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Abstract11

Let X be a non-empty set, G a group with identity 1 and let f : X → G12

be a mapping. Denote the Cayley graph of the group G with respect to f13

by Γ. In this paper, we consider the set of all pairs (Γ′, g) such that Γ′ is14

a finite subgraph of Γ and g ∈ V (Γ′). This set is a semigroup under the15

semidirect product with respect to the natural action of G on the semilattice16

of subgraphs of Γ defined as follows: for every g ∈ G and every subgraph17

Γ′, gΓ′ is the subgraph of Γ such that18

V (gΓ′) = {gh : h ∈ V (Γ′)} and E(gΓ′) = {(gh, x) : (h, x) ∈ E(Γ′)}.19

We denote this semigroup by GFin(Γ)⋊G. Regularity and Green’s relations20

for the semigroup GFin(Γ)⋊G are investigated. Moreover, we characterize21

the natural partial order on GFin(Γ)⋊G.22

Keywords: Cayley graph, semigroup, regularity, Green’s relations, natural23

partial order.24
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1. Introduction26

Let S be a semigroup. Then S1 is either the semigroup S if S is a monoid or the27

semigroup S with an identity adjoined if S has no identity. Green’s relations on28

S are five equivalence relations defined as follows: for each a, b ∈ S,29

a L b if and only if a = xb, b = ya for some x, y ∈ S1,30

Furthermore, we dually define the R-relation as follows.31
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a R b if and only if a = bx, b = ay for some x, y ∈ S1,32

Moreover, we define the J -relation as follows.33

a J b if and only if a = xby, b = uav for some u, v, x, y ∈ S1,34

H = L ∩R and D = L ◦ R.35

Green’s relations are important tools for understanding the behavior of di-36

visibility in a semigroup. So, many researchers are interested in Green’s relations37

on some spectial semigroups. See [5, 7, 10, 11, 12, 13] and [14].38

An element a of a semigroup S is called regular if a ∈ aSa, that is, a = axa39

for some x ∈ S. A semigroup S is called a regular semigroup if every element of40

S is regular. And for any semigroup S, we denote the set of all idempotents in S41

by E(S).42

In 1980, Nambooripad [9] defined ≤ on regular semigroup S by43

a ≤ b if and only if a = eb = bf for some e, f ∈ E(S),44

and he proved that (S,≤) is a partially ordered set.45

Later, Mitsch [8] extended the above partial order to any semigroup S by46

defining ≤ on S as follows:47

a ≤ b if and only if a = xb = by and a = ay for some x, y ∈ S1.48

This order is called the natural partial order on S. It is a useful tool to49

visualize relationships between elements in a semigroup.50

Let X be a non-empty set, let G be a group with identity 1 and let f : X → G
be a function. By the Cayley graph Γ of G with respect to f , we means the
directed graph whose vertex set V (Γ) is G and whose edge set E(Γ) is G × X,
where each g ∈ G,x ∈ X denotes an edge with initial vertex g and terminal
vertex g(xf). In 1989, Magolis and Meakin [6] let G be X-generated as a group
with respect to f , that is, each element of G is a product of elements of the forms
xf and (xf)−1 where x ∈ X. Let

M(X; f) =
{

(Γ′, g) : Γ′ is a finite connected subgraph of Γ with 1, g ∈ V (Γ′)
}

.

This set is a semigroup under the semidirect product with the natural action G
on the semilattice of all subgraphs of Γ with union operation, defined as follows:
g∅ = ∅ where ∅ is an empty graph. For each non-empty subgraph Γ′ of Γ and
g ∈ G, let gΓ′ be the subgraph of Γ with

V (gΓ′) = {gh : h ∈ V (Γ′)} and E(gΓ′) = {(gh, x) : (h, x) ∈ E(Γ′)}.

We call M(X; f) the Margolis-Meakin expansion of G with respect to f . Green’s51

relations and some characterizations on M(X; f) were studied in [6].52
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Recently, [1] introduced a new semigroup defined as follows: let Γ be the53

Cayley graph of the group G with respect to f : X → G. Let Fin(Γ) be the54

semigroup of all finite subgraphs of Γ without isolated vertices with ∅ adjoined55

under union operations. Then the cartesian product Fin(Γ) ×G is a semigroup56

under the semidirect product with respect to natural action of G on Fin(Γ), which57

assigns to each Γ′ ∈ Fin(Γ), the graph gΓ′ with V (gΓ′) = {gh : h ∈ V (Γ′)} and58

