0$ and $I = \langle x^2 - 1 \rangle$. Here, *I* is clearly a nil ideal in *R* also 2 is not an unit in *R*. We consider $\alpha + I = (1+I)+(x+I)$ in $\frac{R}{I}$. Then $(x+I)^3 = x^3 + I = (x+I)(x^2+I) = (x+I)(1+I) = x+I$, is a tripotent. Hence, $\alpha + I$ is a *T*-clean element in $\frac{R}{I}$. Next we show that the tripotent $\alpha - 1 = x + I$ does not lift modulo *I*. If it is lifted modulo *I* then 190 $(x + (x^2 - 1)(ax + b))^3 = (x + (x^2 - 1)(ax + b) \text{ for some } a, b \in \mathbb{Z}.$ This implies 191 that

$$x^{3} + 3x^{2}(x^{2} - 1)(ax + b) = x + (x^{2} - 1)(ax + b).$$

¹⁹² Simplifying we get

$$3ax^{5} + 3bx^{4} - 3ax^{3} - 3bx^{2} + x^{3} = ax^{3} + bx^{2} - ax + x - b.$$

Again by replacing $x^4 = 2x^2 - 1$ from the given rule we get

$$(2a+1)x^3 + 2bx^2 - (2a+1)x - 2b = 0.$$

¹⁹⁴ Comparing we get 2a + 1 = 0, which has no solution in \mathbb{Z} . Therefore, $\alpha - 1$ does ¹⁹⁵ not lift modulo *I* and consequently α is not a *T*-clean element in *R*.

¹⁹⁶ We recall that the intersection of all prime ideals in a ring R is an ideal called ¹⁹⁷ prime radical of R which is denoted by $\mathcal{P}(R)$.

Corollary 22. Let R be a ring and $2 \in U(R)$. Then R is a T-clean ring if and only if $\frac{R}{\mathcal{P}(R)}$ is a T-clean ring.

Proof. It follows from the Theorem 20 as the prime radical $\mathcal{P}(R)$ is a nil ideal.

Theorem 23. The usual product ring $R = \prod_{i=1}^{n} R_i$ is a T-clean if and only if R_i is a T-clean for each *i*.

Proof. (=>) It follows from the Proposition 16 by considering the natural epimorphism $\phi_i : R \to R_i$ for each *i*.

206 (<=) We consider R_i is a *T*-clean ring for each *i* and $x = (x_1, x_2, ..., x_n) \in R$. 207 For each $x_i \in R_i$ we have the *T*-clean decomposition $x_i = u_i + t_i$ for some 208 $u_i \in U(R_i)$ and $t_i \in T(R_i)$. Then clearly $u = (u_1, u_2, ..., u_n) \in U(R)$ and 209 $t = (t_1, t_2, ..., t_n) \in T(R)$ such that x = u + t. Therefore, *R* is a *T*-clean ring.

We consider the following example to show if one of R_1 or R_2 is not *T*-clean then $R = R_1 \times R_2$ may failed to be *T*-clean.

Example 24. Let $R = \mathbb{Z}_4 \times \mathbb{Z}$. We show that (0,3) does not have any Tclean decomposition in R. We suppose $(0,3) = (u_1, u_2) + (t_1, t_2)$ is a T-clean decomposition in R, where $(u_1, u_2) \in U(R)$ and $(t_1, t_2) \in T(R)$. Then 3 = $u_2 + t_2 \implies t_2 = 3 - u_2$ in \mathbb{Z} . But units in \mathbb{Z} are $\{-1, 1\}$. So, the tripotent t_2 is either 2 or 4. This is impossible as the tripotent elements of \mathbb{Z} are $\{-1, 0, 1\}$.

²¹⁷ The following Theorem characterizes the *T*-clean elements in an abelian ring.

Theorem 25. Let R be ring which is abelian and $e \in idem(R)$. If $a \in R$ is a T-clean then the following holds

- 1. ae is a T-clean.
- 221 2. If 1 + a is also T-clean, then a + e is a T-clean in R.
- 222 3. If b + e is clean, then b is a T-clean for any $b \in R$.

Proof. 1. We consider a = u + t is a *T*-clean decomposition in *R* such that $u \in U(R)$ and $t \in T(R)$. Now right multiplying both side by *e* we have ae = ue + te. Then clearly $ue \in U(eRe)$ and as *R* is abelian we have $(te)^3 = tetete = tet^2e = t^3e = te \in T(eRe)$. Thus ae is *T*-clean in *eRe*. Therefore, by Proposition 19 ae is *T*-clean in *R*.

