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Abstract11

In this paper, we characterize the actions of symmetric generalized (θ, η)-12

biderivations and generalized left (θ, η)-biderivations on Lie ideals and ideals13

of a prime ring A . It is shown that L (nonzero square-closed Lie ideal of A )14

⊆ Z (A ), whenever traces of these derivations satisfy any of the following15

conditions:16

(i) ([l1, l2])
∆ = 0,17

(ii) (l1l2)
∆ ∈ Z (A ),18

(iii) ([l1, l2])
∆ = (l1)

θ ◦ (l2)
∆,19

(iv) (l1)
∆(l2)

∆ + (l1)
η(l2)

θ ∈ Z (A ),20

(v) a1((l1)
∆(l2)

∆ + (l1l2)
θ) = 0,21

(vi) (l1)
∆(l2)

θ + (l1)
θ(l2)

∆ = 0,22

(vii) ([l1, l2])
∆ + [(l1)

∆, l2] ∈ Z (A ),23

(viii) [(l1l2)
∆±(l1)

θ(l2)
∆+(l1l2)

θ ∈ Z (A ), ∀ l1, l2 ∈ L , where 0 6= a1 ∈ A24

is a fixed element, ∆ is a trace of these biadditive mappings and θ, η25

are automorphisms of A .26
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alized left (θ, η)-biderivations.28
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1. Introduction30

In recent years, various authors have examined the commutativity of prime and31

semiprime rings, in reference of derivations, generalized derivations and general-32

ized (θ, η) derivations (cf. [1,2,5,6,9–15,17]). Generalized biderivations were first33
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introduced by Brešar [7] and further studied by Muthana [16]. Thereafter, in [4]34

Ashraf and Rehman had explored the concept of generalized (θ, η)-biderivations35

of rings and proved few results regarding these derivations which motivates us36

to study more about these derivations and also to characterize generalized left37

(θ, η)-biderivations of rings.38

Throughout the paper, A represents an associative ring with center Z (A ).39

Further, for a1, b1 ∈ A , the symbol [a1, b1] (resp. a1 ◦ b1) will denote the com-40

mutator a1b1 − b1a1 (resp. a1b1 + b1a1). An additive subgroup L of A is called41

a Lie ideal of A if [L ,A ] ⊆ L and it is a square-closed Lie ideal if l2
1
∈ L , ∀42

l1 ∈ L . It is easy to verify that if L is a square-closed nonzero Lie ideal, then43

2l1l2 ∈ L , ∀ l1, l2 ∈ L . Following [19], if L is a square-closed Lie ideal of A ,44

then 2A [L ,L ] ⊆ L and 2[L ,L ]A ⊆ L . Suppose that θ, η : A → A are en-45

domorphisms of A . Then, an additive mapping D is called an (θ, η)− derivation46

if (a1b1)
D = (a1)

D (b1)
θ + (a1)

η(b1)
D , ∀ a1, b1 ∈ A . By [3], an additive mapping47

F : A → A , is said to be a generalized (θ, η)-derivation, if there exists an (θ, η)-48

derivation D : A → A such that (a1b1)
F = (a1)

F (b1)
θ+(a1)

η(b1)
D , ∀ a1, b1 ∈ A .49

In addition, a mapping Ψ : A × A → A is symmetric if (a1, b1)
Ψ = (b1, a1)

Ψ,50

∀ a1, b1 ∈ A . Also, a mapping ∆ : A → A defined by (a1)
∆ = (a1, a1)

Ψ
51

is called a trace of Ψ. It is obvious that in case Ψ : A × A → A is sym-52

metric mapping which is also biadditive, the trace of Ψ satisfies the relation53

(a1 + b1)
∆ = (a1)

∆ + (b1)
∆ + 2(a1, b1)

Ψ, ∀ a1, b1 ∈ A .54

By a symmetric (θ, η)-biderivation, we mean a symmetric biadditive map-55

ping D : A × A → A such that (a1b1, c1)
D = (a1, c1)

D (b1)
θ + (a1)

η(b1, c1)
D ,56

∀ a1, b1, c1 ∈ A and a symmetric biadditive mapping Ψ : A × A → A is said57

to be a symmetric generalized (θ, η)-biderivation, if there exists a symmetric58

(θ, η)-biderivation D : A × A → A such that (a1b1, c1)
Ψ = (a1, c1)

Ψ(b1)
θ +59

(a1)
η(b1, c1)

D , ∀ a1, b1, c1 ∈ A . By [18], a symmetric left biderivation is a map60

D such that (a1b1, c1)
D = a1(b1, c1)

D + b1(a1, c1)
D , ∀ a1, b1, c1 ∈ A , where61

D : A × A → A is a symmetric biadditive map. Similarly, a symmetric bi-62

additive mapping D : A × A → A is called a symmetric left (θ, η)-biderivation63

if (a1b1, c1)
D = (a1)

θ(b1, c1)
D +(b1)

η(a1, c1)
D , ∀ a1, b1, c1 ∈ A . Also, a symmetric64

biadditive mapping Ψ : A ×A → A is called a symmetric generalized left (θ, η)-65

biderivation, if there exists a symmetric left (θ, η)-biderivation D : A ×A → A66

such that (a1b1, c1)
Ψ = (a1)

θ(b1, c1)
Ψ + (b1)

η(a1, c1)
D , ∀ a1, b1, c1 ∈ A .67

In [21], Rehman and Huang had studied generalized (θ, η)-biderivations which68

satisfy some algebraic restrictions and assessed the commutativity of rings. This69

encouraged us to explore a few results from [18] and [22] for generalized (θ, η)-70

biderivations and generalized left (θ, η)-biderivations. In [22], Sandhu and Ali71

examined the action of generalized (θ, η)-derivations on Lie ideals of prime rings72

and established several algebraic identities. We establish some of these results73

in the framework of generalized (θ, η)-biderivations in Section 3 and analyse the74
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action of these derivations on Lie ideals of rings. In Section 4, the notion of gen-75

eralized left (θ, η)-biderivations is characterized. Furthermore, we extend some76

results of [18] for generalized left (θ, η)-biderivations.77

2. Preliminary results78

In this section, we discuss some key results which are frequently used in proving79

the main theorems of this paper. The proof of the upcoming lemmas are quite80

easy so we omit the proofs.81

Lemma 1. If A is a ring and a1, b1, c1 ∈ A , then the following statements hold:82

(i) [a1, b1c1] = b1[a1, c1] + [a1, b1]c1;83

(ii) [a1b1, c1] = a1[b1, c1] + [a1, c1]b1;84

(iii) [a1, b1 + c1] = [a1, b1] + [a1, c1];85

(iv) [a1 + b1, c1] = [a1, c1] + [b1, c1];86

(v) [a1b1, a1] = a1[b1, a1];87

(vi) [a1, a1b1] = a1[a1, b1];88

(vii) [a1, b1a1] = [a1, b1]a1;89

(viii) [b1a1, a1] = [b1, a1]a1; (ix1) a1◦(b1c1) = (a1◦b1)c1−b1[a1, c1] = b1(a1◦c1)+90