E(gΓ′) = {(gh, x) : (h, x) ∈ E(Γ)}. We denote this semigroup by Fin(Γ) ⋊ G.59

Clearly, Margolis-Meakin expansion of G with respect to f is a subsemigroup of60

Fin(Γ) ⋊ G for X-generated group G respect to f . The notion of expansion is61

central to semigroup theory. As Birget and Rhodes introduced in [2], it involves62

representing a semigroup as a homomorphic image of another semigroup, where63

the homomorphism preserves certain properties. Two prominent examples of64

expansions are the Birget-Rhodes prefix expansion (see [2] for more details) and65

the Margolis-Meakin expansion. In [1], they constructed a new expansion (viewed66

as a subsemigroup of Fin(Γ)⋊G) which contains the Margolis-Meakin expansion.67

This allows the results in [6] to be recaptured, as shown in [1].68

In our work, we define a new semigroup as follows: let Γ be the Cayley graph
of the group G with respect to f : X → G. Put

GFin(Γ)⋊G =
{

(Γ′, g) : Γ′ is a finite subgraph of Γ with g ∈ V (Γ′)
}

.

Then GFin(Γ) ⋊G is a semigroup under the semidirect product with respect to69

the same action of G on the semilattice of subgraphs of Γ.70

It is clear that our semigroup is heavily inspired by [1] and has the old one71

as a subsemigroup. To facilitate the creation of new expansions in the future,72

in this paper, we begin by investigating the fundamental properties. Firstly, we73

consider regularity, which will indicate the complexity of the new semigroup.74

Subsequently, we investigate Green’s relations within GFin(Γ) ⋊ G to catego-75

rize element groups associated with distinct ideal classes. Finally, we study the76

ordering of elements in our semigroup via the natural order.77

2. Preliminaries and notations78

From now on, we let X be a non-empty set, G a group with identity 1 and Γ a79

Cayley graph of G with respect to mapping f : X → G. For any graphs Γ1 and80

Γ2, we say that Γ1 is a subgraph of Γ2 and we write Γ1 ⊆ Γ2 if81

V (Γ1) ⊆ V (Γ2) and E(Γ1) ⊆ E(Γ2).

Let Γ1 ∪ Γ2 be a graph with V (Γ1 ∪ Γ2) = V (Γ1) ∪ V (Γ2) and E(Γ1 ∪ Γ2) =82

E(Γ1) ∪ E(Γ2).83

Now, we will give an example and some characterizations of the semigroup84

GFin(Γ)⋊G.85
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Example 1. Let G = {1, g, h, gh} be the Klein four-group with identity 1 and86

X = {x, y}. Define f : X → G by xf = g and yf = h. Then the following graph87

is the Cayley graph of G respect to f .88

Figure 1. Cayley graph Γ.

We let Γ1 and Γ2 be defined as follows:89

Figure 2. Γ1 and Γ2.

Then (Γ1, h), (Γ2, gh) ∈ GFin(Γ) ⋊ G. We note that (Γ1, h)(Γ2, gh) = (Γ1 ∪90

hΓ2, g) and (Γ2, gh)(Γ1, h) = (Γ2∪ghΓ1, g). Since h ∈ V (Γ1∪hΓ2)\V (Γ2∪ghΓ1),91

we get that GFin(Γ)⋊G is not a commutative semigroup.92

Figure 3. Γ1 ∪ hΓ2 and Γ2 ∪ ghΓ1.

Proposition 1. Let (Γ′, g) ∈ GFin(Γ)⋊G. Then (Γ′, g) is an idempotent element93

if and only if g = 1. In this case, the set of all idempotent elements, E(GFin(Γ)⋊94

G) is a commutative subsemigroup of GFin(Γ)⋊G.95
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Theorem 2. Let G be a finite group. Then G is isomorphic to a subgroup of96

GFin(Γ)⋊G.97

Proof. Fix x ∈ X and let Γ′ be the graph with

V (Γ′) = G and E(Γ′) = {(g, x) : g ∈ G}.

Define ϕ : G → GFin(Γ)⋊G by

gϕ = (Γ′, g) for all g ∈ G.

From the definition of Γ′, we have gΓ′ = Γ′ and g ∈ V (Γ′) for all g ∈ G. Hence98

we can verify that ϕ is an injective homomorphism. Therefore G is isomorphic99

to a subgroup of GFin(Γ)⋊G.100

We always use the following properties in this study. For finite subgraphs101

Γ′,Γ′′ of Γ and g ∈ G,102

(1) if gΓ′ ⊆ Γ′ then gΓ′ = Γ′

and103

(2) if Γ′ ⊆ Γ′′ then gΓ′ ⊆ gΓ′′.

