DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in press


Authors:

I. Saleh

Ibrahim Saleh

University of Wisconsin Whitewater

email: salehi@uww.edu

Title:

Rooted mutation groups and finite type cluster algebras

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications

Received: 2024-02-29 , Revised: 2024-08-19 , Accepted: 2024-08-20 , Available online: 2025-05-19 , https://doi.org/10.7151/dmgaa.1477

Abstract:

For a fixed seed $(X, Q)$, a rooted mutation loop is a sequence of mutations that preserves $(X, Q)$. The group generated by all rooted mutation loops is called rooted mutation group and will be denoted by $\mathcal{M}(Q)$. The global mutation group of $(X, Q)$, denoted $\mathcal{M}$, is the group of all mutation sequences subject to the relations on the cluster structure of $(X, Q)$. In this article, we show that two finite type cluster algebras $\mathcal{A}(Q)$ and $\mathcal{A}(Q')$ are isomorphic if and only if their rooted mutation groups are isomorphic and the sets $\mathcal{M}/\mathcal{M}(Q)$ and $\mathcal{M'}/\mathcal{M}(Q')$ are in one to one correspondence. The second main result shows that the group $\mathcal{M}(Q)$ and the set $\mathcal{M}/\mathcal{M}(Q)$ determine the finiteness of the cluster algebra $\mathcal{A}(Q)$ and vice versa.

Keywords:

cluster algebras, subseeds, rooted mutation loops

References:

  1. A. Alkhezi and I. Saleh, On the pentagon relations of valued quivers, I, J. Algebra 9(8) (2015) 355–369.
  2. A. Berenstein, S. Fomin and A. Zelevinsky, Cluster algebras III: Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005) 1–52.
  3. H. Derksen and T. Owen, New graphs of finite mutation type, Electron. J. Combin. 15 (2008) R139.
  4. A. Felikson, M. Shapiro and P. Tumarkin, Cluster algebras of finite mutation type via unfoldings, Int. Math. Res. Notices 2012 (2012) 1768–1804.
  5. V.V. Fock and A.B. Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Ec. Norm. Supér. 42(6) (2009) 865–930.
  6. V.V. Fock and A.B. Goncharov, Cluster ensembles, quantization and the dilogarithm. II, The intertwiner. Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. 1, 655–673; Progr. Math. 269 (Birkhäuser Boston, Inc., Boston, 2009).
  7. V.V. Fock and A. Marshakov, Loop groups, clusters, dimers and integrable systems. Geometry and quantization of moduli spaces, 1–66; Adv. Courses Math. (CRM Barcelona, Birkhauser/Springer, Cham 2016).
  8. S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002) 497–529.
  9. S. Fomin and A. Zelevinsky, Cluster algebras II: Finite type classification, Inven. Math. 154 (2002) 63–121.
  10. S. Fomin and A. Zelevinsky, Cluster algebras IV: Coefficients, Compositio Math. 143(1) (2007) 112–164.
  11. M. Huang, F. Li and Y. Yang, On structure of cluster algebras of geometric type I: In view of sub-Seeds and seed homomorphisms, Sci. China Math. 61(5) 831–854.
  12. T. Ishibashi and S. Kano, Algebraic entropy of sign-stable mutation loops, Geom. Dedicata 214 (2021) 79–118.
  13. A. King and M. Pressland, Labelled seeds and the mutation group, Math. Proc. Cambridge Philos. Soc. 163(2) (2017) 193–217. Issue 5, 831–854.
  14. I. Saleh, Exchange maps of cluster algebras, Int. Electr. J. Algebra 16 (2014) 1–15.
  15. I. Saleh, Symmetric mutations algebras in the context of sub-cluster algebras, J. Algebra Its Appl. 23(10) (2024) 2450152.
  16. I. Saleh, On the mutation loops of valued quivers, Algebra and Discrete Math. 36(1) (2023) 84–107.
  17. A. Zelevinsky, Cluster Algebras: Notes for 2004 IMCC (Chonju, Korea, 2004). arXiv: math. RT/0407414.

Close