[a1, b1]c1; (x1) (a1b1) ◦ c1 = a1(b1 ◦ c1)− [a1, c1]b1 = (a1 ◦ c1)b1 + a1[b1, c1].91

Lemma 2. If L is a nonzero Lie ideal of a ring A and f is an automorphism of92

A then f(L ) is a nonzero Lie ideal of A . Moreover, if L is non-central, then93

f(L ) is non-central.94

Now onwards, A is a prime ring with char(A ) 6= 2 and L is a nonzero Lie95

ideal of A unless otherwise stated.96

Lemma 3 [6, Lemma 4]. If L * Z (A ) and x1, y1 ∈ A such that x1L y1 = (0),97

then either x1 = 0 or y1 = 0.98

Lemma 4 [21, Proposition 1]. Suppose that there exists a symmetric (θ, η)-99

biderivation D of A with trace ∆ and θ, η are automorphisms such that (L )∆ =100

(0), then either L ⊆ Z (A ) or D = 0.101

Lemma 5 [20, Lemma 2.6]. If [L ,L ] = (0), then L ⊆ Z (A ).102

Lemma 6 [22, Lemma 2.6]. Every square-closed Lie ideal L * Z (A ) contains103

a nonzero ideal J = 2A [L ,L ]A of A .104

By using Lemma 2 and 3, one can easily prove105
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Lemma 7. Let L * Z (A ) and f be an automorphism of A . If x1, y1 ∈ A106

such that x1f(L )y1 = (0), then either x1 = 0 or y1 = 0.107

The next proposition is an extension to Lemma 2.6 of [20].108

Proposition 8. If η is an automorphism of A such that [[(x1)
η, (y1)

η], [(l1)
η,109

(l2)
η ]] = 0, ∀ l1, l2, x1, y1 ∈ L , then L ⊆ Z (A ), where L is a square-closed Lie110

ideal of A .111

Proof. By given hypothesis, we have112

(2.1) 0 = [[(x1)
η, (y1)

η], [(l1)
η , (l2)

η]] = ([[x1, y1], [l1, l2]])
η

113

∀ l1, l2, x1, y1 ∈ L . Since η is an automorphism, so equation (2.1) infers that114

[[x1, y1], [l1, l2]] = 0, ∀ l1, l2, x1, y1 ∈ L . If possible, let L * Z (A ). Then by115

replacing l2 by 2l1l2 in the last equation and using the fact char(A ) 6= 2, we116

obtain117

[[x1, y1], l1][l1, l2] = 0.118

Putting 2tl2 instead of l2 in the above expression and applying char(A ) 6= 2, we119

get120

[[x1, y1], l1]t[l1, l2] = 0121

∀ l1, l2, t, x1, y1 ∈ L , as char(A ) 6= 2. By Lemma 3 the above equation infers122

that for each l1 ∈ L , either [[x1, y1], l1] = 0, ∀ x1, y1 ∈ L or [l1, l2] = 0, ∀ l2 ∈ L .123

Let A = {l1 ∈ L : [[L ,L ], l1] = (0)} and B = {l1 ∈ L : [l1,L ] = (0)}. Clearly,124

A and B are additive subgroups of L and L = A∪B. By Brauer’s trick, either125

L = A or L = B. Suppose that L = A, then [[x1, y1], l1] = 0, ∀ l1, x1, y1 ∈ L .126

Now, replacing y1 by 2y1x1 and using char(A ) 6= 2, we conclude that127

(2.2) [x1, y1][x1, l1] = 0.128

Putting 2l1y1 instead of l1 in equation (2.2) and applying again the fact that129

char(A ) 6= 2, we are left with [x1, y1]l1[x1, y1] = 0, ∀ l1, x1, y1 ∈ L and by130

Lemma 3, [L ,L ] = (0). By Lemma 5, L ⊆ Z (A ), which is a contradiction.131

On other hand, if L = B, then [L ,L ] = (0) and by Lemma 5, L ⊆ Z (A ),132

again a contradiction. Therefore, L ⊆ Z (A ).133

Corollary 9. If η is an automorphism of A and L is a square-closed Lie ideal134

of A such that [(L )η, (L )η] = (0), then L ⊆ Z (A ).135

Lemma 10. If J is a nonzero ideal of A such that [J ,J ] = (0), then J ⊆136

Z (A ). Moreover, A is commutative.137

Proof. Straightforward.138
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The proof of the following lemma is quite easy, so we omit the proof.139

Lemma 11. If a1 ∈ Z (A ) and b1 ∈ A such that a1b1 ∈ Z (A ), then either140

b1 ∈ Z (A ) or a1 = 0.141

Lemma 12 [22, Lemma 2.7]. Let η and θ be automorphisms of A such that142

[(L )η, (L )θ] = (0). Then L ⊆ Z (A ).143

Proposition 13. Let J 6= (0) be an ideal of A and D be a symmetric (θ, η)-144

biderivation with θ, η two automorphisms such that ([l1, l2],A )D = (0), ∀ l1, l2 ∈145

J . Then, either J ⊆ Z (A ) or D = 0.146

Proof. In view of the given hypothesis, we have147

([l1, l2],A )D = (0),∀ l1, l2 ∈ J .148

Replacing l2 by l2l1 in the above equation and using it, we get ([l1, l2])
η(l1, r)

D =149

0, ∀ l1, l2 ∈ J , r ∈ A . Further, taking rs in place of r, we are left with150

([l1, l2])
ηA (l1, s)

D = (0), ∀ l1, l2 ∈ J , s ∈ A and by using the primeness of151

A , this concludes that for each l1 ∈ J , either ([l1,J ])η = (0) or (l1,A )D =152

(0). This implies that either ([J ,J ])η = (0) or (J ,A )D = (0). As η is an153

automorphism, so the former case forces [J ,J ] = (0) and by Lemma 10, we can154

deduce that J ⊆ Z (A ). In latter case, we have (l1, r)
D = 0, ∀ l1 ∈ J , r ∈ A .155

By putting l1s instead of l1, this gives that (l1)
η(s, r)D = 0, ∀ l1 ∈ J , r, s ∈ A .156

Now replacing l1 by l1p, we get (l1)
η(p)η(s, r)D = 0, ∀ l1 ∈ J , p, r, s ∈ A . Since157