3. Regularity and Green’s relations104

First, we start regularity in GFin(Γ)⋊G. Then, we characterize Green’s relations105

on this semigroup.106

Theorem 3. Let (Γ′, g) ∈ GFin(Γ) ⋊ G. Then (Γ′, g) is regular if and only if107

1 ∈ V (Γ′).108

Proof. Assume that (Γ′, g) is regular. Then there exists (Γ′′, h) ∈ GFin(Γ)⋊G
such that

(Γ′, g) = (Γ′, g)(Γ′′, h)(Γ′, g) = (Γ′ ∪ gΓ′′, gh)(Γ′, g) = (Γ′ ∪ gΓ′′ ∪ ghΓ′, ghg).

Thus Γ′ = Γ′ ∪ gΓ′′ ∪ ghΓ′ and g = ghg. Since G is a group, we conclude 1 = gh.109

Therefore Γ′ = Γ′ ∪ gΓ′′ and so gΓ′′ ⊆ Γ′. This implies that 1 = gh ∈ V (gΓ′′) ⊆110

V (Γ′).111

Conversely, assume that 1 ∈ V (Γ′). Note that g−1 = g−11 ∈ V (g−1Γ′). Thus
(g−1Γ′, g−1) ∈ GFin(Γ)⋊G. We see that

(Γ′, g)(g−1Γ′, g−1)(Γ′, g) = (Γ′ ∪ gg−1Γ′, gg−1)(Γ′, g) = (Γ′, 1)(Γ′, g) = (Γ′, g).

Hence, we conclude that (Γ′, g) is regular.112
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The above theorem verifies that for a non-trivial group G, GFin(Γ) ⋊ G is113

not a regular semigroup. Next, we find its maximal regular subsemigroup.114

Theorem 4. Let T = {(Γ′, g) ∈ GFin(Γ)⋊G : 1 ∈ V (Γ′)}. Then T is the maxi-115

mum regular subsemigroup of GFin(Γ)⋊G. Moreover, T is an inverse semigroup.116

Proof. It follows from Theorem 3 that T is the set of all regular elements in
GFin(Γ)⋊G. Let (Γ1, g1), (Γ2, g2) ∈ T . Then

(Γ1, g1)(Γ2, g2) = (Γ1 ∪ g1Γ2, g1g2).

Since g1g2 ∈ V (g1Γ2), we get that T is closed. Therefore, T is the maximum117

regular subsemigroup of GFin(Γ) ⋊ G. By Proposition 1, T is an inverse semi-118

group.119

It is well-known that the H-class containing an idempotent element e in a120

semigroup S forms a subgroup of S. This subgroup is a subset of S that is closed121

under the same multiplication, and the element e becomes the identity of the122

group. We can apply this principle to construct subgroups of GFin(Γ)⋊G. Note123

that while GFin(Γ)⋊G lacks an identity element, it contains multiple idempotent124

elements. Thus, we can construct several subgroups within GFin(Γ) ⋊G. Now,125

we start by examining the Green’s relations L and R on GFin(Γ)⋊G.126

Theorem 5. Let (Γ1, g1), (Γ2, g2) ∈ GFin(Γ)⋊G. Then (Γ1, g1) L (Γ2, g2) if and127

only if (Γ1, g1) = (Γ2, g2) or (g
−1

1
Γ1 = g−1

2
Γ2, g1g

−1

2
∈ V (Γ1) and g2g

−1

1
∈ V (Γ2)).128

Proof. Assume that (Γ1, g1) L (Γ2, g2) and (Γ1, g1) 6= (Γ2, g2). There exist129

(Γ3, g3), (Γ4, g4) ∈ GFin(Γ)⋊G such that (Γ1, g1) = (Γ3, g3)(Γ2, g2) and (Γ2, g2) =130

(Γ4, g4)(Γ1, g1). This implies that Γ1 = Γ3 ∪ g3Γ2 and g1 = g3g2. Hence g1g
−1

2
=131

g3 ∈ V (Γ3) ⊆ V (Γ1) and g1g
−1

2
Γ2 = g3Γ2 ⊆ Γ1 which means g−1

2
Γ2 ⊆ g−1

1
Γ1.132

Similarly, we obtain that g2g
−1

1
∈ V (Γ2) and g−1

1
Γ1 ⊆ g−1

2
Γ2, which means that133

g−1

1
Γ1 = g−1

2
Γ2.134

If (Γ1, g1) = (Γ2, g2), then (Γ1, g1) L (Γ2, g2). Assume that g−1

1
Γ1 = g−1

2
Γ2,

g1g
−1

2
∈ V (Γ1) and g2g

−1

1
∈ V (Γ2). It is clear that (Γ1, g1g

−1

2
), (Γ2, g2g

−1

1
) ∈

GFin(Γ)⋊G. By assumption, we have

(Γ1, g1g
−1

2
)(Γ2, g2) = (Γ1 ∪ g1g

−1

2
Γ2, g1g

−1

2
g2) = (Γ1 ∪ g1g

−1

1
Γ1, g1) = (Γ1, g1)

and

(Γ2, g2g
−1

1
)(Γ1, g1) = (Γ2 ∪ g2g

−1

1
Γ1, g2g

−1

1
g1) = (Γ2 ∪ g2g

−1

2
Γ2, g2) = (Γ2, g2).

