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Abstract

In this paper, we introduce and study an intermediate class, termed
semi-normal monoidal functors, between the classes of monoidal and normal
monoidal functors. We show that any left, or right, rigid braided category
admits a contravariant semi-normal (co)monoidal endofunctor. Several ex-
amples are presented, showing the non triviality of this class. Moreover, it
is shown that semi-normal monoidal functors from a monoidal category to
a braided monoidal category, form a braided monoidal category.
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1. Introduction

Monoidal categories play important roles not only in mathematics, where they
serve as structures for grouping various classes of mathematical objects like,
among others, groups, linear representations and linear differential matrix equa-
tions. They also bear importance in theoretical and mathematical physics, par-
ticularly within the context of quantum information theory and topological field
theory [10, 11].

1Corresponding author.
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Given two monoidal categories, a functor F : C −→ D can be either a
monoidal or a comonoidal functor. The composite of functors of one of these
two types is again a functor of the same type. This implies that a covariant
monoidal (resp., comonoidal) functor, sends a monoid (resp., comonoid) into a
monoid (resp., comonoid). A monoidal functor is a triplet (F ;ϕ0;ϕ2), where
F : C −→ D is a functor, ϕ2 : F (U) ⊗′ F (V ) → F (U ⊗ V ) and ϕ0 : I ′ → F (I)
are two maps satisfying the associativity, left and right unitality constraints [11,
page 15], for all objects U and V of C. (F ;ϕ0;ϕ2) is called strong when ϕ0 and
ϕ2 are isomorphisms [8, 9, 11], and it is called normal when only ϕ0 is required
to be an isomorphism.

In a strict rigid monoidal category C, the square of the duality functor is not
generally isomorphic to the identity functor, this is referred to as non involutivity.
If it is involutive, we then have that any object is canonically isomorphic to its
bidual (reflexivity), in particular, this will imply that the unit object I of C is
isomorphic to its dual: I∗ ≃ I ⊗ I∗ ≃ (I∗ ⊗ I)∗ ≃ I∗∗ ≃ I. This situation
is guaranteed if for example C was a ribbon Ab-category [2]. As a result, and
using the fact that the ground ring kC , which is the endomorphism ring EndC(I)
of C, is commutative, the duality maps dI and bI are inverse isomorphisms of
each other. In general, the duality structures (I∗; dI ; bI) on I provide a semi
invertibilty dI ◦ bI = idI . An additional structure of a braiding on C seems
to equip C with a contravariant monoidal endofunctor, which is not generally
normal.

In this paper, we slightly weaken normality of F and study the restricted re-
sulting class of semi-normal functors, namely (co)monoidal functors (F ;ϕ0;ϕ2),
such that ϕ0 is only semi invertible, i.e., there exists a map ϕ−

0 in D, such that
ϕ−
0 ◦ ϕ0 = id. Such a functor sends a monoid (M,m, η) with an additional sim-

ilar structure, i.e., the existence of a map η− such that, η− ◦ η = id, which we
call augmented, to a monoid with the same additional structure. This holds
dually for comonoids, where we shall call this time a coaugmented comonoid.
Consequently, monoidal and comonoidal semi-normal functors correspond to aug-
mented monoids and coaugmented comonoids respectively. We show in a main
example that any monoidal Ab-category [10] admits a contravariant semi-normal
monoidal functor to the category of modules over its commutative ground ring.
Moreover, we show that any left, or right, rigid braided (monoidal) category, ad-
mits a contravariant semi-normal monoidal and comonoidal endofunctor, which
is not necessarily normal, unless the category is for example ribbon [2, 10]. We
also provide illustrating examples of monoidal categories admitting semi-normal
(co)monoidal functors towards other ones. By means of these examples, the in-
troduced class is shown to be distinguished from those of normal and strong
monoidal functors.

Semi-normal monoidal functors between monoidal categories C and D are
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shown to constitute a braided category whenever D is braided, which admits
itself, under some assumption, a semi-normal monoidal functor to some functors
category, Section 4.

2. Preliminaries

In this section, we briefly recall the necessary basic notions from the theory of
monoidal categories. For more details, we refer to [4, 9, 10, 11].

A monoidal category is a quintuplet C = (C;⊗; I;α; l; r) consisting of a
category C, an object I of C (called the unit object), a bifunctor (called tensor
product) ⊗ : C × C −→ C and natural isomorphisms α : A ⊗ (B ⊗ C) −→
(A⊗B)⊗C (called associativity constraint), l : I⊗A −→ A (called left unitality
constraint) and r : A⊗ I −→ A (called right unitality constraint) such that the
pentagon and triangle axioms hold. The class of objects of C will be denoted by
Ob(C). C is said to be strict provided that α, l and r are identities.

From now on, all the considered categories are assumed to be strict, according
to a result of Mac-Lane [9] claiming that every monoidal category is equivalent
to a strict one.

Recall from [10] that a category C is called an Ab-category (also called a
pre-additive or a pre-abelian category) if the hom-set HomC(U, V ) is an additive
abelian group, for any objects U and V of C, and the composition and tensor
product are bilinear.

Let now C be a monoidal Ab-category. The hom-set HomC(I, I) is denoted
by kC and referred to as the ground ring of C. (kC ,+, ◦) is a commutative ring
and the composition coincides with the tensor product in it. Moreover, for all
U, V ∈ Ob(C), the hom-set HomC(U, V ) becomes a left kC-module, and the
composition is kC-bilinear [10, Chapter II, 1.1, page 72], hence C is a kC-linear
category [11, Chapter 4, 4.1.1].

A monoid in a monoidal category C is an objectM equipped with a morphism
m : M ⊗M −→ M (called multiplication) and a morphism η : I −→ M (called
unit) satisfying associativity and unitality axioms [9, page 70]. A morphism
(M,m, η) −→ (M ′,m′, η′) is just a morphism M −→ M ′ which commutes with
m, m′, and η, η′. Dually is defined a comonoid (N,∆, ε) and a morphism of
comonoids (by reversing the arrows), where morphisms are called now respectively
comultiplication and counit. A bimonoid (B,m, η,∆, ε) is an object B, such
that (B,m, η) is a monoid, (B,∆, ε) is a comonoid, and m, η are morphisms of
comonoids (equivalently, ∆, ε are morphisms of monoids) [1, Proposition 1.11].

