DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score: 0.4

SJR: 0.203

SNIP: 0.562

MCQ: 0.12

Index Copernicus: 121.02

Discussiones Mathematicae - General Algebra and Applications

Article in press


Authors:

M. Dadhwal

Madhu Dadhwal

Department of Mathematics & Statistics
Himachal Predesh University
Summerhill, Shimla-171005

email: mpatial.math@gmail.com

0000-0002-6059-4408

G. Devi

Geeta Devi

HPU Shimla

email: geetasharmamath@gmail.com

Title:

On symmetric generalized ($\theta,\eta$)-biderivations of prime rings

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications

Received: 2022-06-28 , Revised: 2022-10-01 , Accepted: 2022-10-04 , Available online: 2024-02-08 , https://doi.org/10.7151/dmgaa.1450

Abstract:

In this paper, we characterize the actions of symmetric generalized (θ, η)-biderivations and generalized left (θ, η)-biderivations on Lie ideals and ideals of a prime ring A . It is shown that L ⊆ Z (A ), whenever traces of these derivations satisfy any of the following conditions: (i) ([l1, l2])∆ = 0, (ii) (l1l2) ∆ ∈ Z (A ), (iii) ([l1, l2])∆ = (l1) θ ◦ (l2)∆ , (iv) (l1) ∆(l2) ∆ + (l1) η (l2) θ ∈ Z (A ), (v) a1((l1) ∆(l2) ∆ + (l1l2) θ) = 0, (vi) (l1) ∆(l2)θ + (l1)θ(l2)∆ = 0, (vii) ([l1, l2])∆ + [(l1)∆ 24 , l2] ∈ Z (A ), (viii)[(l1l2)∆ ± (l1)θ(l2)∆ + (l1l2)θ∈ Z (A ), ∀ l1, l2 ∈ L (nonzero square-closed Lie ideal of A ), where 0 6= a1 ∈ A is a fixed element, ∆ is a trace of these biadditive mappings and θ, η are automorphisms of A .

Keywords:

Lie ideals, prime rings, generalized $(\theta,\eta)$-biderivations, generalized left $(\theta,\eta)$-biderivations

References:

  1. A. Ali, D. Kumar and P. Miyan, On generalized derivations and commutativity of prime and semiprime rings, Hacet. J. Math. Stat. 40(3) (2011) 367–374.
  2. F. Ali and M.A. Chaudhry, On generalized $(\alpha,\beta )$-derivations of semiprime rings, Turk. J. Math. 35 (2011) 399–404.
    https://doi.org/10.3906/mat-0906-60
  3. M. Ashraf, A. Ali and S. Ali, On Lie ideals and generalized $(\theta,\phi)$-derivations in prime rings, Comm. Algebra 32(8) (2004) 2977–2985.
    https://doi.org/10.1081/AGB-120039276
  4. M. Ashraf, N. Rehman, S. Ali and M.R. Mozumder, On generalized $(\sigma,\tau)$ -biderivations in rings, Asian European J. Math. 1 (2010) 1–14.
  5. D. Beniss, B. Fahid and A. Mamouni, On Jordan ideals in prime rings with generalized derivations, Comm. Korean Math. Soc. 32(3) (2017) 495–502.
    https://doi.org/10.4134/CKMS.c160146
  6. J. Bergen, I.N. Herstein and J.W. Kerr, Lie ideals and derivations of prime rings, J. Algebra 71 (1981) 259–267.
    https://doi.org/10.1016/0021-8693(81)90120-4
  7. M. Brešar, On generalized biderivations and related maps, J. Algebra 172 (1995) 764–786.
    https://doi.org/10.1006/jabr.1995.1069
  8. M. Brešar, Semiderivations of prime rings, Proc. Am. Math. Soc. 108(4) (1990) 859–860.
  9. M.N. Daif and H.E. Bell, Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci. 15 (1992) 205–206.
  10. B. Dhara and K.G. Pradhan, A note on multiplicative (generalized)-derivations with annihilator conditions, Georgian Math. J. 23(2) (2016) 191–198.
    https://doi.org/10.1515/gmj-2016-0020
  11. Ö. Gölbaşi and E. Koç, Generalized derivation on Lie ideals in prime rings, Turk. J. Math. 35 (2011) 23–28.
    https://doi.org/10.3906/mat-0807-27
  12. Ö. Gölbaşi and E. Koç, Notes on commutativity of prime rings with generalized derivation, Comm. Fac. Sci. Univ. Ank. Series A1. 58(2) (2009) 39–46.
  13. B. Hvala, Generalized derivations in rings, Comm. Algebra 26(4) (1998) 1147–1166.
    https://doi.org/10.1080/00927879808826190
  14. N. Jacobson, Structure of rings, Amer. Math. Soc. Coll. Pub. 37 (Amer. Math. Soc. Providence R.I., 1956).
  15. H. Marubayashi, M. Ashraf, N. Rehman and S. Ali, On generalized $(\alpha, \beta)$-derivations in prime rings, Algebra Colloq. 17 (2010) 865–874.
    https://doi.org/10.1142/S1005386710000805
  16. N.M. Muthana, Left centralizer traces, generalized biderivations, left bi-multipliers and Jordan biderivations, Aligarh Bull. Math. 26(2) (2007) 33–45.
  17. M.A. Quadri, M.S. Khan and N. Rehman, Generalized derivations and commutativity of prime rings, Indian J. Pure Appl. Math. 34(9) (2003) 1393–1396.
  18. C.J. Reddy, S.V. Kumar and K.M. Reddy, Lie ideals with symmetric left biderivation in prime rings, Italian J. Pure Appl. Math. 41 (2019) 158–166.
  19. N. Rehman and A.Z. Ansari, Generalized left derivations acting as homomorphism and anti-homomorphism on Lie ideals of rings, J. Egypt. Math. Soc. 22 (2014) 327–329.
    https://doi.org/10.1016/j.joems.2013.12.015
  20. N. Rehman, On commutativity of rings with generalized derivation, Math. J. Okayama Univ. 44 (2002) 43–49.
  21. N. Rehman and S. Huang, On Lie ideals and symmetric Generalized $(\alpha,\beta)$- biderivation in Prime ring, Miskolc Math. Notes 20 (2019) 1175–1183.
    https://doi.org/10.18514/MMN.2019.2450
  22. G.S. Sandhu, S. Ali, A. Boua and D. Kumar, On generalized $(\alpha,\beta)$-derivations and Lie ideals of prime rings, Rend. Circ. Mat. Pal. Series 2 (2021) 1401–1411.
    https://doi.org/10.1007/s12215-021-00685-9

Close