228 2. We consider $a = u_1 + t_1$ and $1 + a = u_2 + t_2$ for some $u_1, u_2 \in U(R)$ and $t_1, t_2 \in T(R)$. Now a + e = ae - ae + a + e = a(1 - e) + (1 + a)e = $(u_1 + t_1)(1 - e) + (u_2 + t_2)e = u_1(1 - e) + u_2e + t_1(1 - e) + t_2e$. Since R is 231 an abelian ring we can clearly see $u_1(1 - e) + u_2e \in U(R)$ as, $(u_1(1 - e) + u_2)(u_1^{-1}(1 - e) + u_2^{-1}e) = e + 1 - e = 1$. Again as R being abelian we have $(t_1(1 - e) + t_2e)^3 = (t_1(1 - e) + t_2e)(t_1^2(1 - e) + t_2^2e) = t_1^3(1 - e) + t_2^3e =$ $t_1(1 - e) + t_2e \in T(R)$. Therefore, a + e is T-clean in R.

3. We consider b + e = u + f for some $u \in U(R)$ and $f \in idem(R)$. Then b = u + (f - e). As, R is an abelian ring e and f are commuting idempotent. Thus have $(f - e)^3 = f - e$. Therefore, b is T-clean in R.

²³⁹ In support of the Theorem 25 we present the following example.

Example 26. Let $R = \mathbb{Z}_6 \times \begin{pmatrix} \mathbb{Z} & \mathbb{Z} \\ 0 & \mathbb{Z} \end{pmatrix}$ and $e = (3, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}) \in idem(R)$. We consider $a = (2, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}) = (1, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) + (1, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix})$ is a *T*-clean element in *R*. Then

1. $ae = (2, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix})(3, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}) = (0, \begin{pmatrix} 0 & 2 \\ 0 & 2 \end{pmatrix})$ is a *T*-clean element in *R*. Because we have the *T*-clean decomposition as,

$$(0, \begin{pmatrix} 0 & 2 \\ 0 & 2 \end{pmatrix}) = (1, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}) + (5, \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}).$$

2. We have $1 + a = (3, \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix})$ is a *T*-clean element in *R* with a *T*-clean decomposition as,

$$(3, \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}) = (3, \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}) + (0, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}).$$

So, $a + e = (5, \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix})$ is a *T*-clean element in *R* with a *T*-clean decomposition as,

$$(5, \begin{pmatrix} 1 & 2\\ 1 & 2 \end{pmatrix}) = (5, \begin{pmatrix} 1 & 1\\ 1 & 2 \end{pmatrix}) + (0, \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix})$$

3. We take $b = (4, \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix})$ such that $b + e = (1, \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix})$ is a clean element in R with a clean decomposition as,

$$(1, \begin{pmatrix} 1 & 0\\ 0 & 2 \end{pmatrix}) = (1, \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}) + (0, \begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix}).$$

243

Then it is not difficult to show that b is a T-clean element in R.

End(R) denotes the endomorphism ring of R consisting all the endomorphisms on R. Let $\sigma \in End(R)$ and define the rule $xa = \sigma(a)x$ for all $a \in R$ and some indeterminate x. Then $R[x,\sigma]$ consisting all polynomials of finite degree with the multiplication rule of a and x is a ring called the skew or twisted polynomial ring under polynomial addition and multiplication. The skew upper triangular matrix ring is denoted by $ST_n(R,\sigma)$ according to A.Isfahani [18]. For the multiplication rule of any two matrix in the ring $ST_n(R,\sigma)$ we refer to [18].

Theorem 27. Let R be a ring with $2 \in U(R)$ and $\sigma \in End(R)$. Then the followings are equivalent for any $n \in \mathbb{N}$.

- 1. R is a T-clean ring.
- 254 2. $\frac{R[x,\sigma]}{\langle x^n \rangle}$ is T-clean.
- 255 3. $ST_n(R,\sigma)$ is T-clean.