J is nonzero and η is an automorphism, therefore the primeness of A implies158

that D = 0. This completes the proof.159

In the forthcoming sections, L is a square-closed Lie ideal and θ, η are au-160

tomorphisms of A .161

3. Symmetric generalized (θ, η)-biderivations162

In this section, the action of generalized (θ, η)-biderivation on ideals and Lie ideals163

of rings is characterized. Also, we explore some results of [22] for generalized164

(θ, η)-biderivations of rings. In this section, Ψ represents a symmetric generalized165

(θ, η)-biderivation of A associated with a symmetric (θ, η)-biderivation D and ∆166

is a trace of Ψ.167

Theorem 14. Let J be a nonzero ideal of A such that ([l1, l2])
∆ = 0, ∀ l1, l2 ∈168

J . Then either J ⊆ Z (A ) (A is commutative in this case) or D = 0, and169

Ψ = 0.170
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Proof. By hypothesis, we get171

(3.1) 0 = ([l1, l2])
∆ = ([l1, l2], [l1, l2])

Ψ
172

∀ l1, l2 ∈ J . Putting l2 + r1 in place of l2 in equation (3.1), we obtain that173

0 = 2([l1, l2], [l1, r1])
Ψ, ∀ l1, l2, r1 ∈ J . As char(A ) 6= 2, so174

(3.2) ([l1, l2], [l1, r1])
Ψ = 0.175

Replacing r1 by r1i in the last expression, we get176

0 = ([l1, l2], [l1, r1]i+ r1[l1, i])
Ψ

177

= ([l1, l2], [l1, r1])
Ψ(i)θ + ([l1, r1])

η([l1, l2], i)
D + ([l1, l2], r1)

Ψ([l1, i])
θ

178

+ (r1)
η([l1, l2], [l1, i])

D
179

= ([l1, r1])
η([l1, l2], i)

D + ([l1, l2], r1)
Ψ([l1, i])

θ + (r1)
η([l1, l2], [l1, i])

D .180

That is181

(3.3) ([l1, r1])
η([l1, l2], i)

D + ([l1, l2], r1)
Ψ([l1, i])

θ + (r1)
η([l1, l2], [l1, i])

D = 0182

∀ l1, l2, r1, i ∈ J . Replacing i by l1 in the above equation, we obtain183

(3.4) ([l1, r1])
η([l1, l2], l1)

D = 0.184

Putting l1+t in place of l1, we get ([l1, r1])
η(([l1, l2], t)

D +([t, l2], l1)
D +([t, l2], t)

D )185

+([t, r1])
η(([l1, l2], l1)

D + ([l1, l2], t)
D + ([t, l2], l1)

D ) = 0 ∀ l1, l2, r1, t ∈ J .186

Replacing l1 by −l1, we have ([l1, r1])
η(([l1, l2], t)

D + ([t, l2], l1)
D ) + ([t, r1])

η
187

([l1, l2], l1)
D = ([l1, r1])

η([t, l2], t)
D +([t, r1])

η(([l1, l2], t)
D +([t, l2], l1)

D ) and using188

this in the above relation, we get ([l1, r1])
η(([l1, l2], t)

D + ([t, l2], l1)
D ) + ([t, r1])

η
189

([l1, l2], l1)
D = 0, as char(A ) 6= 2. On taking tr1 in place of r1, we have190

([l1, t])
η(r1)

η(([l1, l2], t)
D + ([t, l2], l1)

D = 0191

∀ l1, l2, r1, t ∈ J . Taking t = l2, we are left with192

([l1, l2])
η(r1)

η([l1, l2], l2)
D

193

∀ l1, l2, r1 ∈ J . Since A is prime and η is an automorphism, therefore either194

[l1, l2] = 0 or ([l1, l2], l2)
D = 0, ∀ l1, l2 ∈ J . This infers that195

(3.5) ([l1, l2], l2)
D = 0.196

On putting l2 = l2 + t, we deduce that197

[l1, l2], t)
D + ([l1, t], l2)

D = 0198
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∀ l1, l2, t ∈ J . Now, putting tl1 instead of t in, we conclude that199

(t)η([l1, l2], l1)
D + ([l1, t])

η(l1, l2)
D = 0.200

By using equation (3.5), the above equation leads to ([l1, t])
η(l1, l2)

D = 0. Fur-201

ther, by taking t = ti, we obtain ([l1, t])
η(i)η(l1, l2)

D = 0, ∀ l1, l2, t, i ∈ J . As η is202

an automorphism and A is prime, so for each l1 ∈ J , either (0) = [(l1)
η, (J )η]203

or (l1,J )D = (0). Therefore, for each l1 ∈ J , either (0) = [l1,J ] or (l1,J )D =204

(0). Let A = {l1 ∈ J : [l1,J ] = (0)} and B = {l1 ∈ J : (l1,J )D = (0)}.205

Clearly, A and B are additive subgroups of J and J = A ∪ B. By Brauer’s206

trick, either J = A or J = B. If J = A, then by Lemma 10, J ⊆ Z (A ).207

On other hand, if J = B, then (l1, l2)
D = 0, ∀ l1, l2 ∈ J . Now, replacing l2 by208

l2r, we have (l2)
η(l1, r)

D = 0, ∀ l1, l2 ∈ J , r ∈ A . This implies that209

(J ,A )D = (0)210

and by Proposition 13, we have either J ⊆ Z (A ) or D = 0. By using D = 0211

in (3.3), we get212

([l1, l2], r1)
Ψ([l1, i])

θ = 0213

∀ l1, l2, r1 ∈ J and by replacing r1 by rr1, we have ([l1, l2], r)
Ψ(r1)

θ([l1, i])
θ = 0,214

∀ l1, l2, r1 ∈ J , r ∈ A . As A is prime and θ is an automorphism of A , so the last215

equation implies that for each l1 ∈ J either ([l1,J ],A )Ψ = (0) or ([l1,J ])θ =216

(0). This concludes that either ([J ,J ],A )Ψ = (0) or ([J ,J ])θ = (0). If217

([J ,J ])θ = (0), then [J ,J ] = (0), as θ is an automorphism. By Lemma 10,218

the previous equation gives that J ⊆ Z (A ) and A is commutative. Now219

consider ([l1, l2], r)
Ψ = 0, then by taking l2 = sl2 and using D = 0, we obtain220

(3.6) (s, r)Ψ([l1, l2])
θ + ([l1, s], r)

Ψ(l2)
θ = 0221

∀ l1, l2 ∈ J , r, s ∈ A . Now, replacing l2 by r1l2 for r1 ∈ J in (3.6) and using it222

to get223

(s, r)Ψ(r1)
θ([l1, l2])

θ = 0224

∀ l1, l2, r1 ∈ J , r, s ∈ A . Again by using the primeness of A and the fact that225