A monoidal functor F : (C;⊗; I) −→ (D;⊗′; I ′) between monoidal categories
is a triplet (F ;ϕ0;ϕ2), where ϕ2 : F (U)⊗′F (V ) → F (U⊗V ), and ϕ0 : I

′ → F (I)
are morphisms in D, satisfying the following associativity, left and right unitality
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constraints respectively, for any objects U and V of C [11, 1.4.1, page 15]:

F (U)⊗′ F (V )⊗′ F (W )
1⊗ϕ2

ϕ2⊗1

F (U)⊗′ F (V ⊗W )

ϕ2

F (U ⊗ V )⊗′ F (W )
ϕ2

F (U ⊗ V ⊗W )

I ′ ⊗′ F (U)
1

ϕ0⊗1

F (U)

F (I)⊗′ F (U)

ϕ2

;; F (U)⊗′ I ′
1

1⊗ϕ0

F (U)

F (U)⊗′ F (I)

ϕ2

for all objects U , V and W of C.

F is called normal if ϕ0 is an isomorphism and strong if both ϕ0 and ϕ2

are isomorphisms. Dually, one can define a comonoidal functor by reversing the
arrows in the above diagrams.

A braiding c [7] for a monoidal category C is a natural isomorphism, consist-
ing of a family of isomorphisms

cU ;V : U ⊗ V −→ V ⊗ U

in C, for any objects U and V of C, such that

(1) cU ;V⊗W = (idV ⊗ cU ;W )(cU ;V ⊗ idW )

(2) cU⊗V ;W = (cU ;W ⊗ idV )(idU ⊗ cV ;W )

for any third object W of C.

Naturality of c means that for any morphisms f : V → V ′ and g : U → U ′ in
C, we have

(3) cV ′;U ′ (f ⊗ g) = (g ⊗ f) cV ;U .

Any braiding c satisfies the following identity called the Yang-Baxter equation

(4) (cV ;W⊗idU )(idV ⊗cU ;W )(cU ;V⊗idW ) = (idW⊗cU ;V )(cU ;W⊗idV )(idU⊗cV ;W )

for any objects U , V and W of C.

A braiding c is called a symmetry if c−1
V ;U = cU ;V , for any U, V ∈ Ob(C).

A symmetric monoidal category is a monoidal category equipped with a sym-
metry.
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An object V of a monoidal category (C;⊗; I) admits a left dual if there
exists an object V ∗ of C and morphisms bV : I −→ V ⊗ V ∗ (coevaluation) and
dV : V ∗ ⊗ V −→ I (evaluation) in C such that

(idV ⊗ dV )(bV ⊗ idV ) = idV ; ; (dV ⊗ idV ∗)(idV ∗ ⊗ bV ) = idV ∗ .

Right duality is defined dually and we say that V admits a dual if it admits a
left and a right dual.

A monoidal category (C;⊗; I) is said to be rigid (resp., left, right rigid) if
every object of C admits a dual (resp., left, right dual) [5, 6].

For any morphism f : U → V between left dualizable objects of C, one
defines its dual morphism f∗ : V ∗ → U∗ by

f∗ = (dV ⊗ idU∗)(idV ∗ ⊗ f ⊗ idU∗)(idV ∗ ⊗ bU ).

The morphism λU ;V : V ∗ ⊗ U∗ −→ (U ⊗ V )∗ defined by

(5) λU ;V = (dV ⊗ id(U⊗V )∗)(idV ∗ ⊗ dU ⊗ idV⊗(U⊗V )∗)(idV ∗⊗U∗ ⊗ bU⊗V )

is an isomorphism for any two objects U and V of C, see [8, page 344] for more
details. For any objects U , V and W of C, the isomorphism λU ;V satisfies the
following identity

(6) λU ;V⊗W (λV ;W ⊗ idU∗) = λU⊗V ;W (idW ∗ ⊗ λU ;V ).

Indeed, we have

λ(λ⊗ 1) = (d⊗ 1)(1 ⊗ d⊗ 1⊗ 1)(1 ⊗ 1⊗ 1⊗ d⊗ 1)(1 ⊗ 1⊗ b⊗ 1⊗ 1)

(1⊗ 1⊗ d⊗ 1⊗ 1)(1 ⊗ 1⊗ 1⊗ b)

= (d⊗ 1)(1 ⊗ d⊗ 1⊗ 1)(1 ⊗ 1⊗ d⊗ 1⊗ 1)(1 ⊗ 1⊗ 1⊗ b)

= (d⊗ 1)(1 ⊗ d⊗ 1⊗ 1)(1 ⊗ 1⊗ d⊗ 1⊗ 1⊗ 1)(1⊗ 1⊗ 1⊗ b).

On the other hand, we have

λ(1⊗ λ) = (d⊗ 1)(1⊗ d⊗ 1⊗ 1)(1 ⊗ 1⊗ d⊗ 1⊗ 1⊗ 1)

(1⊗ 1⊗ 1⊗ 1⊗ d⊗ 1⊗ 1)(1 ⊗ 1⊗ 1⊗ b⊗ 1⊗ 1⊗ 1)(1 ⊗ 1⊗ 1⊗ b)

= (d⊗ 1)(1⊗ d⊗ 1⊗ 1)(1 ⊗ 1⊗ d⊗ 1⊗ 1⊗ 1)(1 ⊗ 1⊗ 1⊗ b).

Throughout the sequel, by C we mean a strict monoidal category (C;⊗; I)
with unit object I, k denotes a base field and R a base commutative ring both are
supposed to have a unit 1. Sometimes, we do not distinguish unit objects I and
I
′

when no confusion may appear and we also write 1 to designate the identity
map id.
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3. Semi-normal functors

Definition. Let (C;⊗; I) and (D;⊗
′

; I
′

) be two monoidal categories.
A semi-normal monoidal functor from C to D is a triple

(

F ; (ϕ0, ϕ
−
0 );ϕ2

)

,

where (F ;ϕ0;ϕ2) is a monoidal functor and ϕ−
0 : F (I) −→ I

′

is a morphism in
D such that ϕ−

0 ϕ0 = idI′ .
A semi-normal comonoidal functor from C to D is a triple

(

F ; (ϕ0, ϕ
−
0 );ϕ

∼
2

)

where, (F ;ϕ−
0 ;ϕ

∼
2 ) is a comonoidal functor and ϕ0 : I

′

−→ F (I) is a morphism
in D, such that ϕ−

0 ϕ0 = idI′ .

Example 1. A strong monoidal (resp., comonoidal) functor is a semi-normal
monoidal (resp., comonoidal) functor.

Recall that a Frobenius monoidal functor
(

F ; (r0, i0); (r, i)
)

is a functor F :
C −→ D between monoidal categories, such that (F ; r0; r) is monoidal and
(F ; i0; i) is comonoidal, subject to adequate coherence axioms [3].

Example 2. A Frobenius monoidal functor
(

F ; (r0, i0); (r, i)
)

, such that i0r0 =
id, is a semi-normal monoidal and comonoidal functor.

Remark 3. Let F : C −→ D be a contravariant semi-normal monoidal func-
tor between monoidal categories. For every split monomorphism f : I −→ V

(equivalently, split epimorphism f : V −→ I), V ∈ Ob(C); the following short
sequence is left and right split

0 −→ I
ϕ0
−→ F (I)

F (f)
−−−→ F (V ) −→ 0.