Proof. (a) <=> (b): Define a ring homomorphism $\phi : \frac{R[x,\delta]}{\langle x^n \rangle} \to R$ by $\phi(a_0 + a_1x + \dots + a_{n-1}x^{n-1} + \langle x^n \rangle) = a_0$. Then clearly ϕ is an epimorphism. We consider $I = ker(\phi) = \langle x + \langle x^n \rangle$ which is a nil ideal of $\frac{R[x,\delta]}{\langle x^n \rangle}$. Therefore, by Theorem 20 we have the required result.

(b) $\langle = \rangle$ (c) : From [18] we have $ST_n(R, \delta) \cong \frac{R[x, \delta]}{\langle x^n \rangle}$. Hence the result.

Theorem 28. The upper triangular matrix ring $R = UT_n(R)$ is T-clean if and only if R is T-clean.

Proof. (=>) It is clear from the Proposition 16 with the epimorphism ϕ : $UT_n(R) \to R$ by $\phi((a_{ij})_n) = a_{11}$.

 $(\langle =)$ For the converse it is enough to prove for n = 2. We consider R is a T-clean ring and $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in UT_2(R)$. Then we have $a = u_1 + t_1$ and $c = u_2 + t_2$ for some $u_1, u_2 \in U(R)$ and $t_1, t_2 \in T(R)$. Now rewriting,

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} u_1 & b \\ 0 & u_2 \end{pmatrix} + \begin{pmatrix} t_1 & 0 \\ 0 & t_2 \end{pmatrix}$$

we get a *T*-clean decompositions in $UT_2(R)$. Therefore, the result is true for n = 2. Following this process we can easily prove the result for any n.

Example 29. The upper triangular matrix ring over \mathbb{Z}_4 is a *T*-clean ring, but over \mathbb{Z} is not a *T*-clean ring. Because \mathbb{Z}_4 is a *T*-clean ring but \mathbb{Z} is not a *T*-clean ring.

Theorem 30. Let A, B are any ring and M be left-A right-B bimodule. Then the general upper triangular matrix ring $R = \begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$ is T-clean if and only if A and B are T-clean.

Proof. (=>) It is clear from the Proposition 16 by defining natural epimorphisms $R \to A$ and $R \to B$. (<=) We consider $\begin{pmatrix} a & m \\ 0 & b \end{pmatrix} \in R$ be any element. As A, B are T-clean there exist $u_1 \in U(A), u_2 \in U(B), t_1 \in T(A)$ and $t_2 \in T(B)$ such that

$$\begin{pmatrix} a & m \\ 0 & b \end{pmatrix} = \begin{pmatrix} u_1 + t_1 & m \\ 0 & u_2 + t_2 \end{pmatrix} = \begin{pmatrix} u_1 & m \\ 0 & u_2 \end{pmatrix} + \begin{pmatrix} t_1 & 0 \\ 0 & t_2 \end{pmatrix}$$

which is a T-clean decomposition in R. Therefore, R is a T-clean ring.

Corollary 31. If R be an abelian ring and $t \in T(R)$. Let $\bar{t} = 1 - t^2$. Then tR and $\bar{t}R$ are T-clean ring if and only if R is a T-clean ring.

Proof. Since R is an abelian ring by the pierce decomposition of R we have $R \cong tR \oplus \bar{t}R \cong \begin{pmatrix} tR & 0 \\ 0 & \bar{t}R \end{pmatrix}$. Now from Theorem 30 we get the result.

Definition [11]. For any ring R. Then $a \in R$ is called an (s, 2) element if a is a unit or sum of two units in R. A ring R is called an (s, 2) ring if every element of R is an unit or sum of two units in R.

Theorem 32. Let R be a ring such that it contains no non-trivial idempotents. If R is a T-clean ring then R is an (s, 2) ring. **Proof.** Let R be a T-clean ring and a = u + t. Then by [15] Lemma 2.1 there exist $e \in idem(R)$ and $v \in U(R)$ with $v^2 = 1$ and ev = ve such that t = ev. If e = 0 we have t = 0 and if e = 1 we have t = v. Therefore, in both the cases we have a = u or a = u + v. Therefore, R is an (s, 2) ring.

Example 33. \mathbb{Z}_8 is a *T*-clean ring with only trivial idempotents. We notice that 1, 3, 5, 7 are units also we write all non units as 0 = 1 + 7, 2 = 1 + 1, 4 = 1 + 3, 6 =1 + 5. Therefore, \mathbb{Z}_8 is an (s, 2) ring.