θ is an automorphism of A , the above equation implies that, either Ψ = 0 or226

[J ,J ] = (0). In view of Lemma 10, [J ,J ] = (0) infers that J ⊆ Z (A ) (A227

is commutative). With this our proof is completed.228

Theorem 15. If ([l1, l2])
∆ = 0, ∀ l1, l2 ∈ L , then either L ⊆ Z (A ) or D = 0,229

and Ψ = 0.230

Proof. By the given hypothesis, we have ([l1, l2])
∆ = 0, ∀ l1, l2 ∈ L . If231

possible, let L * Z (A ). Then, by Lemma 6, there exists a nonzero ideal232

J = 2A [L ,L ]A ⊆ L . Therefore, we have233

([l1, l2])
∆ = 0,∀ l1, l2 ∈ J .234
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By Theorem 14, either J ⊆ Z (A ), or D = 0 and Ψ = 0. Now, consider235

the case J ⊆ Z (A ), that is 2p[l1, l2]r ∈ Z (A ), ∀ l1, l2 ∈ L , p, r ∈ A . By236

replacing r by rl, we have 2p[l1, l2]rl ∈ Z (A ), ∀ l1, l2, l ∈ L , p, r ∈ A . By237

Lemma 11, either 2p[l1, l2]r = 0 or L ⊆ Z (A ). Now, consider 2p[l1, l2]r = 0, ∀238

l1, l2 ∈ L , p, r ∈ A . As char(A ) 6= 2 and A is a prime ring, so the last relation239

implies that [L ,L ] = (0). By applying Lemma 5, L ⊆ Z (A ). Thus, in each240

case, we have L ⊆ Z (A ), which is absurd. Hence, L ⊆ Z (A ) and this finishes241

the proof.242

The following theorem is an extension of [22, Theorem 3.7].243

Theorem 16. If D is nonzero and (x1y1)
∆ ∈ Z (A ), ∀ x1, y1 ∈ L , then L ⊆244

Z (A ).245

Proof. Suppose that D is nonzero and246

(3.7)
[

(x1y1)
∆,A

]

= (0)247

∀ x1, y1 ∈ L , where ∆ is a trace of Ψ. If possible, let L * Z (A ). Now,248

replacing y1 by y1 + z1 in (3.7) and using this, we obtain 2[(x1y1, x1z1)
Ψ, r] = 0,249

∀ x1, y1, z1 ∈ L , r ∈ A . As char(A ) 6= 2, so the last relation leads to250

(3.8)
[

(x1y1, x1z1)
Ψ, r

]

= 0.251

Consider 2y1j instead of y1 in equation (3.8) and using the fact that char(A ) 6= 2,252

we get (x1y1, x1z1)
Ψ[(j)θ, r]+[(x1y1)

η(j, x1z1)
D , r] = 0, ∀ x1, y1, z1, j ∈ L , r ∈ A .253

By replacing r by r(j)θ, the above equation implies that254

A
[

(x1y1)
η(j, x1z1)

D , (j)θ
]

= (0).255

This implies that [(x1y1)
η(j, x1z1)

D , (j)θ ]A [(x1y1)
η(j, x1z1)

D , (j)θ ] = (0) and by256

using the primeness of A it is obtained that257

(3.9)
[

(x1y1)
η(j, x1z1)

D , (j)θ
]

= 0258

∀ j, x1, y1, z1 ∈ L . Thus, (x1y1)
η[(j, x1z1)

D , (j)θ ] + [(x1y1)
η, (j)θ ](j, x1z1)

D = 0259

and putting y1 = 2x1y1, we conclude that260

[

(x1)
η, (j)θ

]

(x1)
η(y1)

η(j, x1z1)
D = 0261

∀ j, x1, y1, z1 ∈ L , as char(A ) 6= 2. Taking 2z1i in place of z1 in the above262

equation, we get [(x1)
η , (j)θ](x1)

η(y1)
η(x1)

η(z1)
η(j, i)D = 0, ∀ i, j, x1, y1, z1 ∈ L .263

Then by using Lemma 7 in the preceding equation, we obtain for each j ∈ L ,264

either [(x1)
η , (j)θ](x1)

η(y1)
η(x1)

η = 0, ∀ x1, y1 ∈ L or (j,L )D = (0). Applying265

Brauer’s trick, we have either [(x1)
η , (L )θ](x1)

η(y1)
η(x1)

η = (0), ∀ x1, y1 ∈ L266
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or (L ,L )D = (0). If [(x1)
η, (j)θ ](x1)

η(y1)
η(x1)

η = (0), ∀ j, x1, y1 ∈ L , then by267

Lemma 7, we get that for each x1 ∈ L , either (x1)
η = 0 or [(x1)

η, (j)θ ](x1)
η = 0,268

∀ j ∈ L . In any case it follows that269

(3.10)
[

(x1)
η , (j)θ

]

(x1)
η = 0.270

Then by taking j = 2jz1 in (3.10) and using the fact that char(A ) 6= 2, we get271

(3.11)
[

(x1)
η, (j)θ

]

(z1)
θ(x1)

η = 0.272

∀ j, x1, z1 ∈ L . On multiplying (3.10) from the right hand side by (z1)
θ, we find273

(3.12)
[

(x1)
η, (j)θ

]

(x1)
η(z1)

θ = 0.274

Subtracting (3.11) from (3.12), we have [(x1)
η, (j)θ ][(x1)

η, (z1)
θ] = 0, ∀ j, x1, z1 ∈275

L and by replacing z1 by 2z1j, it gives [(x1)
η , (j)θ](z1)

θ[(x1)
η, (j)θ ] = 0, ∀276

j, x1, z1 ∈ L . Again by Lemma 7, [(L )η , (L )θ] = (0) and by Lemma 12,277

L ⊆ Z (A ), a contradiction.278

On other hand, if we consider (L ,L )D = (0). Then, by Lemma 4, we have279

L ⊆ Z (A ), a contradiction. Both of these cases lead to a contradiction. Hence,280

L ⊆ Z (A ).281

Corollary 17. If D is nonzero and (l1)
∆ ∈ Z (A ), ∀ l1 ∈ L , then L ⊆ Z (A ).282

Theorem 18. Let ([l1, l2])
∆ = (l1)

θ◦(l2)
∆, ∀ l1, l2 ∈ L . Then either L ⊆ Z (A )283

or D = 0, and Ψ = 0.284

Proof. The hypothesis gives that285

(3.13) ([l1, l2])
∆ = (l1)

θ ◦ (l2)
∆

286

∀ l1, l2 ∈ L . Putting l1+ r1 instead of l1 in (3.13), we get ([l1, l2])
∆+([r1, l2])

∆+287

2([l1, l2], [r1, l2])
Ψ = (l1)

θ ◦ (l2)
∆ + (r1)