Example 4. Let F : (vectk;⊗k;k) −→ (Set;×; {∗}) be the underlying (forgetful)
functor between the category of finite dimensional vector spaces over a field k and
the category of sets with cartesian product as tensor product, and the unit object
is given by the set {∗} of one element. Consider the following monoidal structures
on F

ϕ2V ;W : F (V )× F (W ) −→ F (V ⊗k W )
(v,w) 7−→ v ⊗w

ϕ0 : {∗} −→ F (k) = k

∗ 7−→ 1
;;

ϕ−
0 : k −→ {∗}

x 7−→ ∗

Then,
(

F ; (ϕ0, ϕ
−
0 );ϕ2

)

is a semi-normal monoidal functor, and which is neither
normal, nor strong monoidal functor. In fact, the associativity diagram:

F (U)× F (V )× F (W )
(1,ϕ2)

(ϕ2,1)

F (U)× F (V ⊗k W )

ϕ2

F (U ⊗k V )× F (W )
ϕ2

F (U ⊗k V ⊗k W )
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and the unitality diagrams:

{∗} × F (U)
1

(ϕ0,1)

F (U)

k× F (U)

ϕ2

and F (U)× {∗}
1

(1,ϕ0)

F (U)

F (U)× k

ϕ2

are clearly commutative. Moreover, we have ϕ−
0 ϕ0 = id.

Definition. Let C be a monoidal category and M and N objects of C.
An augmented monoid is a triple

(

M ;m; (η, η−)
)

where, (M ;m; η) is a monoid
and η− :M −→ I is a map in C such that η− ◦ η = idI .

A coaugmented comonoid is a triple
(

N ;∆; (ε−, ε)
)

where, (M ;∆; ε−) is a
comonoid and ε : I −→ N is a map in C such that ε− ◦ ε = idI .

A morphism of augmented monoids
(

M ;m; (η, η−)
)

−→
(

M ′;m′; (η′, η
′−)

)

is
a morphism of monoids (M ;m; η) −→ (M ′;m′; η′) (given by a map f : M −→
M ′), such that η

′− ◦ f = η−.
Similarly, a morphism of coaugmented comonoids

(

N ;∆; (ε−, ε)
)

−→
(

N ′;∆′;

(ε
′−, ε′)

)

is a morphism of comonoids which commutes with ε and ε′.

Example 5. Every bimonoid is an augmented (resp. coaugmented) monoid
(resp. comonoid).

It is well known that (covariant) monoidal (resp., comonoidal) functors send
monoids (resp., comonoids) to monoids (resp., comonoids) [1]. We get the next
result.

Proposition 6. (a) A covariant semi-normal monoidal functor between mono-

idal categories sends augmented monoids to augmented monoids.

(b) A covariant semi-normal comonoidal functor between monoidal categories

sends coaugmented comonoids to coaugmented comonoids.

(c) A contravariant semi-normal monoidal functor between monoidal categories

sends augmented monoids to coaugmented comonoids.

(d) A contravariant semi-normal comonoidal functor between monoidal categories

sends coaugmented comonoids to augmented monoids.

Proof. Straightforward.

Corollary 7. Let F be a semi-normal monoidal (resp., comonoidal) functor be-

tween monoidal categories. Then, F (I) is an augmented monoid (resp., coaug-
mented comonoid).

Corollary 8. A (covariant) semi-normal monoidal (resp., comonoidal) functor

sends a morphism of augmented monoids (resp., coaugmented comonoids) to a

morphism of augmented monoids (resp., coaugmented comonoids).
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Theorem 9. Every left (resp., right) rigid braided monoidal category admits a

semi-normal monoidal and comonoidal endofunctor.

Proof. We prove the result only for left rigidity, since it holds similarly for right
rigidity. Assume that every object V of C admits a left dual V ∗. Let F : C −→ C

be the left duality functor, i.e., the functor defined by F (V ) = V ∗ and F (f) = f∗

for every object V of C and every morphism f of C and let

ϕ0 : I −→ I∗ ; ; ϕ−
0 : I∗ −→ I ; ; ϕ2 U,V : U∗ ⊗ V ∗ −→ (U ⊗ V )∗

be the morphisms defined by

ϕ2 U,V = λU,V ◦ cU∗,V ∗ ; ; ϕ0 = bI ; ; ϕ−
0 = dI

where, c is the braiding on C, dI and bI are the corresponding evaluation and
coevaluation maps of the unit object, and λU,V is the isomorphism defined in
(5). Then, we have ϕ−

0 ϕ0 = dIbI = (idI ⊗ dI)(bI ⊗ idI) = idI , by strictness of
C as it is assumed throughout the paper. Moreover, the following (associativity)
diagram commutes

U∗ ⊗ V ∗ ⊗W ∗
idU∗⊗cV ∗;W∗

cU∗;V ∗⊗idW∗

U∗ ⊗W ∗ ⊗ V ∗ 1⊗λ

cU∗;W∗⊗V ∗

U∗ ⊗ (V ⊗W )∗

cU∗;(U⊗W )∗

V ∗ ⊗ U∗ ⊗W ∗
cV ∗⊗U∗;W∗

λ⊗1

W ∗ ⊗ V ∗ ⊗ U∗ λ⊗1

1⊗λ

(V ⊗W )∗ ⊗ U∗

λ

(U ⊗ V )∗ ⊗W ∗
c(U⊗V )∗;W∗

W ∗ ⊗ (U ⊗ V )∗
λ

(U ⊗ V ⊗W )∗

In fact, for the commutativity of the upper left square: by the first and second
axioms of the braiding c as displayed in (1) and (2), we have

cU∗;W ∗⊗V ∗ = (idW ∗ ⊗ cU∗;V ∗)(cU∗;W ∗ ⊗ idV ∗)

cV ∗⊗U∗;W ∗ = (cV ∗;W ∗ ⊗ idU∗)(idV ∗ ⊗ cU∗;W ∗).

Then, commutativity of this square is equivalent to prove that

(idW ∗ ⊗ cU∗;V ∗)(cU∗;W ∗⊗idV ∗)(idU∗ ⊗ cV ∗;W ∗)

= (cV ∗;W ∗ ⊗ idU∗)(idV ∗ ⊗ cU∗;W ∗)(cU∗;V ∗ ⊗ idW ∗)

which holds since this is exactly the Yang-Baxter equation as displayed in (4).
For the commutativity of the upper right and lower left squares, this is due

to the naturality of the braiding (3). For the lower right square, this holds by
(6). Now, the left unitality diagram:
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U∗ ⊗ I
1U∗

1U∗⊗bI

U∗

U∗ ⊗ I∗
λU,I ◦ cU∗,I∗

is commutative. In fact, we have

λU,I ◦ cU∗,I∗ ◦ (1U∗ ⊗ bI) = (dI ⊗ 1U∗) ◦ cU∗,I∗ ◦ (1U∗ ⊗ bI)

= (dI ⊗ 1U∗) ◦ (bI ⊗ 1U∗) ◦ cU∗,I

= 1U∗ ◦ cU∗,I

= 1U∗ .

