DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in press


Authors:

E. Laysirikul

Ekkachai Laysirikul

Department of Mathematics
Faculty of Science, Naresaun University
Phitsanulok, 65000, Thailand

email: ekkachail@nu.ac.th

0000-0002-7079-0429

K. Sripon

Kitsanachai Sripon

Department of Mathematics
Faculty of Science, Naresaun University
Phitsanulok, 65000, Thailand

email: kitsanachais61@nu.ac.th

0009-0007-4538-6639

Title:

Regularity and Green's relations on $\mathrm{GFin}(Γ) \rtimes G$

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications

Received: 2024-05-31 , Revised: 2024-11-12 , Accepted: 2024-11-13 , Available online: 2025-05-19 , https://doi.org/10.7151/dmgaa.1478

Abstract:

Let $X$ be a non-empty set, $G$ a group with identity $1$ and let $f:X\to G$ be a mapping. Denote the Cayley graph of the group $G$ with respect to $f$ by $Γ$. In this paper, we consider the set of all pairs $(Γ',g)$ such that $Γ'$ is a finite subgraph of $Γ$ and $g\in V(Γ')$. This set is a semigroup under the semidirect product with respect to the natural action of $G$ on the semilattice of subgraphs of $Γ$ defined as follows: for every $g\in G$ and every subgraph $Γ', gΓ'$ is the subgraph of $Γ$ such that
$V(gΓ')=\{gh : h \in V(Γ')\}$ and $E(gΓ')=\{(gh,x):(h,x)\in E(Γ')\}$.
We denote this semigroup by $\mathrm{GFin}(Γ)\rtimes G$. Regularity and Green's relations for the semigroup $\mathrm{GFin}(Γ) \rtimes G$ are investigated. Moreover, we characterize the natural partial order on $\mathrm{GFin}(Γ) \rtimes G$.

Keywords:

Cayley graph, semigroup, regularity, Green's relations, natural partial order

References:

  1. B. Billhardt, Y. Chaiya, E. Laysirikul, E. Nupo and J. Sanwong, A unifying approach to the Margolis-Meakin and Biget-Rhodes group expansion, Semigroup Forum 96 (2018) 565–580.
    https://doi.org/10.1007/s00233-018-9932-7
  2. J.C. Birget and J. Rhodes, Almost finite expansions of arbitrary semigroups, J. Pure Appl. Alg. 32 (1984) 239–287.
    https://doi.org/10.1016/0022-4049(84)90092-6
  3. J.A. Green, On the structure of semigroups, Ann. Math. 54 (1951) 163–172.
    https://doi.org/10.2307/1969317
  4. J.M. Howie, Fundamentals of Semigroup Theory (Oxford University Press, 1995).
  5. M. Ma, T. You, S. Luo, Y. Yang and L. Wang, Regularity and Green’s relations for finite $E$-order-preserving transformations semigroups, Semigroup Forum 80 (2010) 164–173.
    https://doi.org/10.1007/s00233-009-9192-7
  6. S.W. Margolis and J.C. Meakin, $E$-unitary inverse monoids and the Cayley graph of a group presentation, J. Pure Appl. Alg. 58 (1989) 45–76.
    https://doi.org/10.1016/0022-4049(89)90052-2
  7. S. Mendes-Goncalves and R.S. Sullivan, Regular elements and Green's relations in generalised transformation semigroups, Asian-European J. Math. 6(1) (2013) 1350006-1–1350006-11.
    https://doi.org/10.1142/S179355711350006X
  8. H. Mitsch, A natural partial order for semigroups, Proc. Amer. Math. Soc. 1 (1986) 384–388.
    https://doi.org/10.1090/S0002-9939-1986-0840614-0
  9. K. Nambooripad, The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc. 1 (1980) 249–260.
    https://doi.org/10.1017/S0013091500003801
  10. K.N. Sawatraksa and C. Namnak, Green's relations and regularity on some subsemigroups of transformations that preserve equivalences, Turkish J. Math. 42 (2018) 2513–2526.
    https://doi.org/10.3906/mat-1805-50
  11. K. Sripon, E. Laysirikul and Y. Chaiya, Regularity and abundance on semigroups of transformations preserving an equivalence relation on an invariant set, AIMS Math. 8(8) (2023) 18223–18233.
    https://doi.org/10.3934/math.2023926
  12. R.P. Sullivan, Regular elements and Green's relations in generalised linear transformation semigroups, South. Asian Bull. Math. 38 (2014) 73–82.
    https://doi.org/10.1142/S179355711350006X
  13. L. Sun, Regularity and Green's relations on a semigroup of transformations with restricted range, J. Math. Res. 10 (2018) 24–28.
    https://doi.org/10.5539/jmr.v10n2p24
  14. P. Zhao and M. Yang, Regularity and Green’s relations on semigroups of transformation preserving order and compression, Bull. Korean Math. Soc. 49 (2012) 1015–1025.
    https://doi.org/10.4134/BKMS.2012.49.5.1015

Close