θ ◦ (l2)
∆, ∀ l1, l2, r1 ∈ L . By using (3.13),288

the last expression infers that289

2([l1, l2], [r1, l2])
Ψ = 0.290

As char(A ) 6= 2, so the above equation implies ([l1, l2], [r1, l2])
Ψ = 0. In partic-291

ular, for r1 = l1, we obtain 0 = ([l1, l2], [l1, l2])
Ψ. This implies ([L ,L ])∆ = (0).292

Therefore, by Theorem 15, either L ⊆ Z (A ) or D = 0, and Ψ = 0.293

By using a similar technique with the necessary variations, one can easily prove294

the following result.295

Theorem 19. If (l1 ◦ l2)
∆ = [(l1)

θ, (l2)
∆], ∀ l1, l2 ∈ L , then either L ∈ Z (A )296

or D = 0, and Ψ = 0.297
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Theorem 20. If any one of the following holds true:298

(i) [(l1)
∆(l2)

∆ + (l1)
η(l2)

θ,A ] = (0),299

(ii) [(l1)
∆(l2)

∆ − (l1)
η(l2)

θ,A ] = (0), ∀ l1, l2 ∈ L , then L ⊆ Z (A ).300

Proof. (i) By the given hypothesis, we have301

(3.14)
[

(l1)
∆(l2)

∆ + (l1)
η(l2)

θ,A
]

= (0)302

∀ l1, l2 ∈ L . Suppose that L * Z (A ). Replacing l2 by l2 + i in (3.14), we get303

2[(l1)
∆(l2, i)

Ψ,A ] = (0), ∀ l1, l2, i ∈ L . Since char(A ) 6= 2, so the last relation304

infers that305
[

(l1)
∆(l2, i)

Ψ,A
]

= (0).306

Replacing i by l2 in the above equation, we get307

[

(l1)
∆(l2)

∆,A
]

= (0).308

∀ l1, l2 ∈ L . On combining (3.14) and the above equation, we have [(l1)
η(l2)

θ,A ]309

= (0), ∀ l1, l2 ∈ L . This implies that310

(3.15) (l1)
η
[

(l2)
θ, r

]

+ [(l1)
η , r](l2)

θ = 0.311

Taking l1 = 2l1r1 in (3.15) and using the fact that char(A ) 6= 2, we obtain312

[(l1)
η, r](r1)

η(l2)
θ = 0, ∀ l1, l2, r1 ∈ L , r ∈ A . By applying Lemma 7, we get313

[(l1)
η, r] = 0. On replacing r with (l2)

η, last expression infers that [(L )η, (L )η] =314

(0). Thus, by Corollary 9, L ⊆ Z (A ). This is a contradiction to our supposition.315

Hence, L ⊆ Z (A ).316

After applying the similar technique with necessary modifications, we can317

prove (ii).318

Consequently, we have319

Corollary 21. If any one of the following holds true:320

(i)
[

(l1)
∆(l2)

∆ + (l1)
η(l2)

θ,A
]

= (0),321

(ii)
[

(l1)
∆(l2)

∆ − (l1)
η(l2)

θ,A
]

= (0),322

∀ l1, l2 ∈ A , then A is commutative.323

Note that Qmr stands for the right Utumi quotient ring (also called the324

maximal right ring of quotients) of A . Then the center of Qmr is called the325

extended centroid of A and is denoted by C.326

The next result extends [22, Theorem 3.15].327

Theorem 22. If 0 6= a1 ∈ A such that a1((l1)
∆(l2)

∆+(l1l2)
θ) = 0, ∀ l1, l2 ∈ L ,328

then L ⊆ Z (A ) or there exists λ ∈ C such that (x1)
∆ = λ(x1)

θ, ∀ x1 ∈ A and329

λ2 = −1.330
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Proof. By the given hypothesis,331

(3.16) a1
(

(l1)
∆(l2)

∆ + (l1l2)
θ
)

= 0332

∀ l1, l2 ∈ L . Let us assume that L * Z (A ). Then, replacing l2 by l2 + z1 in333

equation (3.16), we get 2a1(l1)
∆(l2, z1)

Ψ = 0, ∀ l1, l2, z1 ∈ L . As char(A ) 6= 2,334

so335

(3.17) a1(l1)
∆(l2, z1)

Ψ = 0.336

Taking 2z1i instead of z1 in (3.17) and by char(A ) 6= 2, we get337

a1(l1)
∆(z1)

η(l2, i)
D = 0338

∀ i, l1, l2, z1 ∈ L . By Lemma 7, either a1(L )∆ = (0) or (L ,L )D = (0). If339

a1(L )∆ = (0), with this equation (3.16) implies that a1(l1)
θ(l2)

θ = 0, ∀ l1, l2 ∈340

L . By Lemma 7, a1 = 0, which is not possible. Thus, (L ,L )D = (0) and by341

Lemma 4, either D = 0 or L ⊆ Z (A ) and this concludes that D = 0, as we have342

assumed that L * Z (A ). Hence D = 0. By replacing l2 by 2rs[l2, r1] in (3.17)343

for r, s ∈ A and using D = 0, we find a1(l1)
∆(r, z1)

ΨA [(l2)
θ, (r1)

θ] = (0). The344

primeness of A infers that, either a1(L )∆(A ,L )Ψ = (0) or [(L )θ, (L )θ] = (0).345

As we have assumed that L * Z (A ), so by Corollary 9, we observe that the346

latter case is not possible. Therefore, a1(l1)
∆(r, z1)

Ψ = 0 and by taking l1 =347

l1 + l2, this gives348

(3.18) a(l1, l2)
Ψ(r, z1)

Ψ = 0349

∀ l1, l2, z1 ∈ L , r ∈ A . On putting 2l2r1 in place of l2 in (3.18) and using D = 0,350

we obtain351

(3.19) a(l1, l2)
Ψ(r1)

θ(r, z1)
Ψ = 0352

∀ l1, l2, z1, r1 ∈ L , r ∈ r. After multiplying (3.18) by (r1)
θ from right hand side,353

we have354

(3.20) a(l1, l2)
Ψ(r, z1)

Ψ(r1)
θ = 0.355

On subtracting equation (3.19) from (3.20), we conclude that356

a(l1, l2)
Ψ
[

(r, z1)
Ψ, (r1)

θ
]

= 0357

and by putting r1 = 2r1z1, we are left with a1(l1, l2)
Ψ(r1)

θ[(r, z1)
Ψ, (z1)

θ] = 0, ∀358

l1, l2, r1, z1 ∈ L , r ∈ A . By Lemma 7, either a1(L ,L )Ψ = (0) or [(A , z1)
Ψ, (z1)

θ]359

= (0), ∀ z1 ∈ L . If a1(L ,L )Ψ = (0), then a1(l1)
∆ = 0, by using this in given360
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hypothesis, we have a1(l1)
θ(l2)

