DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score: 0.4

SJR: 0.203

SNIP: 0.562

MCQ: 0.12

Index Copernicus: 121.02

Discussiones Mathematicae - General Algebra and Applications

Article in press


Authors:

E.D. Schwab

Emil Daniel Schwab

University of Texas at El Paso

email: eschwab@utep.edu

Title:

A bisimple inverse monoid of quadruples of non-negative integers. The Möbius function

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications

Received: 2022-10-10 , Revised: 2022-11-12 , Accepted: 2022-11-14 , Available online: 2023-08-23 , https://doi.org/10.7151/dmgaa.1440

Abstract:

The additive monoid of non-negative integers $\mathbb{N}$ is isomorphic to the right unit submonoid of the (bisimple) bicyclic semigroup $B=\mathbb{N}×\mathbb{N}$. The aim of this note is to construct a similar pair of monoids $(B^{\dagger}=\mathbb{N}×\mathbb{N},B^{\ddagger}=\mathbb{N}×\mathbb{N}×\mathbb{N}×\mathbb{N})$. The monoid $B^{\dagger}$ give rise to a bisimple inverse monoid $B^{\ddagger}$ of quadruples of non-negative integers like as Warne's 2-dimensional bicyclic semigroup. The links with the monoid of non-negative integers $\mathbb{N}$ and with the bicyclic semigroup may turn out to be expedient also for the computation of the corresponding Möbius functions.

Keywords:

bisimple inverse monoid, bicyclic semigroup, Möbius function

References:

  1. A. H. Clifford, A class of d-simple semigroups, Amer. J. Math. 15 (1953), 541-556.
  2. P. Dehornoy, Alternating normal forms for braids and locally Garside monoids, J. Pure Appl. Algebra 212 (2008), 2413-2439. https://doi.org/10.1016/j.jpaa.2008.03.027
  3. A. Geroldinger and E. D. Schwab, Sets of lengths in atomic unit-cancellative finitely presented monoids, Colloq. Math. 151 (2018), 171-187. DOI: 10.4064/cm7242-6-2017
  4. P. Haukkanen and E. D. Schwab, A unique factorization in commutative Möbius monoids, Int. J. Number Theory 4 (2008), 549-561. https://doi.org/10.1142/S1793042108001523
  5. P. Leroux, Les catégories de Möbius, Cah. Topol. Géom. Diffé. Catég. 16 (1975), 280-282.
  6. M. Petrich, Inverse semigroups, John Wiley $\&$ Sons, New York, 1984.
  7. E. D. Schwab, Möbius monoids and their connection to inverse monoids, Semigroup Forum 90 (2015), 694-720. https://doi.org/10.1007/s00233-014-9666-0
  8. E. D. Schwab, Gauge inverse monoids, Algebra Colloq. 27 (2020), 181-192. https://doi.org/10.1142/S1005386720000152
  9. E. D. Schwab, A note on Möbius functions and a breaking process, J. Algebra Appl. 21 (2022), 2250108. https://doi.org/10.1142/S0219498822501080
  10. E. D. Schwab and G. Schwab, A Möbius arithmetic incidence function, Notes on Number Theory and Discrete Mathematics 21(3) (2015), 27-34.
  11. Y. Shang and L. Wang, A class of regular simple $\omega^{2}$-semigroups I, Advances in Mathematics (China) 42 (2013), 631-643.
  12. R. J. Warne, A class of bisimple inverse semigroups, Pacific J. Math. 18 (1966), 563-577.

Close