Similarly, the following right unitality diagram is commutative:

I ⊗ U∗
1U∗

bI⊗1U∗

U∗

I∗ ⊗ U∗

λI,U ◦ cI∗,U∗

Hence,
(

F ; (ϕ0, ϕ
−
0 );ϕ2

)

is a semi-normal monoidal functor. Furthermore, for
any objects U and V of C, the morphism λU,V ◦ cU,V is invertible with inverse
c−1
U,V ◦ λ−1

U,V , then, in a similar way, one can easily check that
(

F ; (ϕ0, ϕ
−
0 );ϕ

−1
2

)

is a semi-normal comonoidal functor.

Remark 10. Note that the above defined semi-normal monoidal structures on
the left duality functor do not turn out, in general, to normal monoidal structures
on it. If C is moreover a ribbon Ab-category, then this turns out to a normal
(resp., strong) monoidal functor. In fact, I being isomorphic in this case to its
bidual I∗∗, implies that we also have ϕ0ϕ

−
0 = idI∗ , see [10, Corollary 2.6.2].

The composite of semi-normal (co)monoidal functors is again a semi-normal
(co)monoidal functor. More exactly, we have

Proposition 11. Let F : C −→ D and G : D −→ E be two functors between

monoidal categories.

(a) If G is covariant, we have

(i) if F and G are both semi-normal monoidal functors, then, G ◦ F is a

semi-normal monoidal functor as well;

(ii) if F and G are both semi-normal comonoidal functors, then, G ◦ F is a

semi-normal comonoidal functor as well.

(b) If G is contravariant, we have
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(i) if F is a semi-normal comonoidal functor and G is a semi-normal mono-

idal functor, then, G ◦ F is a semi-normal monoidal functor;

(ii) if F is a semi-normal monoidal functor and G is a semi-normal comono-

idal functor, then, G ◦ F is a semi-normal comonoidal functor.

Proof. Denote by F0, F
−
0 and F2, the monoidal structures of F and by G0, G

−
0

and G2 those of G. Hence, the monoidal structures of G ◦ F are denoted and
given as follows.

If G is covariant

(G ◦ F )0 = G(F0)G0 ; ; (G ◦ F )−0 = G−
0 G(F

−
0 ).

If G is contravariant

(G ◦ F )0 = G(F−
0 )G0 ; ; (G ◦ F )−0 = G−

0 G(F0).

In both cases we have
(G ◦ F )−0 (G ◦ F )0 = id.

In the first and third cases (a), (i) and (b), (i) of the Proposition, (G ◦ F )2 is
given by

(G ◦ F )2A;B = G(F2A;B)G2F (A);F (B).

In the second and fourth cases (a), (ii) and (b), (ii), (G ◦ F )2 is given by

(G ◦ F )2A;B = G2F (A);F (B)G(F2A;B),

for any objects A and B of C.

Proposition 12. Let F and F ′ be semi-normal monoidal functors between mono-

idal categories. Then, F × F ′ is as well a semi-normal monoidal functor.

Proof. Let F : C −→ D and F ′ : C ′ −→ D′ be functors as assumed. Then,
F × F ′ : C × C ′ −→ D ×D′ is a semi-normal monoidal functor in the canonical
way, namely via the structures defined as follows. For any U, V ∈ Ob(C) and
U ′, V ′ ∈ Ob(C ′) :

(1) (F × F ′)2(U,U ′);(V,V ′) := F2U ;V × F ′
2U ′;V ′ .

(2) (F × F ′)0 := F0 × F ′
0.

(3) (F × F ′)−0 := F−
0 × F

′−
0 .

We give now some examples of monoidal categories admitting semi-normal,
which are not necessarily normal, monoidal functors to other ones.

Proposition 13. Let bialgR be the category of finitely generated and projective

bialgebras over R (see [11, page 101] for a definition). Then
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(i) bialgR admits a covariant semi-normal monoidal functor to the category

ModR of modules over R, via the forgetful functor F : bialgR −→ ModR.

(ii) Let (B;m; η;∆; ε) be an object of bialgR. Then, bialgR admits a con-

travariant semi-normal monoidal functor to ModR via the functor defined

by

FB := (−)∗ ⊗B : bialgR −→ ModR

H 7−→ H∗ ⊗B

f 7−→ FB(f) = f∗ ⊗ idB

where, H∗ = HomR(H,R), and f
∗ is the dual morphism of f .

Proof. (i) Straightforward.

(ii) The category ModR is a monoidal category (ModR;⊗R;R), but not
strict. The associativity constraint is αU,V,W : U ⊗ (V ⊗W ) −→ (U ⊗ V ) ⊗W ,
defined by α(u ⊗ (v ⊗ w)) = (u ⊗ v) ⊗ w, for any u ∈ U , v ∈ V and w ∈ W ,
for any R-modules U , V and W . The left unitality constraint is defined by
lU : R ⊗ U −→ U , r ⊗ u 7→ r.u, with ”.” the R-module structure product of U
in ModR. The right unitality constraint rU is defined similarly. The monoidal
structures on FB are defined by

(a) For any objects N and M of bialgR, (FB)2 N,M is the following compos-
ite:

(N∗ ⊗B)⊗ (M∗ ⊗B)
(FB)2 N,M

α

(N ⊗M)∗ ⊗B

[(N∗ ⊗B)⊗M∗]⊗B

α−1⊗idB

(M∗ ⊗N∗)⊗B

λ⊗idB

[N∗ ⊗ (B ⊗M∗)]⊗B

(idN∗⊗τ)⊗idB

(M∗ ⊗N∗)⊗ (R⊗B)

(idM∗⊗idN∗ )⊗lB

[N∗ ⊗ (M∗ ⊗B)]⊗B

α⊗idB

(M∗ ⊗N∗)⊗ (B ⊗B)

(idM∗⊗idN∗ )⊗(ε⊗idB)

[(N∗ ⊗M∗)⊗B]⊗B
(τ⊗idB)⊗idB

[(M∗ ⊗N∗)⊗B]⊗B

α−1

where, τ is the flip map, and λ is the isomorphism (5).

(b) (FB)0 = (β ⊗ idB) l
−1
B η : R −→ B −→ R ⊗ B −→ R∗ ⊗ B, where

β : R→ R∗ is the canonical isomorphism.
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(c) (FB)
−
0 = ε lB (β−1 ⊗ idB) : R

∗ ⊗B −→ R⊗B −→ B −→ R.