Hence (Γ1, g1) L (Γ2, g2).135
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Example 2. Let G = {1, g, h, gh} be the Klein four-group with identity 1 and136

X = {x, y}. Define f : X → G by xf = g and yf = h. We let Γ1 and Γ2 be137

subgraph of Γ with V (Γ1) = {1, g, h}, V (Γ2) = {g, h, gh}, E(Γ1) = {(1, x)} and138

E(Γ2) = {(gh, x)}. Then (Γ1, g), (Γ2, h) ∈ GFin(Γ) ⋊ G. It is easy to see that139

g−1Γ1 = h−1Γ2 and gh /∈ V (Γ1). Hence ((Γ1, g), (Γ2, h)) /∈ L via Theorem 5.140

Theorem 6. Let (Γ1, g1), (Γ2, g2) ∈ GFin(Γ) ⋊ G. Then (Γ1, g1) R (Γ2, g2) if141

and only if Γ1 = Γ2.142

Proof. Assume that (Γ1, g1) R (Γ2, g2) and (Γ1, g1) 6= (Γ2, g2). Then there143

exist (Γ3, g3), (Γ4, g4) ∈ GFin(Γ) ⋊ G such that (Γ1, g1) = (Γ2, g2)(Γ3, g3) and144

(Γ2, g2) = (Γ1, g1)(Γ4, g4). Thus Γ1 = Γ2 ∪ g2Γ3 and Γ2 = Γ1 ∪ g1Γ4. It follows145

that Γ2 ⊆ Γ1 and Γ1 ⊆ Γ2. Hence Γ2 = Γ1.146

Suppose that Γ1 = Γ2. Note that g−1

2
g1 ∈ V (g−1

2
Γ1) and g−1

1
g2 ∈ V (g−1

1
Γ2).

This means that (g−1

2
Γ1, g

−1

2
g1), (g

−1

1
Γ2, g

−1

1
g2) ∈ GFin(Γ)⋊G. We see that

(Γ2, g2)(g
−1

2
Γ1, g

−1

2
g1) = (Γ2 ∪ Γ1, g1) = (Γ1, g1)

and
(Γ1, g1)(g

−1

1
Γ2, g

−1

1
g2) = (Γ1 ∪ Γ2, g2) = (Γ2, g2).

Hence (Γ1, g1) R (Γ2, g2).147

As an immediate consequence of the previous theorems, we get the following148

result.149

Theorem 7. Let (Γ1, g1), (Γ2, g2) ∈ GFin(Γ) ⋊ G. Then (Γ1, g1) H (Γ2, g2) if150

and only if Γ1 = Γ2, g
−1

1
Γ1 = g−1

2
Γ1 and (g1 = g2 or g1g

−1

2
, g2g

−1

1
∈ V (Γ1)).151

Theorem 8. Let (Γ1, g1), (Γ2, g2) ∈ GFin(Γ) ⋊ G. Then (Γ1, g1) D (Γ2, g2) if152

and only if Γ1 = Γ2 or (there exists g ∈ V (Γ2) such that g−1

1
Γ1 = g−1Γ2, g1g

−1 ∈153

V (Γ1) and gg−1

1
∈ V (Γ2)).154

Proof. Assume that (Γ1, g1) D (Γ2, g2). Then there exists (Γ3, g3) ∈ GFin(Γ)⋊G155

such that (Γ1, g1) L (Γ3, g3) and (Γ3, g3) R (Γ2, g2). From Theorem 5 and 6, we156

get that [(Γ1, g1) = (Γ3, g3) or (g
−1

1
Γ1 = g−1

3
Γ3, g1g

−1

3
∈ V (Γ1), g3g

−1

1
∈ V (Γ3))]157

and Γ3 = Γ2. Therefore g−1

1
Γ1 = g−1

3
Γ2 where g3 ∈ V (Γ2).158

Conversely, if Γ1 = Γ2, then (Γ1, g1) R (Γ2, g2). Since R ⊆ D, we have159

(Γ1, g1) D (Γ2, g2). Suppose that g−1

1
Γ1 = g−1Γ2, g1g

−1 ∈ V (Γ1) and gg−1

1
∈160

V (Γ2) for some g ∈ V (Γ2). Then (Γ1, g1) L (Γ2, g) and we note that (Γ2, g) R161