θ = 0, ∀ l1, l2 ∈ L and by Lemma 7, a1 = 0, which361

is a contradiction. Therefore,362

(3.21)
[

(r, z1)
Ψ, (z1)

θ
]

= 0363

∀ z1 ∈ L , r ∈ A . Replacing z1 by z1 + x1 in (3.21), we obtain [(r, z1)
Ψ, (x1)

θ] +364

[(r, x1)
Ψ, (z1)

θ] = 0, ∀ x1, z1 ∈ L , r ∈ A . Putting z1 = 2z1y1 and using D = 0,365

we have366

(3.22) (r, z1)
Ψ
[

(y1)
θ, (x1)

θ
]

+ (z1)
θ
[

(r, x1)
Ψ, (y1)

θ
]

= 0367

∀ x1, y1, z1 ∈ L , r ∈ A . Replacing z1 by 2sp[z1, x1] in (3.22) and using D = 0,368

we get 0 = 2(r, s)Ψ(p[z1, x1])
θ[(y1)

θ, (x1)
θ] + (s)θ(2p[z1, x1])

θ[(r, x1)
Ψ, θ(y1)] = 0,369

∀ x1, y1, z1 ∈ L , p, r, s ∈ A . As 2p[z1, x1] ∈ L , so by using (3.22), (2p[z1, x1])
θ

370

[(r, x1)
Ψ, (y1)

θ] = −(r, 2p[z1, x1])
Ψ[(y1)

θ, (x1)
θ] and using this in last equation, we371

conclude that372

0 = ((r, s)Ψ(p[z1, x1])
θ − (s)θ(r, p[z1, x1])

Ψ)
[

(y1)
θ, (x1)

θ
]

373

= ((r, s)Ψ(p)θ − (s)θ(r, p)Ψ)
[

(z1)
θ, (x1)

θ
][

(y1)
θ, (x1)

θ
]

374

∀ x1, y1, z1 ∈ L , p, r, s ∈ A , as D = 0. By taking mp instead of p and using375

D = 0, this concludes that376

(

(r, s)Ψ(m)θ − (s)θ(r,m)Ψ
)

A
[

(z1)
θ, (x1)

θ
][

(y1)
θ, (x1)

θ
]

= (0)377

∀ x1, y1, z1 ∈ L ,m, r, s ∈ A . As A is prime, so the last equation infers that either378

(r, s)Ψ(m)θ − (s)θ(r,m)Ψ = 0, ∀ m, r, s ∈ A or [(z1)
θ, (x1)

θ][(y1)
θ, (x1)

θ] = 0, ∀379

x1, y1, z1 ∈ L . If380

[

(z1)
θ, (x1)

θ
][

(y1)
θ, (x1)

θ
]

= 0381

then by replacing z1 by 2y1z1, we find382

[

(y1)
θ, (x1)

θ
]

(L )θ
[

(y1)
θ, (x1)

θ
]

= (0)383

∀ x1, y1 ∈ L and by using Lemma 7 and Corollary 9, L ⊆ Z (A ), a contradic-384

tion. Thus,385

(r, s)Ψ(m)θ − (s)θ(r,m)Ψ = 0386

∀ m, r, s ∈ A . Further, for each r ∈ A , we define a function fr : A → A by387

(x1)
fr = (x1, r)

Ψ = (r, x1)
Ψ. Then the previous equation implies that for each388

r ∈ A389

(3.23) (s)fr(m)θ = (s)θ(m)fr390
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∀ s,m ∈ A . On replacing s by st in (3.23) and using D = 0, we have (s)fr(t)θ(m)θ391

= (s)θ(t)θ(m)fr , ∀ s, t,m ∈ A . As θ is an automorphism, so last equation infers392

that393

(s)frp(m)θ = (s)θp(m)fr394

∀ m, p, s ∈ S. In view of [8, Lemma], there exists some λ ∈ C such that (s)fr =395

(s, r)Ψ = λ(s)θ, ∀ s ∈ A . In this way we find (s, r)Ψ = λ(s)θ, ∀ s, r ∈ A . In396

particular for s = r, we have397

(3.25) (r, r)Ψ = (r)∆ = λ(r)θ398

∀ r ∈ A . Then from the initial hypothesis, we get a1(λ
2 + 1)(l1l2)

θ = 0, ∀399

l1, l2 ∈ L . This infers that λ2 = −1.400

In similar way, one can prove the following result:401

Theorem 23. If 0 6= a1 ∈ A such that a1((l1)
∆(l2)

∆− (l1l2)
θ) = 0, ∀ l1, l2 ∈ L ,402

then L ⊆ Z (A ) or there exists λ ∈ C such that (x1)
∆ = λ(x1)

θ, ∀ x1 ∈ A and403

λ2 = 1.404

4. Symmetric generalized left (θ, η)-biderivations405

In this section, the behaviour of generalized left (θ, η)-biderivations on Lie ide-406

als of rings is examined and we also extend some well known results of [18] in407

the framework of generalized left (θ, η)-biderivations. We now proceed with the408

following result which is an extension of ( [18, Lemma 2]).409

In this section, Ψ represents a symmetric generalized left (θ, η)-biderivation410

of A associated with a symmetric left (θ, η)-biderivation D and ∆ is a trace of411

Ψ, ω is a trace of D .412

Proposition 24. If (L )ω = (0), then L ⊆ Z (A ) or D = 0.413

Proof. Let L * Z (A ) and the given hypothesis (l1)
ω = 0, ∀ l1 ∈ L . Now,414

replacing l1 by l1 + l2 and using the fact char(A ) 6= 2, we obtain415

(4.1) (l1, l2)
D = 0.416

∀ l1, l2 ∈ L . Putting l1 = 2r[i, j], we get417

(4.2) ([i, j])η(r, l2)
D = 0418

∀ i, j, l2 ∈ L , r ∈ A . Putting 2r[x1, j]s instead of r, the above equation infers419

that ([i, j])η(r)θ(2[x1, j]s, l2)
D + 2([i, j])η([x1, j])

η(s)η(r, l2)
D = 0, ∀ i, j, l2, x1 ∈420
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L , r, s ∈ A . Since 2[x1, j]s ∈ L , so by using (4.1) and char(A ) 6= 2, the previous421

equation implies that422

(4.3) ([i, j])η([x1, j])
ηA (r, l2)

D = (0).423

As A is prime, so equation (4.3) concludes that either ([i, j])η([x1, j])
η = 0, ∀424

i, j, x1 ∈ L or (A , l2)
D = (0), ∀ l2 ∈ L .425

The former case implies ([i, j])η([x1, j])
η = 0, then by taking 2x1i instead of i426

and using char(A ) 6= 2, we have427

[(x1)
η , (j)η ])(i)η([(x1)