FB is contravariant by definition and we have (FB)
−
0 (FB)0 = εη = idR by the

compatibility bialgebra structures of B. Furthermore, the following left unitality
diagram

R⊗ (U∗ ⊗B)
l(U∗⊗B)

(FB)0⊗id(U∗⊗B)

U∗ ⊗B

(R∗ ⊗B)⊗ (U∗ ⊗B)
(FB)2 R,U

(R⊗ U)∗ ⊗B

FB(l−1
U

)

and the right unitality diagram:

(U∗ ⊗B)⊗R
r(U∗⊗B)

id(U∗⊗B)⊗(FB)0

U∗ ⊗B

(U∗ ⊗B)⊗ (R∗ ⊗B)
(FB)2 U,R

(U ⊗R)∗ ⊗B

FB(r−1
U

)

are commutative. In fact, for the first diagram: for any r ∈ R, u ∈ U , b ∈ B, we
have

FB(l
−1
U ) ◦ (FB)2 R,U◦

(

(FB)0 ⊗ id(U∗⊗B)

)(

r ⊗ (u⊗ b)
)

= FB(l
−1
U ) ◦ (FB)2 R,U

((

β(1R)⊗ η(r)
)

⊗ (u⊗ b)
)

= FB(l
−1
U )

(

λ
(

u⊗ β(1R)
)

⊗
(

εη(r).b
)

)

= FB(l
−1
U )

(

λ
(

u⊗ β(1R)
)

⊗ (r.b)
)

= λ
(

u⊗ β(1R)
)

◦ l−1
U ⊗ (r.b)

= r.
(

λ
(

u⊗ β(1R)
)

l−1
U ⊗ b

)

.

On the other hand, for every a ∈ U we have

λ
(

u⊗ β(1R)
)

l−1
U (a) = λ

(

u⊗ β(1R)
)

(1R ⊗ a) = u(a)

where, the isomorphism λ as in (5) is given in this case by

λN ;M :M∗ ⊗N∗ −→ (N ⊗M)∗, f ⊗ g 7→
(

g ⊗ f : n⊗m 7→ g(n)f(m) ∈ R
)

.

Hence

r.
(

λ
(

u⊗ β(1R)
)

l−1
U ⊗ b

)

= r.(u⊗ b) = l(U∗⊗B)

(

r ⊗ (u⊗ b)
)

,
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which completes the proof. Similarly, commutativity of the second (right unita-
lity) diagram holds.

For the commutativity of the associativity diagram of FB : let N , M and P
be three objects of bialgR, and let n ∈ N∗, m ∈M∗, p ∈ P ∗ and b, b′, b′′ ∈ B. In
order to simplify the computations, we will omit the associativity constraint α.
Then, on the one hand, we have

(FB)2
(

(FB)2 ⊗ 1
)

(n⊗ b⊗m⊗ b′ ⊗ p⊗ b′′)

= (FB)2
(

ε(b).λ(n ⊗m)⊗ b′ ⊗ p⊗ b′′
)

= ε(b)ε(b′).λ
(

λ(n⊗m)⊗ p
)

⊗ b′′.

On the other hand, we have

(FB)2
(

1⊗ (FB)2
)

(n⊗ b⊗m⊗ b′ ⊗ p⊗ b′′)

= (FB)2
(

ε(b′).n ⊗ b⊗ λ(m⊗ p)⊗ b′′
)

= ε(b)ε(b′).λ
(

n⊗ λ(m⊗ p)
)

⊗ b′′.

Hence, the main step consists of showing that

λP ;M⊗N(λM ;N ⊗ idP ∗) = λP⊗M ;N(idN∗ ⊗ λP ;M ),

which holds generally as in (6), and in particular, this holds for any three objects
of bialgR. Hence,

(

FB ; ((FB)0, (FB)
−
0 ), (FB)2

)

is a contravariant semi-normal
monoidal functor.

Remark 14. Note that since the dual of a finitely generated and projective bial-
gebra is also a finitely generated projective bialgebra, then the category bialgR
admits also a contravariant semi-normal monoidal functor to ModR via the func-
tor defined by

FB∗ := (−)∗ ⊗B∗ : bialgR −→ ModR

H 7−→ H∗ ⊗B∗

f 7−→ FB∗(f) = f∗ ⊗ idB∗

with monoidal structures defined this time as follows.

(a) For any objects N and M of bialgR, (FB∗)2 N,M is the following composite
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(N∗ ⊗B∗)⊗ (M∗ ⊗B∗)
(FB∗ )2 N,M

α

(N ⊗M)∗ ⊗B∗

[(N∗ ⊗B∗)⊗M∗]⊗B∗

α−1⊗idB∗

(M∗ ⊗N∗)⊗ (R⊗B∗)

λ⊗ lB∗

[N∗ ⊗ (B∗ ⊗M∗)]⊗B∗

(idN∗⊗τ)⊗idB∗

(M∗ ⊗N∗)⊗ (R∗ ⊗B∗)

(idM∗⊗idN∗ )⊗ (β−1⊗idB∗ )

[N∗ ⊗ (M∗ ⊗B∗)]⊗B∗

α⊗idB∗

(M∗ ⊗N∗)⊗ (B∗ ⊗B∗)

(idM∗⊗idN∗ )⊗ (η∗⊗idB∗)

[(N∗ ⊗M∗)⊗B∗]⊗B∗
(τ⊗idB∗ )⊗idB∗

[(M∗ ⊗N∗)⊗B∗]⊗B∗

α−1

(b) (FB∗)0 = (β ⊗ idB∗) l−1
B∗ ε

∗ β : R −→ R∗ −→ B∗ −→ R⊗B∗ −→ R∗ ⊗B∗,

(c) (FB∗)−0 = β−1 η∗ lB∗ (β−1 ⊗ idB∗) : R∗ ⊗ B∗ −→ R ⊗ B∗ −→ B∗ −→ R∗

−→ R.

Corollary 15. For every B ∈ Ob(bialgR), the covariant functor FB of Propo-

sition 13, extends to a covariant semi-normal monoidal functor, given by

F : (bialgR;⊗R;R) −→
(

SNFun(bialgR;ModR);⊗; I
)

B 7−→ FB

f : B → B
′

7−→
(

F(f)
)

H∈bialgR
= idH∗ ⊗ f : FB(H) → FB′ (H)

from bialgR to the category
(

SNFun(bialgR;ModR);⊗; I
)

of contravariant

semi-normal monoidal functors from bialgR to ModR, which is monoidal, see

Section 4 for proof of its monoidality, where the monoidal product is the point-

wise monoidal product, and the unit object I is the functor associating to each

bialgebra H, the R-module R.