(Γ2, g2). Hence (Γ1, g1) D (Γ2, g2).162

Theorem 9. Let (Γ1, g1), (Γ2, g2) ∈ GFin(Γ)⋊G. Then

(Γ2, g2) ∈ (GFin(Γ)⋊G)(Γ1, g1)(GFin(Γ)⋊G)

if and only if there exists g ∈ V (Γ2) such that gΓ1 ⊆ Γ2.163
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Proof. Assume that (Γ2, g2) ∈ (GFin(Γ) ⋊ G)(Γ1, g1)(GFin(Γ) ⋊ G). Then164

(Γ2, g2) = (Γ3, g3)(Γ1, g1)(Γ4, g4) for some (Γ3, g3), (Γ4, g4) ∈ GFin(Γ)⋊G. This165

implies that Γ2 = Γ3 ∪ g3Γ1 ∪ g3g1Γ4 and g2 = g3g1g4. Therefore g3Γ1 ⊆ Γ2 and166

g3 ∈ V (Γ3) ⊆ V (Γ2).167

Conversely, assume that there exists g ∈ V (Γ2) such that gΓ1 ⊆ Γ2. Then
(g−1

1
g−1Γ2, g

−1

1
g−1g2) ∈ GFin(Γ)⋊G. From assumption, we then have

(Γ2, g)(Γ1, g1)(g
−1

1
g−1Γ2, g

−1

1
g−1g2) = (Γ2 ∪ gΓ1 ∪ Γ2, g2) = (Γ2, g2).

Thus (Γ2, g2) ∈ (GFin(Γ)⋊G)(Γ1, g1)(GFin(Γ)⋊G).168

It is well-known that for a finite semigroup, we have D = J and in general169

we only have D ⊆ J . The following theorem verifies that D and J are identical170

on GFin(Γ)⋊G although the semigroup is infinite.171

Theorem 10. On GFin(Γ)⋊G,D = J .172

Proof. Let (Γ1, g1), (Γ2, g2) ∈ GFin(Γ) ⋊ G be such that (Γ1, g1) J (Γ2, g2).173

There exist (Γ3, g3), (Γ4, g4), (Γ5, g5), (Γ6, g6) ∈ (GFin(Γ)⋊G)1 such that (Γ1, g1) =174

(Γ3, g3)(Γ2, g2)(Γ4, g4) and (Γ2, g2) = (Γ5, g5)(Γ1, g1)(Γ6, g6). If (Γ1, g1) = (Γ2, g2),175

then (Γ1, g1) D (Γ2, g2). Otherwise, there are 6 cases to consider.176

Case 1. (Γ3, g3), (Γ4, g4), (Γ5, g5) and (Γ6, g6) are not the identity. By Theo-
rem 9, there exists h1 ∈ V (Γ1) such that h1Γ2 ⊆ Γ1 and there exists h2 ∈ V (Γ2)
such that h2Γ1 ⊆ Γ2. Then h2h1Γ2 ⊆ h2Γ1 ⊆ Γ2. From (1), we obtain that

h2h1Γ2 = h2Γ1 = Γ2.

Similarly, we get h1h2Γ1 = h1Γ2 = Γ1. Since g1 ∈ V (Γ1) = V (h1Γ2), we have
g1 = h1k for some k ∈ V (Γ2). This implies that

g−1

1
Γ1 = (h1k)

−1Γ1 = k−1h−1

1
Γ1 = k−1h−1

1
h1Γ2 = k−1Γ2.

Note that g1k
−1 = h1kk

−1 = h1 ∈ V (Γ1) and kg−1

1
= k(h1k)

−1 = kk−1h−1

1
=177

h−1

1
. Since Γ2 = h2Γ1, we have h−1

2
Γ2 = h−1

2
h2Γ1 = Γ1. Thus 1 = h−1

2
h2 ∈178

V (h−1

2
Γ2) = V (Γ1). From Γ1 = h1Γ2, we obtain that h−1

1
Γ1 = Γ2. This means179

that h−1

1
∈ V (h−1

1
Γ1) = V (Γ2). By Theorem 8, we then have (Γ1, g1) D (Γ2, g2).180

Case 2. (Γ4, g4) = (Γ6, g6) is the identity. Then (Γ1, g1) = (Γ3, g3)(Γ2, g2)181

and (Γ2, g2) = (Γ5, g5)(Γ1, g1). We get that (Γ1, g1) L (Γ2, g2). Since L ⊆ D, we182