η , (j)η ]) = 0428

∀ i, j, x1 ∈ L . By Lemma 7 and Corollary 9, the preceding equation forces429

L ⊆ Z (A ), which is not possible. In latter case, we have430

(4.4) (r, l2)
D = 0431

∀ l2 ∈ L , r ∈ A . Further, replacing l2 by 2[l1, l2]ps, we have432

2[(l1)
θ, (l2)

θ](p)θ(r, s)D + (s)η(r, 2[l1, l2]s)
D = 0433

∀ l1, l2 ∈ L , p, r, s ∈ A . As 2[l1, l2]s ∈ L , therefore by using (4.4) the last434

relation yields [(l1)
θ, (l2)

θ]A (r, s)D = (0), ∀ l1, l2 ∈ L , r, s ∈ A and the primeness435

of A implies either [(L )θ, (L )θ] = (0) or D = 0. In view of Corollary 9, the436

former gives that L ⊆ Z (A ), a contradiction. Hence D = 0.437

Corollary 25. If (A ,L )D = (0), then L ⊆ Z (A ) or D = 0.438

Theorem 26. If D is nonzero and any one of the following holds true:439

(i) (l1)
∆(l2)

θ + (l1)
θ(l2)

∆ = 0,440

(ii) (l1)
∆(l2)

θ − (l1)
θ(l2)

∆ = 0 ∀ l1, l2 ∈ L , then L ⊆ Z (A ).441

Proof. (i) Suppose that442

(4.5) (l1)
∆(l2)

θ + (l1)
θ(l2)

∆ = 0443

∀ l1, l2 ∈ L . On replacing l1 by l1 + r1 in (4.5) and using char(A ) 6= 2, we find444

(l1, r1)
Ψ(l2)

θ = 0, ∀ l1, l2, r1 ∈ L . Taking 2r[l2, x1] instead of l2, the previous445

expression gives 2(l1, r1)
Ψ(r)θ([l2, x1])

θ = 0, ∀ l1, l2, r1, x1 ∈ L , r ∈ A . Since446

char(A ) 6= 2, so (l1, r1)
ΨA ([l2, x1])

θ = (0). The primeness of A yields this447

either (L ,L )Ψ = (0) or [(L )θ, (L )θ] = (0). By Corollary 9, the latter case448

infers that L ⊆ Z (A ). From the former case we have449

(4.6) (l1, r1)
Ψ = 0450
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∀ l1, r1 ∈ L . Replacing l1 by 2r[l1, i]s, we get451

(r)θ(2[l1, i]s, r1)
Ψ + 2([l1, i])

η(s)η(r, r1)
D = 0452

∀ l1, i, r1 ∈ L , r, s ∈ S. As 2[l1, i]s ∈ L , so by using (4.6), the preceding equation453

gives ([l1, i])
ηA (r, r1)

D = (0), ∀ l1, i, r1 ∈ L , r ∈ A . The primeness of A implies454

that either [(L )η, (L )η] = (0) or (A ,L )D = (0). If [(L )η, (L )η] = (0), then by455

Corollary 9, L ⊆ Z (A ). Now, consider the case (A ,L )D = (0). Then, by the456

previous corollary, (A ,L )D = (0) infers that L ⊆ Z (A ), since D is nonzero.457

On applying the similar technique with necessary modifications, we obtain458

the same conclusion for (ii). This completes the proof.459

Immediately, we obtain the next result which gives the commutativity of A .460

Corollary 27. If D is nonzero and any one of the following holds true:461

(i) (l1)
∆(l2)

θ + (l1)
θ(l2)

∆ = 0,462

(ii) (l1)
∆(l2)

θ − (l1)
θ(l2)

∆ = 0 ∀ l1, l2 ∈ A , then A is commutative.463

Proposition 28. If D is nonzero and (l1)
∆ ∈ Z (A ), ∀ l1 ∈ L , then L ⊆464

Z (A ).465

Proof. If possible, assume that L * Z (A ). By the given hypothesis, D is466

nonzero and [(l1)
∆,A ] = (0), ∀ l1 ∈ L . Taking l1 + l2 instead of l1, we obtain467

(4.7)
[

(l1, l2)
Ψ, r

]

= 0468

∀ l1, l2 ∈ L , r ∈ A . Taking l2 = 2r1l2 in (4.7), we get469

[

(r1)
θ, r

]

(l1, l2)
Ψ +

[

(l2)
η(l1, r1)

D , r
]

= 0470

∀ l1, l2, r1 ∈ L , r ∈ A . By taking (r1)
θr in place of r, the above equation yields471

[(l2)
η(l1, r1)

D , (r1)
θ]A = (0). Since A is prime, therefore472

(4.8) 0 =
[

(l2)
η(l1, r1)

D , (r1)
θ
]

= (l2)
η
[

(l1, r1)
D , (r1)

θ
]

+
[

(l2)
η , (r1)

θ
]

(l1, r1)
D

473

∀ l1, l2, r1 ∈ L . Putting 2x1l2 in place of l2 in (4.8) and using char(A ) 6= 2, we474

find475
[

(x1)
η , (r1)

θ
]

(l2)
η(l1, r1)

D = 0476

∀ l1, l2, r1, x1 ∈ L . By using Lemma 7, we get that for each r1 ∈ L , either477

[(L )η, (r1)
θ] = (0) or (L , r1)

D = (0). Therefore, L is a union of the subgroups478

A = {r1 ∈ L : [(L )η, (r1)
θ] = (0)} and B = {r1 ∈ L : (L , r1)

D = (0)}.479

Since a group cannot be the union of its proper subgroups, so we are forced480

to conclude that either L = A or L = B. If L = A, then [(L )η, (L )θ] = (0)481

and by Lemma 12, L ⊆ Z (A ), a contradiction to our assumption. Therefore,482

we are left with L = B, i.e. (L ,L )D = (0). By Proposition 24, we get that483

L ⊆ Z (A ), a contradiction. Hence, L ⊆ Z (A ).484
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The following theorem is a generalization of [18, Theorem 7].485

Theorem 29. Let D be nonzero and ([l1, l2])
∆+[(l1)

∆, l2] ∈ Z (A ), ∀ l1, l2 ∈ L .486

Then L ⊆ Z (A ).487

Proof. By the given hypothesis, we get488

(4.9)
[

([l1, l2])
∆ + [(l1)

∆, l2], r
]

= 0489

∀ l1, l2 ∈ L , r ∈ A . On replacing l2 by l2 + r1, the last equation gives that490

[([l1, l2], [l1, r1])
Ψ, r] = 0, ∀ l1, l2, r1 ∈ L , r ∈ A . In particular r1 = l2, we have491