Proposition 34. Let p be a prime with $p \equiv 1 \pmod{4}$ and $R = \mathbb{Z}_p[i]$. Then the T-clean elements of R are of the form (a+c)+i(b+d) such that $a^2+b^2 \in U(\mathbb{Z}_p)$, $c^2 = \frac{1-p}{4}$ and $d^2 = \frac{p-1}{4}$.

291 **Proof.** Rewriting x = (a + c) + i(b + d) = (a + ib) + (c + id). Then clearly 292 $a + ib \in U(R)$ since $(a + ib)^{-1} = \frac{1}{a+ib} = \frac{a-ib}{a^2+b^2} = (a^2 + b^2)^{-1}(a - ib) \in R$. Again 293 by Lemma 10 we have $c + id \in T(R)$. Therefore, x is a T-clean. ■

²⁹⁴ In support of Proposition 34 we consider the following example.

Example 35. Let p = 13 and $R = \mathbb{Z}_{13}[i]$. Then 9 + 10i is a *T*-clean element as 96 9 + 10i = (2 + 6i) + (7 + 4i). Here, $2 + 6i \in U(R)$ and $7 + 4i \in T(R)$.

Definition [17]. For any ring R an idempotent $e \in R$ is called q - central if eR(1-e)Re = 0 equivalently erse = erese for all $r, s \in R$. If each idempotents in R are q - central then R is called a q - abelian ring.

Proposition 36. Let R be a T-clean ring and $e \in idem(R)$ be a q-central. Then eRe is also a T-clean ring.

Proof. Let $eae \in eRe$ be any element. As R is T-clean there exist $u \in U(R)$ with $u^{-1} = v$ and $t \in T(R)$ such that a = u + t. Then eae = e(u+t)e = eue + ete. Since e is q-central by applying Definition 3 we have (eue)(eve) = eueve = euve =e = (eve)(eue) also $(ete)^3 = (ete)(ete)(ete) = (etete)(ete) = et^2ete = et^3e = ete$. Therefore, $eue \in U(eRe)$ and $ete \in T(eRe)$ and hence eRe is a T-clean ring.

Theorem 37. Let R be a ring which is abelian and $e \in idem(R)$. Then R is a T-clean ring if and only if eRe is a T-clean ring.

Proof. (=>) We consider $eae \in eRe$. Replacing a = u + t for some $u \in U(R)$ with $u^{-1} = v$ and $t \in T(R)$, we have eae = eue + ete. As, R is an abelian ring we have eue.eve = e and $(ete)^3 = etetete = ete \in T(eRe)$. Therefore, eRe is a T-clean ring.

(<=) Proposition 19.

Corollary 38. Let R be a ring which is abelian. Then R is a clean ring if and only if R is T-clean.

Proposition 39. Let a = u + t be a *T*-clean decomposition. Then for any unit $w \in U(R)$; aw, wa is *T*-clean if and only if $w \in I(t)$.

³¹⁸ **Proof.** We have aw = uw + tw. Since product of two unit is an unit we got ³¹⁹ uw is an unit. Again we have $(tw)^3 = twtwtw = tw \iff twt = t$. Thus ³²⁰ $tw \in T(R) \iff w \in I(t)$. Similar proof for wa. Hence the result.

Proposition 40. Let R be a T-clean ring. Then any element of R can be written as sum of unit, idempotent, and square root of 1.

Proof. We consider x = w + t be a T-clean decomposition. As, $t \in T(R)$ by Lemma 11 we can express t = f + v for some $f \in idem(R)$ and $v \in U(R)$. Applying a similar computation as in the proof of Lemma 11 we have v = ue -(1-e). Now $v^2 = (ue - (1-e))^2 = ueue - (1-e)ue - ue(1-e) + (1-e) = 1$. Therefore, x = w + f + v is the required decomposition.

Proposition 41. If R is an uniquely T-clean ring. Then 2 = 0 and $2t^2 = 0$ in R for any $t \in T(R)$. In other words uniquely T-clean ring has characteristics 2.

Proof. Let $t \in T(R)$. Writing the *T*-clean decompositions of 0 in *R* we have.

(1)
$$0 = (-1) + 1$$

331

(2)
$$0 = 1 + (-1)$$

332

(3)
$$0 = (2t^2 - 1) + (1 - 2t^2)$$

From equations 1 and 2 we have 2 = 0 and from equations 1 and 3 we have $2t^2 = 0$.