obtain (Γ1, g1) D (Γ2, g2).183

Case 3. (Γ3, g3) = (Γ5, g5) is the identity. Then (Γ1, g1) = (Γ2, g2)(Γ4, g4)184

and (Γ2, g2) = (Γ1, g1)(Γ6, g6) these mean (Γ1, g1) R (Γ2, g2). From R ⊆ D, we185

obtain (Γ1, g1) D (Γ2, g2).186
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Case 4. (Γ3, g3) = (Γ6, g6) is the identity. Then (Γ1, g1) = (Γ2, g2)(Γ4, g4)187

and (Γ2, g2) = (Γ5, g5)(Γ1, g1). Thus g5Γ1 ⊆ Γ2 ⊆ Γ1. From (1), we have Γ1 = Γ2.188

It follows form Theorem 8 that (Γ1, g1) D (Γ2, g2).189

Similarly, if (Γ4, g4) = (Γ5, g5) is the identity, we conclude that (Γ1, g1) D190

(Γ2, g2).191

Case 5. (Γ4, g4) is the identity. Then (Γ1, g1) = (Γ3, g3)(Γ2, g2) and (Γ2, g2) =192

(Γ5, g5)(Γ1, g1)(Γ6, g6). Thus g3 = g1g
−1

2
and g1g

−1

2
Γ2 ⊆ Γ1. This means that193

g−1

2
Γ2 ⊆ g−1

1
Γ1 by (2). Since (Γ2, g2) = (Γ5, g5)(Γ1, g1)(Γ6, g6) and Theorem 9,194

there exists g ∈ V (Γ2) such that gΓ1 ⊆ Γ2. This implies that g−1

2
gΓ1 ⊆ g−1

2
Γ2 ⊆195

g−1

1
Γ1. From (1), we have g−1

1
Γ1 = g−1

2
Γ2. Note that g1g

−1

2
= g3 ∈ V (Γ1).196

Since g−1

2
gΓ1 = g−1

2
Γ2, we have gΓ1 = Γ2. Then g ∈ V (Γ2) = V (gΓ1) which197

implies 1 ∈ V (Γ1). From g2g
−1

1
Γ1 = Γ2, we get that g2g

−1

1
∈ V (Γ2). Hence198

(Γ1, g1) D (Γ2, g2) by Theorem 8.199

Similarly, if (Γ6, g6) is the identity, we conclude that (Γ1, g1) D (Γ2, g2).200

Case 6. (Γ5, g5) is the identity. Then (Γ1, g1) = (Γ3, g3)(Γ2, g2)(Γ4, g4) and201

(Γ2, g2) = (Γ1, g1)(Γ6, g6). Thus Γ2 = Γ1∪ g1Γ6 and g2 = g1g6. From Theorem 9,202

there exits g ∈ V (Γ1) such that gΓ2 ⊆ Γ1. We obtain that gΓ2 ⊆ Γ1 ⊆ Γ2. From203

(1), we have Γ1 = Γ2 which means (Γ1, g1) D (Γ2, g2) via Theorem 8.204

Similarly, if (Γ3, g3) is the identity, we conclude that (Γ1, g1) D (Γ2, g2).205

4. Natural partial order206

From Theorem 3, GFin(Γ) ⋊ G is not, in general, a regular semigroup. Then207

the natural order ≤ on GFin(Γ) ⋊G is defined as follows: for (γ1, g1), (γ2, g2) ∈208

GFin(Γ)⋊G,209

(Γ1, g1) ≤ (Γ2, g2) if (Γ1, g1) = (Γ2, g2) or210

(Γ1, g1) = (Γ3, g3)(Γ2, g2) = (Γ2, g2)(Γ4, g4) and (Γ1, g1) = (Γ1, g1)(Γ4, g4)211

for some (Γ3, g3), (Γ4, g4) ∈ GFin(Γ)⋊G. Next, we characterize a natural partial212

order on GFin(Γ)⋊G.213

Theorem 11. Let (Γ1, g1), (Γ2, g2) ∈ GFin(Γ) ⋊ G. Then (Γ1, g1) ≤ (Γ2, g2) if214

and only if (Γ1, g1) = (Γ2, g2) or (Γ2 ⊆ Γ1, g1 = g2 and 1 ∈ V (Γ1)).215

Proof. Assume that (Γ1, g1) ≤ (Γ2, g2) and (Γ1, g1) 6= (Γ2, g2). Thus there exists216

(Γ3, g3), (Γ4, g4) ∈ GFin(Γ)⋊G such that217

(Γ1, g1) = (Γ3, g3)(Γ2, g2) = (Γ2, g2)(Γ4, g4) and (Γ1, g1) = (Γ1, g1)(Γ4, g4).218