Proof. The monoidal structures are defined by

(a) F0 : I −→ FR, subject to

(F0)H∈Ob(bialgR) := r−1
H∗ ε

∗
H β : R −→ R∗ −→ H∗ −→ H∗ ⊗R.

(b) F−
0 : FR −→ I, subject to

(F−
0 )H∈Ob(bialgR) := β−1 η∗H rH∗ : H∗ ⊗R −→ H∗ −→ R∗ −→ R.

(c) F2 N,M : FN ⊗ FM −→ FN⊗M , for any objects N and M of bialgR, subject
to
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(F2 N,M )H : (FN⊗FM )H = (H∗⊗N)⊗(H∗⊗M) −→ (FN⊗M )H = H∗⊗(N⊗M)

for every H ∈ Ob(bialgR), which is defined by the following composite

(H∗ ⊗N)⊗ (H∗ ⊗M)
(F2 N,M )H

α

H∗ ⊗ (N ⊗M)

[(H∗ ⊗N)⊗H∗]⊗M

α−1⊗idM

[H∗ ⊗ (N ⊗H∗)]⊗M

(idH∗⊗τ)⊗idM

(R ⊗H∗)⊗ (N ⊗M)

lH∗⊗(idN⊗idM )

[H∗ ⊗ (H∗ ⊗N)]⊗M

α⊗idM

(R∗ ⊗H∗)⊗ (N ⊗M)

(β−1⊗idH∗)⊗(idN⊗idM )

[(H∗ ⊗H∗)⊗N ]⊗M
α−1

(H∗ ⊗H∗)⊗ (N ⊗M)

(η∗H⊗idH∗)⊗(idN⊗idM )

The following left unitality diagram

I⊗ FB
lFB

F0⊗id

FB

FR ⊗ FB
F2 R,B

FR⊗B

F(lB)

and the right unitality diagram

FB ⊗ I
rFB

id⊗F0

FB

FB ⊗ FR
F2 B,R

FB⊗R

F(rB)

are commutative, where for every B ∈ Ob(bialgR), the left and right unitality
constraints on objects FB are also denoted by lFB

and rFB
respectively. In fact,

for the first diagram, one should prove that for every H ∈ Ob(bialgR), the
following diagram commutes

R⊗ (H∗ ⊗B)
l(H∗⊗B)

(F0)H⊗id(U∗⊗B)

H∗ ⊗B

(H∗ ⊗R)⊗ (H∗ ⊗B)
(F2 R,B)H

H∗ ⊗ (R⊗B)

idH∗⊗lB



48 K. Draoui, H. Choulli and H. Mouanis

Let us proceed by elementary calculus, where we will also omit the associativity
constraint α. For every r ∈ R, h ∈ H∗, b ∈ B, we have

(

idH∗ ⊗ lB

)

◦
(

F2 R,B

)

H
◦
(

(F0)H ⊗ id(U∗⊗B)

)

(

r ⊗ (h⊗ b)
)

=
(

idH∗ ⊗ lB

)

◦
(

F2 R,B

)

H

(

β(r)ε⊗ 1R ⊗ h⊗ b
)

=
(

idH∗ ⊗ lB

)

(

β−1β(r).h⊗ 1R ⊗ b
)

=
(

idH∗ ⊗ lB

)

(

r.h ⊗ 1R ⊗ b
)

= r.h ⊗ b

= l(H∗⊗B)(r ⊗ h⊗ b).

Commutativity of the second (right unitality) diagram holds in a similar way.

For the commutativity of the associativity diagram of F : let H, N , M and
P be objects of bialgR, and let n ∈ N , m ∈ M , and p ∈ P . Then, for every
H ∈ Ob(bialgR) and for any h, h′, h′′ ∈ H∗, on the one hand, we have

(F)2
(

(F)2 ⊗ 1
)

(h⊗ n⊗ h′ ⊗m⊗ h′′ ⊗ p) = (F)2

(

β−1(hη).h′ ⊗ n⊗m⊗ h′′ ⊗ p
)

= β−1(hη)β−1(h′η).h′′ ⊗ n⊗m⊗ p.

On the other hand, we have

(F)2
(

1⊗ (F)2
)

(h⊗ n⊗ h′ ⊗m⊗ h′′ ⊗ p) = (F)2

(

h⊗ n⊗ β−1(h′η).h′′ ⊗m⊗ p
)

= (F)2

(

β−1(h′η).h ⊗ n⊗ h′′ ⊗m⊗ p
)

= β−1(h′η)β−1(hη).h′′ ⊗ n⊗m⊗ p.

Hence, F is monoidal. Now, for every H ∈ Ob(bialgR), we have

(

F−
0 ◦ F0

)

H
= β−1 η∗H rH∗r−1

H∗ ε
∗
H β = β−1 (εHηH)

∗ β = β−1β = idR.

Finally,
(

F ; (F0,F
−
0 );F2

)

is a semi-normal monoidal functor.

Similarly to the previous Corollary and based on Remark 14, we get the next
conclusion.

Corollary 16. For every B ∈ Ob(bialgR), the contravariant functor FB∗ of

Remark 14, extends to a functor between bialgR and SNFun(bialgR;ModR),
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given by

F∗ : (bialgR;⊗R;R) −→
(

SNFun(bialgR;ModR);⊗; I
)

B 7−→ FB∗

f : B → B
′

7−→
(

F∗(f)
)

H∈Ob(bialgR)
= idH∗ ⊗f∗ : FB′∗ (H) → FB∗(H)

Then, F∗ is again a contravariant semi-normal monoidal functor.

Proof. In fact, the monoidal structures are given this time as follows.

(a) F∗
0 : I −→ FR∗ , subject to

(

F∗
0

)

H∈Ob(bialgR)
:= (idH∗ ⊗ β) r−1

H∗ ε∗H β

R −→ R∗ −→ H∗ −→ H∗ ⊗R −→ H∗ ⊗R∗.

(b) F∗−
0 : FR∗ −→ I, subject to

(

F∗−
0

)

H∈Ob(bialgR)
:= β−1η∗HrH∗(idH∗ ⊗ β−1)

H∗ ⊗R∗ −→ H∗ ⊗R −→ H∗ −→ R∗ −→ R.

