Article in volume
Authors:
Title:
On a class of semi–normal monoidal functors
PDFSource:
Discussiones Mathematicae - General Algebra and Applications 45(1) (2025) 33-56
Received: 2023-06-04 , Revised: 2024-02-07 , Accepted: 2024-02-08 , Available online: 2024-06-27 , https://doi.org/10.7151/dmgaa.1456
Abstract:
In this paper, we introduce and study an intermediate class, termed semi-normal
monoidal functors, between the classes of monoidal and normal monoidal functors.
We show that any left, or right, rigid braided category admits a contravariant
semi-normal (co)monoidal endofunctor. Several examples are presented, showing
the non triviality of this class. Moreover, it is shown that semi-normal
monoidal functors from a monoidal category to a braided monoidal category,
form a braided monoidal category.
Keywords:
monoidal category, braiding, normal monoidal functor, natural transformation
References:
- M. Aguiar and S.A. Mahajan, Monoidal functors, species and Hopf algebras 29 (Providence, RI, American Mathematical Society, 2010).
https://doi.org/10.1090/crmm/029 - H. Choulli, K. Draoui and H. Mouanis, Quantum determinants in ribbon category, {Categ. Gen. Algebr. Struct. Appl.} 17(1) (2022) 203–232.
https://doi.org/10.52547/cgasa.2022.102621 - B. Day and C. Pastro, Note on Frobenius monoidal functors, New York J. Math. 14 (2008) 733–742.
- K. Draoui, H. Choulli and H. Mouanis, Determinant and rank functions in semisimple pivotal Ab-categories, Categ. Gen. Algebr. Struct. Appl. 19(1) (2023) 47–80.
https://doi.org/10.48308/CGASA.19.1.47 - S. Eilenberg and G.M. Kelly, Closed categories, Proc. Conf. Categorical Algebra at La Jolla 1965 (Springer, 1966) 421–562.
https://doi.org/10.1007/978-3-642-99902-4\_22 - P. Freyd and D. Yetter, Braided compact closed categories with application to low dimensional topology, Adv. Math. 77 (1989) 156–182.
- A. Joyal and R. Street, Braided Monoidal Categories, Mathematics Reports 86008 (Macquarie University, 1986).
- C. Kassel, Quantum Groups, Gradute Texts in Mathematics, 155 (Springer-Verlag, 1995).
https://doi.org/10.1007/978-1-4612-0783-2 - S. Mac-Lane, Categories for Working Mathematician, Graduate Texts in Mathematics 5 (Springer-verlag, 2013).
https://doi.org/10.1007/978-1-4757-4721-8 - V.G. Turaev, Quantum Invariants of Knots and 3-Manifolds (Berlin, New York, De Gruyter, 2010).
https://doi.org/10.1515/9783110221848 - V.G. Turaev and A. Virelizier, Monoidal Categories and Topological Field Theory, Progress in Mathematics 322 (Birkhuser/Springer, 2017).
https://doi.org/10.1007/978-3-319-49834-8
Close