[([l1, l2])
∆, r] = 0, ∀ l1, l2 ∈ L , r ∈ A . With this, (4.9) implies that492

(4.10)
[[

(l1)
∆, l2

]

, r
]

= 0493

∀ l1, l2 ∈ L , r ∈ A . Putting 2l2r1 instead of l2 in (4.10), we find that [(l1)
∆, l2]494

[r1, r] + [l2, r][(l1)
∆, r1] = 0, ∀ l1, l2, r1 ∈ L , r ∈ A . On taking r = r1r and using495

(4.10), the previous equation implies that496

[l2, r1]A
[

(l1)
∆, r1

]

= (0)497

∀ l1, l2, r1 ∈ L . By the primeness of A , the above expression infers that for498

each r1 ∈ L , either [L , r1] = (0) or [(L )∆, r1] = (0). This implies that either499

[L ,L ] = (0) or [(L )∆,L ] = (0). In view of Lemma 5, the former case gives500

L ⊆ Z (A ) and by the latter case, we have [(l1)
∆, l2] = 0, ∀ l1, l2 ∈ L . Further,501

putting 2rs[l2, r1] in place of l2, we conclude that502

(4.11)
[

(l1)
∆, r

]

s[l2, r1] = 0503

∀ l1, l2, r1 ∈ L r, s ∈ A . Since A is prime, so (4.11) implies that, either (l1)
∆ ∈504

Z (A ), ∀ l1 ∈ L or [L ,L ] = (0). If (l1)
∆ ∈ Z (A ), ∀ l1 ∈ L , then by505

Proposition 28, L ⊆ Z (A ). On the other hand, if [L ,L ] = (0), then by506

Lemma 5, L ⊆ Z (A ). Therefore, L ⊆ Z (A ).507

Corollary 30. If D is nonzero and ([l1, l2])
∆ + [(l1)

∆, l2] ∈ Z (A ), ∀ l1, l2 ∈ A ,508

then A is commutative.509

Theorem 31. If one of the following conditions hold:510

(i) (l1l2)
∆ + (l1)

θ(l2)
∆ + (l1l2)

θ ∈ Z (A )511

(ii) (l1l2)
∆ − (l1)

θ(l2)
∆ + (l1l2)

θ ∈ Z (A )512

∀ l1, l2 ∈ L , then L ⊆ Z (A ) or D = 0.513
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Proof. (i) In case L ⊆ Z (A ), then we are done. Assume that L * Z (A )514

and by hypothesis, we have [(l1l2)
∆ + (l1)

θ(l2)
∆ + (l1l2)

θ,A ] = (0), ∀ l1, l2 ∈ L .515

Now, replacing l1 by l1 + z1 and using the fact that char(A ) 6= 2, we obtain that516

(4.12)
[

(l1l2, z1l2)
Ψ, r

]

= 0517

∀ l1, l2, z1 ∈ L , r ∈ A . Taking 2jl1 in place of l1 in (4.12) and again using518

char(A ) 6= 2, we get519

[

(j)θ, r
]

(l1l2, z1l2)
Ψ +

[

(l1l2)
η(j, z1l2)

D , r
]

= 0520

∀ l1, l2, z, j ∈ L , r ∈ A . On putting r = (j)θr in the last equation, we find521

[(l1l2)
η(j, z1l2)

D , (j)θ ]r = 0. This implies that522

(4.13)
[

(l1l2)
η(j, z1l2)

D , (j)θ
]

A
[

(l1l2)
η(j, z1l2)

D , (j)θ
]

= (0)523

∀ l1, l2, z1, j ∈ L , r ∈ A . Further the primeness of A implies that 0 = [(l1l2)
η

524

(j, z1l2)
D , (j)θ ] = [(l1l2)

η, (j)θ ](j, z1l2)
D + (l1l2)

η [(j, z1l2)
D , (j)θ ]. Replacing l1 by525

2l1k and using char(A ) 6= 2, in the resulting equation, we have526

[

(l1)
η, (j)θ

]

(k)η(l2)
η(j, z1l2)

D = 0527

∀ l1, l2, z1, j, k ∈ L . Therefore, by Lemma 7, the previous equation infers that528

for each j ∈ L , either [(L )η , (j)θ] = (0) or (l2)
η(j, z1l2)

D = 0, ∀ l2, z1 ∈ L .529

This implies that [(L )η , (L )θ] = (0) or (l2)
η(j, z1l2)

D = 0, ∀ j, l2, z1 ∈ L . By530

Lemma 12, the former case infers that L ⊆ Z (A ), which is contradiction to our531

assumption. Thus, we have (l2)
η(j, z1l2)

D = 0, ∀ j, l2, z1 ∈ L . Taking l2 + l1 in532

place of l2, we get533

(4.14) (l2)
η(j, z1l1)

D + (l1)
η(j, z1l2)

D = 0534

∀ j, l1, l2, z1 ∈ L . Replacing l2 by 2l2k we have535

(l2)
η(k)η(j, z1l1)

D + (l1)
η(z1l2)

θ(j, k)D + (l1)
η(k)η(j, z1l2)

D = 0536

∀ j, k, l1, l2, z1 ∈ L . By (4.14),537

(k)η(j, z1l2)
D = −(l2)

η(j, z1k)
D , (k)η(j, z1l1)

D = −(l1)
η(j, z1k)

D
538

and using these in last relation, we have539

−((l1)
η ◦ (l2)

η)(j, z1k)
D + (l1)

η(z1)
θ(l2)

θ(j, k)D = 0.540

By putting 2jl1 in place of l1, we have541

[(j)η , (l2)
η](l1)

η(j, z1k)
D = 0542
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∀ j, k, l1, l2, z1 ∈ L . Further, by Lemma 7, we obtain that for each j ∈ L , either543

[(j)η , (L )η] = (0) or (j, z1k)
D = (0), ∀ k, z1 ∈ L . This concludes that either544

[(L )η, (L )η] = (0) or (j, z1k)
D = 0, ∀ j, k, z1 ∈ L . By Corollary 9, the former545

case implies L ⊆ Z (A ), a contradiction. Therefore, we have (j, z1k)
D = 0, ∀546

j, k, z1 ∈ L and on replacing z1 by 2z1l2, this infers that (l2)
η(k)η(j, z1)

D = 0, ∀547

j, k, l2, z1 ∈ L . Since η is an automorphism of A , so by Lemma 7 the running548

equation gives (L ,L )D = (0). Moreover, by Proposition 24, D = 0.549

By using the same technique with necessary variations, we can obtain the550

same conclusion for the case (ii).551

Corollary 32. If (l1l2)
∆ ± (l1)

θ(l2)
∆ + (l1l2)

θ ∈ Z (A ), ∀ l1, l2 ∈ A . Then A552

is commutative or D = 0.553
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