(c) F∗
2 N,M : FN∗ ⊗ FM∗ −→ F(N⊗M)∗ , for any N,M ∈ Ob(bialgR), subject to

(

F∗
2 N,M

)

H

(FN∗ ⊗ FM∗)H = (H∗ ⊗N∗)⊗ (H∗ ⊗M∗) −→ (F(N⊗M)∗)H = H∗ ⊗ (N ⊗M)∗

for every H ∈ Ob(bialgR), which is defined by the following composite

(H∗ ⊗N∗)⊗ (H∗ ⊗M∗)
(F∗

2 N,M )H

α

H∗ ⊗ (N ⊗M)∗

[(H∗ ⊗N∗)⊗H∗]⊗M∗

α−1⊗idM∗

H∗ ⊗ (M∗ ⊗N∗)

idH∗⊗λ

[H∗ ⊗ (N∗ ⊗H∗)]⊗M∗

(idH∗⊗τ)⊗idM∗

(R ⊗H∗)⊗ (M∗ ⊗N∗)

lH∗⊗(idM∗⊗idN∗ )

[H∗ ⊗ (H∗ ⊗N∗)]⊗M∗

α⊗idM∗

(R∗ ⊗H∗)⊗ (N∗ ⊗M∗)

(β−1⊗idH∗)⊗τ

[(H∗ ⊗H∗)⊗N∗]⊗M∗ α−1

(H∗ ⊗H∗)⊗ (N∗ ⊗M∗)

(η∗
H
⊗idH∗)⊗(idN∗⊗idM∗)

Thus, proceeding as in the proof of Corollary 15,
(

F∗; (F∗
0,F

∗−
0 );F

∗
2

)

is a con-
travariant semi-normal monoidal functor.
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Proposition 17. Let C be a monoidal Ab-category. Then, C admits a con-

travariant semi-normal monoidal functor to the category (ModkC
;⊗kC

;kC).

Proof. This is due to the fact that HomC(M,N) admits the structure of a left
kC-module, for any objects M and N of C. Consider the functor

F : C −→ (ModkC
;⊗kC

;kC)

M 7−→ HomC(M, I)

f :M → N 7−→ F (f)

where, F (f)(h) = hf , for every h ∈ HomC(N, I). F is then a contravariant
semi-normal monoidal functor, with the following structures F0 = F−

0 = idkC ,
and

F2M,N : HomC(M, I) ⊗kC
HomC(N, I) −→ HomC(M ⊗N, I)

f ⊗ g 7−→ f ⊗ g .

Remark 18. In the above example of the Proposition 17, this just reduces to
the ordinary (linear) duality when considering C to be the category of finitely
generated modules over a commutative noetherian ring R.

Proposition 19. Let C be a monoidal Ab-category, equipped with a braiding c.

Assume there exists a dualizable object A of C, with duality structures (A∗; dA; bA),
satisfying dA ◦ c ◦ bA = id. Then, C admits the following contravariant semi-

normal monoidal functor to (ModkC
;⊗kC

;kC)

GA : C −→ (ModkC
;⊗kC

;kC)

M 7−→ HomC(M,A ⊗A∗)

f :M → N 7−→ F (f)(g) = g ◦ f

for every g ∈ HomC(N,A⊗A∗).

Proof. Define the following semi-normal monoidal structures on GA

(GA)0 : kC −→ HomC(I,A⊗A∗)

k 7−→ bA ◦ k

(GA)
−
0 : HomC(I,A ⊗A∗) −→ kC

h 7−→ dA ◦ c ◦ h

(GA)2M,N :HomC(M,A⊗A∗)⊗kC
HomC(N,A⊗A∗) −→ HomC(M⊗N,A⊗A∗)

f ⊗ g 7−→ (id⊗ dA ⊗ id)(f ⊗ g) .
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Clearly, we have (GA)
−
0 (GA)0 = id, and for every k ∈ kC and f ∈ HomC(M,A⊗

A∗), we have

(GA)2
(

(GA)0 ⊗ id
)

(k ⊗ f) = (GA)2(bA ◦ k ⊗ f)

= (id⊗ dA ⊗ id)(bA ◦ k ⊗ f)

= (id⊗ dA ⊗ id)(bA ⊗ id⊗ id)(id ⊗ f)(k ⊗ id)

= k ⊗ f.

Hence, the left unitality axiom holds, and similarly for the right unitality one.
For the associativity axiom, we have

(GA)2
(

(GA)2 ⊗ id
)

(f ⊗ g ⊗ h) = (id⊗ dA ⊗ id)
(

(id⊗ dA ⊗ id)(f ⊗ g)⊗ h
)

= (id⊗ dA ⊗ id)
(

f ⊗ (id⊗ dA ⊗ id)(g ⊗ h)
)

= (GA)2
(

id⊗ (GA)2
)

(f ⊗ g ⊗ h).

Thus,
(

GA; ((GA)0, (GA)
−
0 ); (GA)2

)

is a contravariant semi-normal monoidal func-
tor.

In the next Proposition, we explicitly prove that a natural isomorphism be-
tween two functors transforms semi-normality structures from one to the other.

Proposition 20. Let F, G : C −→ D be functors between monoidal categories,

and ϕ : F −→ G a natural isomorphism. If F is a semi-normal monoidal

(resp., comonoidal) functor, then G is as well a semi-normal monoidal (resp.,
comonoidal) functor.

Proof. Let ψ denote the inverse of ϕ. Assume that F is a semi-normal monoidal
functor. Then, G is a semi-normal monoidal functor via the maps given as follows.
For any A,B ∈ Ob(C)

G2A,B = ϕA⊗B ◦ F2A,B ◦ (ψA ⊗ ψB)G(A) ⊗G(B) −→ G(A⊗B).

G0 = ϕI ◦ F0 : I
′

−→ G(I).

G−
0 = F−

0 ◦ ψI : G(I) −→ I
′

.

Consider the following diagram, expressing the associativity constraint of G (the
larger square) :
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G
(A

)
⊗

G
(B

)
⊗

G
(C

)

ψ
⊗
ψ
⊗

1

1
⊗
G

2

1
⊗
ψ
⊗
ψ

G
2
⊗

1

G
(A

)
⊗

G
(B

⊗
C
)

1
⊗
ψ

G
2

ψ
⊗
ψ

F
(A

)
⊗

F
(B

)
⊗

G
(C

)

1
⊗

1
⊗
ψ

F
2
⊗

1

G
(A

)
⊗

F
(B

)
⊗

F
(C

)
1
⊗
F

2

ψ
⊗

1
⊗

1

G
(A

)
⊗

F
(B

⊗
C
)

1
⊗
ϕ

ψ
⊗

1

ψ
⊗

1

F
(A

)
⊗

F
(B

⊗
C
)

F
2

F
(A

)
⊗

F
(B

)
⊗

F
(C

)
1
⊗
F
2

F
2
⊗

1

F
(A

)
⊗

F
(B

⊗
C
)

1

F
2

F
(A

⊗
B
)
⊗

G
(C

)
1
⊗
ψ

ϕ
⊗

1

F
(A

⊗
B
)
⊗

F
(C

)

ϕ
⊗
ϕ

F
2

F
(A

⊗
B

⊗
C
)

ϕ

1

F
(A

⊗
B

⊗
C
)

ϕ

G
(A

⊗
B
)
⊗

G
(C

)

ψ
⊗
ψ

G
2

G
(A

⊗
B

⊗
C
)
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This is a commutative diagram. In fact, the two (left and right) hexago-
nal diagrams are clearly commutative through the commutativity of the interior
diagrams constituting a three diagrams decomposition of each one. The com-
mutativity of the interior central square holds by using only the left invertibility
ψ ◦ ϕ = id of ϕ (the double-headed arrows in the above diagram) and by the
associativity constraint of F .