Then (Γ1, g1) = (Γ3 ∪ g3Γ2, g3g2) = (Γ2 ∪ g2Γ4, g2g4) and (Γ1, g1) = (Γ1 ∪219

g1Γ4, g1g4). This means that 1 = g4 and g1 = g2. Then g3 = 1 and we get220

that 1 ∈ V (Γ3) ⊆ V (Γ1). Clearly, Γ2 ⊆ Γ1.221
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Conversely, if (Γ1, g1) = (Γ2, g2), then (Γ1, g1) ≤ (Γ2, g2). We suppose that222

Γ2 ⊆ Γ1, g1 = g2 and 1 ∈ V (Γ1). Then 1 = g−1

2
g2 ∈ V (g−1

2
Γ1). Thus (g

−1

2
Γ1, 1) ∈223

GFin(Γ)⋊G. Clearly, (Γ1, 1)(Γ2, g2) = (Γ1∪Γ2, g2) = (Γ1, g1), (Γ2, g2)(g
−1

2
Γ1, 1) =224

(Γ2 ∪ Γ1, g1) = (Γ1, g1) and (Γ1, g1)(g
−1

2
Γ1, 1) = (Γ1 ∪ g2g

−1

2
Γ1, g1) = (Γ1, g1).225

Hence (Γ1, g1) ≤ (Γ2, g2).226

Theorem 12. The natural partial order on GFin(Γ)⋊G is right compatible.227

Proof. Let (Γ1, g1), (Γ2, g2) ∈ GFin(Γ) ⋊G be such that (Γ1, g1) ≤ (Γ2, g2) and228

(Γ1, g1) 6= (Γ2, g2). By Theorem 11, we have Γ2 ⊆ Γ1, g1 = g2 and 1 ∈ V (Γ1).229

Let (Γ3, g3) ∈ GFin(Γ)⋊G. We will show that (Γ1, g1)(Γ3, g3) ≤ (Γ2, g2)(Γ3, g3).230

Since Γ2 ⊆ Γ1, g1 = g2 and 1 ∈ V (Γ1), we have Γ2∪g2Γ3 ⊆ Γ1∪g1Γ3, g1g3 = g2g3231

and 1 ∈ V (Γ1 ∪ g1Γ3). Thus (Γ1, g1)(Γ3, g3) ≤ (Γ2, g2)(Γ3, g3). We conclude that232

≤ is right compatible.233

Example 3. Let G = {1, g, h, gh} be the Klein four-group with identity 1 and234

X = {x, y}. Define f : X → G by xf = g and yf = h. Consider the235

subgraphs Γ1,Γ2 and Γ3 of Γ defined as follow: V (Γ1) = {1, g, gh}, E(Γ1) =236

{(1, x), (g, y)}, V (Γ2) = {g, gh}, E(Γ2) = {(g, y)}, V (Γ3) = {h, gh} and E(Γ3) =237

{(gh, x)}. Clearly, (Γ1, g) ≤ (Γ2, g) (by Theorem 11). Since E(Γ3 ∪ hΓ1) 6=238

E(Γ3 ∪ hΓ2) and 1 /∈ V (Γ3 ∪ hΓ1), we obtain that (Γ3, h)(Γ1, g) 6≤ (Γ3, h)(Γ2, g).239

Hence the natural partial order on GFin(Γ)⋊G is not left compatible.240

Theorem 13. Let g ∈ G and let ∅g be the graph with241

V (∅g) = {g} and E(∅g) = ∅.242

Then the following statements hold:243

(1) (∅g, g) is the maximal element under the natural partial order on GFin(Γ)⋊G.244

(2) If Γ is finite, then (Γ, g) is a minimal element under the natural partial order245

on GFin(Γ)⋊G.246

(3) If Γ is infinite, then GFin(Γ)⋊G has no minimal element under the natural247

partial order.248

Proof. (1) and (2) are obvious.249

(3) Assume that Γ is infinite and let (Γ′, g) ∈ GFin(Γ)⋊G. Since Γ′ 6= Γ, we250

have V (Γ′) 6= V (Γ) or E(Γ′) 6= E(Γ).251

Case 1. V (Γ′) 6= V (Γ). Choose h ∈ V (Γ) \ V (Γ′). Define Γ′′ by V (Γ′′) =252

V (Γ′) ∪ {1, h} and E(Γ′′) = E(Γ′). Therefore (Γ′′, g) ≤ (Γ′, g) and (Γ′′, g) 6=253

