DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in press


Authors:

A. Boua

Abdelkarim Boua

Department of Mathematics
Polydisciplinary Faculty, LSI, Taza
Sidi Mohammed Ben Abdellah University, Morocco

email: abdelkarimboua@yahoo.fr

A. Raji

Abderrahmane Raji

Sultan Moulay Slimane University

email: rajiabd2@gmail.com

A. Zerbane

Abelilah Zerbane

Department of Mathematics
Polydisciplinary Faculty, LSI, Taza
Sidi Mohammed Ben Abdellah University, Morocco

email: abdelilah.zerbane@usmba.ac.ma

Title:

Study of differential identities in $3$-prime near-rings

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications

Received: 2024-06-18 , Revised: 2024-09-26 , Accepted: 2024-09-27 , Available online: 2025-05-23 , https://doi.org/10.7151/dmgaa.1479

Abstract:

The main objective in the present paper is to describe the structure of a 3-prime near-ring N satisfy certain algebraic identities involving g-derivation. In addition, and to show the necessity of the different hypotheses used in our results, we will present at the end of this work examples which illustrate that the restrictions imposed are not superfluous.

Keywords:

3-prime near-rings, $g$-derivation, multipliers, commutativity

References:

  1. M. Ashraf and N. Rehman, On commutativity of rings withderivations, Results Math. 12 (2002) 3–8.
    https://doi.org/10.1007/BF03323547
  2. H. E. Bell, A. Boua and L. Oukhtite, Semigroup ideals and commutativity in 3-prime near-rings, Comm. Algebra 43(5) (2015) 1757–1770.
    https://doi.org/10.1080/00927872.2013.879161
  3. H. E. Bell, On Derivations in Near-Rings II, Kluwer Academic Publishers, Dordrecht (1997) 191-–197.
    https://doi.org/10.1007/978-94-009-1481-0_10
  4. H. E. Bell, M. N. Daif, Commutativity and strong commutativity preserving maps, Can. Math. Bull. 37 (1994) 443–447.
    https://doi.org/10.4153/CMB-1994-064-x
  5. H. E. Bell, G. Mason, On derivations in near-rings and rings, Math. J. Okayama Univ. 34 (1992) 135–144.
  6. H. E. Bell and G. Mason, On derivations in near-rings, North-Holand Mathematics Studies 137 (1987) 31–35.
  7. A. Boua, and L. Taoufiq, Some algebraic results involving derivations in 3-prime near-rings, Indian J. Math 59(2) (2017) 147–160.
  8. A. Boua, L. Oukhtite and A. Raji, On generalized semiderivations in 3-prime near-rings, Asian-European Journal of Mathematics 9(2) (2016) p.1650036.
    https://doi.org/10.1142/S1793557116500364
  9. M. N. Daif and H. E. Bell, Remarks on derivation on semiprime rings, Int. J. Math. Math. Sci. 15 (1992) 205–206.
  10. N. Divinsky, On commuting automorphisms of rings, Trans. Roy. Soc. Can. Sect. III. 49(3) (1955) 19–22.
  11. E. C. Posner, Derivations in prime rings, Proc. Am. Math. Soc. 8 (1957) 1093–1100.
    https://doi.org/10.2307/2032686
  12. A. Raji, Results on 3-prime near-rings with generalized derivations, Beitrage zur Algebra und Geometrie 57(4) (2016) 823–829.
    https://doi.org/10.1007/s13366-015-0267-1
  13. M. Samman, L. Oukhtite, A. Raji and A. Boua, Two sided $\alpha$-derivations in 3-prime near-rings, Rocky Mountain Journal of Mathematics 46(4) (2016) 1379–1393.
    https://doi.org/10.1216/RMJ-2016-46-4-1379
  14. S. M. A. Zaidi, M. Ashraf, S. Ali, On Jordan ideals and left $(\theta,\theta)$-derivations in prime rings, Int. J. Math. Math. Sci. 37-40 (2004) 1957–1964.
    https://doi.org/10.1155/S0161171204309075

Close