Proposition 42. Let R be a ring and J(R) be its Jacobson's radical. If $S = \frac{R}{J(R)}$ has identity $a^3 = a$ and idempotents are lifted modulo J(R) then R is a T-clean ring.

Proof. Let $x \in R$ and $S = \frac{R}{J(R)}$ has identity $a^3 = a$. Then by Lemma 13 we have two commuting idempotents $\bar{e}, \bar{f} \in S$ such that $\bar{x} = \bar{e} + \bar{f}$. As idempotents are lifted modulo J(R) we may consider $e, f \in idem(R)$ which also commutes such that a = e + f + b for some $b \in J(R)$. Rewriting a = e - (1 - f) + (1 + b). Here $1 + b \in U(R)$ and as difference of two commuting idempotent is a tripotent, we get $e - (1 - f) \in T(R)$. Therefore, a is a T-clean and hence R is T-clean ring. Let M be an (R - R) bimodule. The trivial ideal extension is defined as $\mathcal{I}(R,M) = R \oplus M$, which is clearly an abelian group and it is a ring if we define the multiplication as $(r, m_1)(s, m_2) = (rs, rm_2 + m_1s)$ for any $r, s \in R$ and $m_1, m_2 \in M$. (1, 0) is the multiplicative identity of the ring $\mathcal{I}(R, M)$. In the same abelian group structure $R \oplus M$, if we define the multiplication as $(r, m_1)(s, m_2) =$ $(rs, rm_2 + m_1s + m_1m_2)$. Then we get the general ideal extension ring we denote it by $\mathbf{I}(R, M)$. For more details of ideal extension we refer to [10].

Proposition 43. Let M be an (R - R) bimodule. If the trivial ideal extension 353 $\mathcal{I}(R, M)$ is T-clean, then R is T-clean. The reverse implication holds if for every 354 $m \in R$ and $u \in U(R)$, mu = um.

Proof. We assume that $\mathcal{I}(R, M)$ is a T-clean ring. Define $\phi : \mathcal{I}(R, M) \to R$ by 355 $\phi(r,m) = r$. Then clearly ϕ is an epimorphism. Therefore, by Proposition 19, R 356 is a T-clean ring. For the converse, we assume R is T-clean. Let $(r, m) \in \mathcal{I}(R, M)$. 357 There exist $u \in U(R)$ and $t \in T(R)$ such that r = u + t. Thus (r, m) =358 (u,m) + (t,0). Clearly $(t,0) \in T(\mathcal{I}(R,M))$. Now Let $x = -(u^{-1})^2 m$. Then 359 $(u,m)(u^{-1},x) = (1,ux+mu^{-1}) = (1,mu^{-1}-u^{-1}m) = (1,0)$. As by assumption 360 $mu = um \implies u^{-1}m = mu^{-1}$. similarly we can show $(u^{-1}, x)(u, m) = (1, 0)$. 361 Therefore, $(u, m) \in \mathcal{I}(R, M)$. Therefore, $\mathcal{I}(R, M)$ is a T-clean ring. 362

Proposition 44. Let M be an (R - R) bimodule. If the general ideal extension $\mathbf{I}(R, M)$ is T-clean, then R is T-clean. The everse implication holds if for every $m \in R$ and $u \in U(R)$, $m + mu + m^2u = 0$ with mu = um.

Proof. Proof is similar literature to the Proposition 44. For the converse part we take $x = u^{-1}m$.

368

4. Conclusions and scope of further study

In the past few years, researchers have contributed several results and charac-369 terized rings where every elements can be written as sum of two other elements. 370 We have discussed several properties and established certain characterizations of 371 T-clean rings. This class of rings can be considered to be a more generalized 372 version of the algebraic structure of clean rings and invo tri-clean rings. About 373 the uniquely T-clean ring structure, Proposition 41 tells us that it can have char-374 acteristic 2. In future we can study more about uniquely T-clean rings and its 375 characterization. From Proposition 36 we can further characterize this class of 376 rings using the concept of quarter central elements, which is a fairly new concept 377 given by T.Y. Lam. We can also study the graph theoretic representations of 378 T-clean elements in a ring R. Moreover, we can extend the characterizations of 379 T-clean rings using the notion of additive commutators. 380

Acknowledgements

The authors sincerely express their gratitude to the referee for meticulously reviewing the manuscript and providing numerous insightful suggestions that helped to improve its quality.