On the other hand, the following unitality diagrams commute:

I
′

⊗G(A)
1

F0⊗ψA

F0⊗1

G(A)

F (I)⊗G(A)
1⊗ψA

ϕI⊗1

F (A)

ϕA

G(I) ⊗G(A)
ψI⊗ψA

F (I)⊗ F (A)

F2

and G(A) ⊗ I
′ 1

ψA⊗F0

1⊗F0

G(A)

G(A)⊗ F (I)
ψA⊗1

1⊗ϕI

F (A)

ϕA

G(A)⊗G(I)
ψA⊗ψI

F (A)⊗ F (I)

F2

For the first diagram. The right upper triangle is commutative now due to
the right invertibility ϕA ◦ ψA = idG(A) of ϕ. Whilst, the left lower triangle
is commutative due to the datum: ψI ◦ ϕI = idF (I).

Similar arguments hold for the second diagram. Furthermore, we have

G−
0 ◦G0 = F−

0 ◦ ψI ◦ ϕI ◦ F0 = idI′ .

Hence, G is a semi-normal monoidal functor.

Assume now that F is a semi-normal comonoidal functor. Then, G is as well
a semi-normal comonoidal functor via the following maps: for all A,B ∈ Ob(C)

G2A,B = (ϕA ⊗ ϕB) ◦ F2A,B ◦ ψA⊗B : G(A ⊗B) −→ G(A) ⊗G(B).

G0 = ϕI ◦ F0 : I
′

−→ G(I).

G−
0 = F−

0 ◦ ψI : G(I) −→ I
′

.

By reversing the arrows in the associativity and unitality diagrams, the proof in
this case is done similarly.

4. Functor category

Denote by SNFun(C;D), the category of semi-normal monoidal functors be-
tween monoidal categories C and D, with all the natural transformations between
the functors.



54 K. Draoui, H. Choulli and H. Mouanis

Proposition 21. If D is a (strict) braided monoidal category, then SNFun(C;D)
is also a (strict) monoidal and braided category.

Proof. The monoidal product in SNFun(C;D) is the pointwise monoidal prod-
uct (we denote it also by ” ⊗ ”), which is obviously associative and unital. The
unit object is the functor I, sending any object of C to the unit object I ′ of
D, and any morphism of C to the identity on I ′. It is clear that id D is strict
then SNFun(C;D) is as well. Now, for any semi-normal monoidal functors
F, G : C −→ D, the following maps, where c will denote the braiding of D,
define the semi-normality monoidal structures on F ⊗G.

(1) For any A,B ∈ Ob(C), (F ⊗G)2A,B = (F2A,B ⊗G2A,B)(id ⊗ c⊗ id)

F (A) ⊗
′

G(A) ⊗
′

F (B)⊗
′

G(B)
(F⊗G)2A,B

1⊗c⊗1

F (A⊗B)⊗
′

G(A⊗B)

F (A) ⊗
′

F (B)⊗
′

G(A) ⊗
′

G(B)

F2⊗G2

(2) (F ⊗G)0 = F0 ⊗G0 : I
′

= I
′

⊗ I
′

−→ (F ⊗G)(I) = F (I)⊗
′

G(I).

(3) (F ⊗G)−0 = F−
0 ⊗G−

0 : F (I)⊗
′

G(I) −→ I
′

.

Indeed, we have

(F ⊗G)−0 (F ⊗G)0 = (F−
0 ⊗G−

0 )(F0 ⊗G0) = F−
0 F0 ⊗G−

0 G0 = id⊗ id = id.

On the other hand, it is not so difficult to see that (F ⊗G)2 and (F ⊗G)0 satisfy
the commutativity of the associativity, left and right unitality diagrams.

The braiding is given by cF ;G : F ⊗G −→ G⊗ F , subject to

(cF ;G)A∈Ob(C) = cF (A);G(A) : F (A)⊗
′

G(A) −→ G(A) ⊗
′

F (A).

Corollary 22. Let C, D and D
′

be three monoidal categories and G : D −→ D
′

a semi-normal monoidal functor. Then, the category SNFun(C;D) of semi-
normal monoidal functors from C to D admits a semi-normal monoidal functor

to the category SNFun(C;D
′

) via the following functor

ϕ : SNFun(C;D) −→ SNFun(C;D
′

)
F 7−→ ϕ(F ) = G ◦ F

α =
{

(α)A : F (A) → F
′

(A)
}

A

7−→ ϕ(α) =
{

(ϕ(α))A = G((α)A)
}

A

for every A ∈ Ob(C).

Proof. The functor ϕ is clearly well defined by Proposition 11. Thus, we have
to show that ϕ is semi-normal and monoidal. The monoidal structures on ϕ are
given by
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(1) ϕ0 : I
′

−→ ϕ(I) = G ◦ I, given by

ϕ0 =
{

(ϕ0)A : I
′

(A) −→ G ◦ I(A)
}

A∈Ob(C)

=
{

(ϕ0)A : ID′ −→ G(ID)
}

A∈Ob(C)

where (ϕ0)A = G0, for every A ∈ Ob(C).

(2) ϕ−
0 : ϕ(I) −→ I

′

, given by

ϕ−
0 =

{

(ϕ−
0 )A : G ◦ I(A) −→ I

′

(A)
}

A∈Ob(C)

=
{

(ϕ−
0 )A : G(ID) −→ ID′

}

A∈Ob(C)

where (ϕ−
0 )A = G−

0 , for every A ∈ Ob(C). Here, I
′

is the unit object of
SNFun(C;D

′

), which is the functor associating to each object of C, the unit
object of D, and ID and ID′ are the unit objects of D and D′ respectively.

(3) ϕ2F,F ′ is defined as follows

ϕ2F,F ′ =
{

(ϕ2F,F ′ )A :
(

ϕ(F )⊗ ϕ(F
′

)
)

(A) −→ ϕ(F ⊗ F
′

)(A)
}

A∈Ob(C)

=
{

(ϕ2F,F
′ )A : G

(

F (A)
)

⊗G
(

F
′

(A)
)

−→ G
(

F (A)⊗ F
′

(A)
)

}

A∈Ob(C)

where (ϕ2F,F ′ )A = G2F (A),F ′(A). Thus defined, it is not difficult to see that
(

ϕ; (ϕ0, ϕ
−
0 );ϕ2

)

is a semi-normal monoidal functor.
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