(Γ′, g).254

Case 2. E(Γ′) 6= E(Γ). Choose (h, x) ∈ E(Γ) \E(Γ′). Define Γ′′ by V (Γ′′) =255

V (Γ′)∪{1, h, hxf} and E(Γ′′) = E(Γ′)∪{(h, x)}. So (Γ′′, g) ≤ (Γ′, g) and (Γ′′, g) 6=256

(Γ′, g).257

Hence GFin(Γ)⋊G has no minimal element under the natural partial order.258



Regularity and Green’s relations on GFin(Γ)⋊G 11

References259

[1] B. Billhardt, Y. Chaiya, E. Laysirikul, E. Nupo and J. Sanwong, A unifying approach260

to the Margolis-Meakin and Biget-Rhodes group expansion, Semigroup Forum 96261

(2018) 565–580.262

https://doi.org/10.1007/s00233-018-9932-7263

[2] J.C. Birget and J. Rhodes, Almost finite expansions of arbitrary semigroups, J. Pure264

Appl. Alg. 32 (1984) 239–287.265

https://doi.org/10.1016/0022-4049(84)90092-6266

[3] J.A. Green, On the structure of semigroups, Ann. Math. 54 (1951) 163–172.267

https://doi.org/10.2307/1969317268

[4] J.M. Howie, Fundamentals of Semigroup Theory (Oxford University Press, 1995).269

[5] M. Ma, T. You, S. Luo, Y. Yang and L. Wang, Regularity and Green’s relations for270

finite E-order-preserving transformations semigroups, Semigroup Forum 80 (2010)271

164–173.272

https://doi.org/10.1007/s00233-009-9192-7273

[6] S.W. Margolis and J.C. Meakin, E-unitary inverse monoids and the Cayley graph274

of a group presentation, J. Pure Appl. Alg. 58 (1989) 45–76.275

https://doi.org/10.1016/0022-4049(89)90052-2276

[7] S. Mendes-Goncalves and R.S. Sullivan, Regular elements and Green’s relations277

in generalised transformation semigroups, Asian-European J. Math. 6(1) (2013)278

1350006-1–1350006-11.279

https://doi.org/10.1142/S179355711350006X280

[8] H. Mitsch, A natural partial order for semigroups, Proc. Amer. Math. Soc. 1 (1986)281

384–388.282

https://doi.org/10.1090/S0002-9939-1986-0840614-0283

[9] K. Nambooripad, The natural partial order on a regular semigroup, Proc. Edinburgh284

Math. Soc. 1 (1980) 249–260.285

https://doi.org/10.1017/S0013091500003801286

[10] K.N. Sawatraksa and C. Namnak, Green’s relations and regularity on some subsemi-287

groups of transformations that preserve equivalences, Turkish J. Math. 42 (2018)288

2513–2526.289

https://doi.org/10.3906/mat-1805-50290

[11] K. Sripon, E. Laysirikul and Y. Chaiya, Regularity and abundance on semigroups of291

transformations preserving an equivalence relation on an invariant set, AIMS Math.292

8(8) (2023) 18223–18233.293

https://doi.org/10.3934/math.2023926294

[12] R.P. Sullivan, Regular elements and Green’s relations in generalised linear transfor-295

mation semigroups, South. Asian Bull. Math. 38 (2014) 73–82.296

https://doi.org/10.1142/S179355711350006X297

https://doi.org/10.1007/s00233-018-9932-7
https://doi.org/10.1016/0022-4049\(84\)90092-6
https://doi.org/10.2307/1969317
https://doi.org/10.1007/s00233-009-9192-7
https://doi.org/10.1016/0022-4049\(89\)90052-2
https://doi.org/10.1142/S179355711350006X
https://doi.org/10.1090/S0002-9939-1986-0840614-0
https://doi.org/10.1017/S0013091500003801
https://doi.org/10.3906/mat-1805-50
https://doi.org/10.3934/math.2023926
https://doi.org/10.1142/S179355711350006X


12 E. Laysirikul and K. Sripon

[13] L. Sun, Regularity and Green’s relations on a semigroup of transformations with298

restricted range, J. Math. Res. 10 (2018) 24–28.299

https://doi.org/10.5539/jmr.v10n2p24300

[14] P. Zhao and M. Yang, Regularity and Green’s relations on semigroups of trans-301

formation preserving order and compression, Bull. Korean Math. Soc. 49 (2012)302

1015–1025.303

https://doi.org/10.4134/BKMS.2012.49.5.1015304

Received305

Revised306

Accepted307

This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License https://creativecommons.org/licenses/by/4.0/

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.5539/jmr.v10n2p24
https://doi.org/10.4134/BKMS.2012.49.5.1015
https://creativecommons.org/licenses/by/4.0/
http://www.tcpdf.org