References

- [1] S. Ahmad, AL N. Mohammed, A. Ali and R. Mahmood, Involution t-clean rings
 with applications, Eur. j. Pure Appl. Math. 15(4) (2022) 1637–1648.
 https://doi.org/10.29020/nybg.ejpam.v15i4.4530
- [2] M. Aristidou and K. Hailemariam, Tripotent elements in quaternion rings over Z,
- Acta Universitatis Sapientiae, Mathematica 13(1) (2021) 78–87.
 https://doi.org/10.2478/ausm-2021-0004
- [3] N. Ashrafi and E. Nasibi, *r-clean rings*, Mathematical Reports 15(65) (2013) 125–
 132.
- [4] G. Călugăreanu and H.F. Pop, Negative clean rings, Analele ştiinţifice ale Universităţii" Ovidius" Constanţa. Seria Matematică 30(2) (2022) 63-89.
 https://doi.org/10.2478/auom-2022-0019
- [5] W. Chen, On clean rings and clean elements, South. Asian Bull. Math. 32(5) (2008)
 00-06.
- [6] P.V. Danchev, *Invo-clean unital rings*, Comm. Korean Math. Soc. **32(1)** (2017) 19–27.
- 400 https://doi.org/10.4134/CKMS.c160054
- 401 [7] P.V. Danchev, *Invo-regular unital rings*, Ann. Univ. Mariae Curie-Skłodowska Sect. 402 A – Math. **72(1)** (2018) 45–53.
- 403 https://doi.org/10.17951/a.2018.72.1.45-53
- [8] P.V. Danchev, Corners of invo-clean unital rings, Pure Math. Sci. 7(1) (2018) 27–
 31.
- 406 https://doi.org/10.12988/pms.2018.877
- [9] P.V. Danchev, Commutative invo-clean group rings, Univ. J. Math. & Math. Sci.
 11(1) (2018) 1–6.
- 409 https://doi.org/10.17654/UM011010001
- [10] J.L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38(2)
 (1932) 85–88.
- [11] M. Henriksen, Two classes of rings generated by their units, J. Algebra 31(1) (1974)
 182–193.
- [12] Y. Hirano and H. Tominaga, *Rings in which every element is the sum of two idem- potents*, Bull. Austral. Math. Soc. **37(2)** (1988) 161–164.
- 416 https://doi.org/10.1017/S000497270002668X

384

- ⁴¹⁷ [13] H.A. Khashan, *NR-clean rings*, Vietnam J. Math. **44** (2016) 749–759.
- 418 https://doi.org/10.1007/s10013-016-0197-8
- ⁴¹⁹ [14] D. Khurana, *Lifting potent elements modulo nil ideals*, J. Pure Appl. Algebra ⁴²⁰ **225**(11) (2021) 106762.
- 421 https://doi.org/10.1016/j.jpaa.2021.106762
- M.T. Koşan, T. Yildiri and Y. Zhou, *Rings whose elements are the sum of a tripotent and an element from the Jacobson radical*, Can. Math. Bull. **62(4)** (2019) 810–821.
 https://doi.org/10.4153/S0008439519000092
- [16] T.Y. Lam, Exercises in Classical Ring Theory (Springer Science & Business Media,
 2006).
- [17] T.Y. Lam, An introduction to q-central idempotents and q-abelian rings, Comm.
 Algebra 51(3) (2023) 1071–1088.
- 429 https://doi.org/10.1080/00927872.2022.2123921
- [18] A.R. Nasr-Isfahani, On skew triangular matrix rings, Comm. Algebra 39(11) (2011)
 4461–4469.
- 432 https://doi.org/10.1080/00927872.2010.520177
- [19] W.K. Nicholson, Lifting idempotents and exchange rings, Tran. Amer. Math. Soc.
 229 (1977) 269–278.
- 435 https://doi.org/10.1090/S0002-9947-1977-0439876-2
- [20] Z. Ying, T. Koşan and Y. Zhou, *Rings in which every element is a sum of two tripotents*, Can. Math. Bull. **59(3)** (2016) 661–672.
 https://doi.org/10.4153/CMB-2016-009-0
- 439 [21] H. Zhang, *Generalized clean rings*, J. Nanjing Univ. Math. Biquarterly 22(2) (2005)
 440 183–188.
- 441
- 442
- 443

Received Revised Accepted

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/