Article in press
Authors:
Title:
Rooted mutation groups and finite type cluster algebras
PDFSource:
Discussiones Mathematicae - General Algebra and Applications
Received: 2024-02-29 , Revised: 2024-08-19 , Accepted: 2024-08-20 , Available online: 2025-05-19 , https://doi.org/10.7151/dmgaa.1477
Abstract:
For a fixed seed $(X, Q)$, a rooted mutation loop is a sequence of mutations that preserves $(X, Q)$. The group generated by all rooted mutation loops is called rooted mutation group and will be denoted by $\mathcal{M}(Q)$. The global mutation group of $(X, Q)$, denoted $\mathcal{M}$, is the group of all mutation sequences subject to the relations on the cluster structure of $(X, Q)$. In this article, we show that two finite type cluster algebras $\mathcal{A}(Q)$ and $\mathcal{A}(Q')$ are isomorphic if and only if their rooted mutation groups are isomorphic and the sets $\mathcal{M}/\mathcal{M}(Q)$ and $\mathcal{M'}/\mathcal{M}(Q')$ are in one to one correspondence. The second main result shows that the group $\mathcal{M}(Q)$ and the set $\mathcal{M}/\mathcal{M}(Q)$ determine the finiteness of the cluster algebra $\mathcal{A}(Q)$ and vice versa.
Keywords:
cluster algebras, subseeds, rooted mutation loops
References:
- A. Alkhezi and I. Saleh, On the pentagon relations of valued quivers, I, J. Algebra 9(8) (2015) 355–369.
- A. Berenstein, S. Fomin and A. Zelevinsky, Cluster algebras III: Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005) 1–52.
- H. Derksen and T. Owen, New graphs of finite mutation type, Electron. J. Combin. 15 (2008) R139.
- A. Felikson, M. Shapiro and P. Tumarkin, Cluster algebras of finite mutation type via unfoldings, Int. Math. Res. Notices 2012 (2012) 1768–1804.
- V.V. Fock and A.B. Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Ec. Norm. Supér. 42(6) (2009) 865–930.
- V.V. Fock and A.B. Goncharov, Cluster ensembles, quantization and the dilogarithm. II, The intertwiner. Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. 1, 655–673; Progr. Math. 269 (Birkhäuser Boston, Inc., Boston, 2009).
- V.V. Fock and A. Marshakov, Loop groups, clusters, dimers and integrable systems. Geometry and quantization of moduli spaces, 1–66; Adv. Courses Math. (CRM Barcelona, Birkhauser/Springer, Cham 2016).
- S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002) 497–529.
- S. Fomin and A. Zelevinsky, Cluster algebras II: Finite type classification, Inven. Math. 154 (2002) 63–121.
- S. Fomin and A. Zelevinsky, Cluster algebras IV: Coefficients, Compositio Math. 143(1) (2007) 112–164.
- M. Huang, F. Li and Y. Yang, On structure of cluster algebras of geometric type I: In view of sub-Seeds and seed homomorphisms, Sci. China Math. 61(5) 831–854.
- T. Ishibashi and S. Kano, Algebraic entropy of sign-stable mutation loops, Geom. Dedicata 214 (2021) 79–118.
- A. King and M. Pressland, Labelled seeds and the mutation group, Math. Proc. Cambridge Philos. Soc. 163(2) (2017) 193–217. Issue 5, 831–854.
- I. Saleh, Exchange maps of cluster algebras, Int. Electr. J. Algebra 16 (2014) 1–15.
- I. Saleh, Symmetric mutations algebras in the context of sub-cluster algebras, J. Algebra Its Appl. 23(10) (2024) 2450152.
- I. Saleh, On the mutation loops of valued quivers, Algebra and Discrete Math. 36(1) (2023) 84–107.
- A. Zelevinsky, Cluster Algebras: Notes for 2004 IMCC (Chonju, Korea, 2004). arXiv: math. RT/0407414.
Close