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1. Introduction23

A well-known and thus much cited combinatorial bisimple inverse monoid is the
bicyclic semigroup B which is a monoid of pairs of non-negative integers, B =
N× N, equipped with the multiplication defined by:

(k,m) · (r, s) =

{
(k,m− r + s) if m ≥ r
(k −m+ r, s) if m < r.

As a monoid of transformations, the bicyclic semigroup B is generated by the
following transformations α, β, ι : N→ N defined by

(n)α =

{
0 if n = 0

n− 1 if n > 0
(n)β = n+ 1 and (n)ι = n.
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The bicyclic semigroup B is a monoid admitting the following presentation:

B =< a, b | ba = 1 > .

The elements are words of the form akbm for k,m ∈ N (with the understanding
a0 = b0 = 1). The multiplication is given by:

akbmarbs = ak−m+max(m,r)bmax(m,r)−r+s.

The element 1 = (0, 0) ∈ N×N is the identity of B and the submonoid of right24

units in B (the R-class of B containing the identity) is isomorphic to the monoid25

of the non-negative integers N with the usual addition. It is well-know that26

bisimple inverse monoids are described in terms of their right unit submonoid27

(Clifford [1]-see also [6, Chapter 10, Section 1]). The right unit submonoid of28

a bisimple inverse monoid is right cancellative monoid satisfying the Clifford29

condition. A monoid S is said to satisfy the Clifford condition if for all x, y ∈ S30

there exists z ∈ S such that Sx ∩ Sy = Sz. Having a right cancellative monoid31

satisfying the Clifford condition there is a well-known process of constructing a32

bisimple inverse monoid from a such monoid. The pair (N, B = N× N) describe33

the standard example to illustrate Clifford’s theory of bisimple inverse monoids.34

In this note we consider an example of ”Clifford’s pair” (B† = N × N, B‡ =35

N×N×N×N) which is close to the ”bicyclic pair” (N, B). Already the construction36

of B† ensures this goal and Proposition 3.1 expresses the internal connections37

between them. Although the monoid B† is described as the bicyclic semigroup38

B, this monoid is not inverse as the bicyclic semigroup, but it is right cancellative39

satisfying the Clifford condition, it is atomic and half factorial, it is Möbius (in40

the sense of Leroux [5],[7]), locally right Garside (in the sense of Dehornoy [2]) and41

`-RILL monoid (in the sense of Schwab [8]), properties which are also satisfied42

by the additive monoid of non-negative integers. This monoid has a special place43

in the class of monoids considered in [3, Section 4]. Now, the monoid B‡ is44

combinatorial, bisimple, and inverse as the bicyclic semigroup; the monoid B†45

being isomorphic to the right units of B‡ (exactly as in the case of N and B).46

The links with the bicyclic semigroup may be found throughout the paper. The47

Möbius function of the locally finite partially ordered set (B‡,≤) (where ≤ is the48

natural partial order of the inverse monoid B‡) is given in Section 4.49

The computations are simple, and this note assumes only elementary knowl-50

edge of semigroup theory. A monoid T is called an inverse monoid if for each51

t ∈ T there exists a unique inverse (denoted by t−1) such that tt−1t = t and52

t−1tt−1 = t−1. Note that an inverse monoid T is combinatorial if and only if its53

group of units is trivial, and it is bisimple if and only if for each pair of elements54

s, t ∈ S there exists an element x ∈ S such that ss−1 = xx−1 and x−1x = t−1t.55

We refer the reader to the book of Petrich [6] for results and terminologies in56

inverse semigroup theory.57
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2. The right cancellative monoid B†58

Define the mappings α, β, ι : N→ N as follows:

(n)α =

{
0 if n = 0

n+ 1 if n > 0
(n)β = n+ 1 and (n)ι = n.

Let B† be the monoid generated by these transformations. We observe that

(∀n ∈ N) : (n)βα = (n+ 1)α = n+ 2 = (n)ββ

that is,
βα = β2.

If k and m are positive integers then

(n)αk =

{
0 if n = 0

n+ k if n > 0
and (n)βm = n+m.

More generally,

(n)αkβm =

{
m if n = 0

n+ k +m if n > 0.

Let γ be an element of B†, γ = γ1γ2...γn, where γi = α or γi = β. If j (≤ n) is
the smallest index such that γj = β then γ = αj−1βn−j+1 since βα = β2 (if such
a positive integer j does not exist then γ = αn, and if j = 1 then γ = βn). Hence

B† = {αkβm | k,m ∈ N}

(where α0 = β0 = ι). Note that αkβm = αrβs if and only if k = r and m = s.
This means that

B† =< a, b | ba = b2 >

is a monoid presentation of B†. The elements are words of the form akbm for
k,m ∈ N (with the understanding a0 = b0 = 1). The multiplication is defined as
follows

akbmarbs =

{
ak+rbs if m = 0
akbm+r+s if m > 0.

So B† is the monoid of pairs of non-negative integers,

B† = N× N,

with multiplication determined by the rule:

(k,m)(r, s) =

{
(k + r, s) if m = 0

(k,m+ r + s) if m > 0.
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Proposition 1. The monoid B† is right cancellative and satisfies the Clifford59

condition.60

Proof. Let x = akbm, x′ = ak
′
bm
′

and y = arbs.61

Case 1: m = 0 and m′ 6= 0 (similarly if m′ = 0 and m 6= 0). Then xy = x′y
implies

ak+rbs = ak
′
bm
′+r+s that is k + r = k′ and s = m′ + r + s,

which is impossible since m′ > 0.62

Case 2: m = m′ = 0. Then xy = x′y implies63

ak+rbs = ak
′+rbs that is k = k′,

and therefore x = x′64

Case 3: m > 0 and m′ > 0. Then xy = x′y implies

akbm+r+s = ak
′
bm
′+r+s that is k = k′ and m = m′,

and therefore x = x′. This proves the first part of the assertion.65

Now, it is straightforward to check that

B†akbm =

{
{aubv+m | u, v ∈ N} if k = 0,

Xk,m ∪ Yk,m if k > 0,

where

Xk,m = {au+kbm | u ∈ N} and Yk,m = {aubv+k+m | u ∈ N, v ∈ N∗}.

Let x = akbm, y = arbs and assume that

k +m ≥ r + s.

Case 1: m = s. Then k ≥ r. The equality k = r implies x = y and therefore
B†x = B†y. Assume that k > r, and therefore k > 0. Then

B†x ∩B†y = [Xk,m ∪ Yk,m] ∩B†y.

(i) If r = 0 then66

B†x ∩B†y =

[{au+kbm | u ∈ N} ∪ {aubv+k+m | u ∈ N, v ∈ N∗}] ∩ {aubv+s | u, v ∈ N} = B†x.

(ii) If r > 0 then

B†x ∩B†y = [Xk,m ∪ Yk,m] ∩ [Xr,s ∪ Yr,s] = B†x
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since Xk,m ⊆ Xr,s and Yk,m ⊆ Yr,s.67

Case 2: m > r + s.68

(i) If k = r = 0, then

B†x ∩B†y = {aubv+m | u, v ∈ N} ∩ {aubv+s | u, v ∈ N} = B†x,

since m > s69

(ii) If k = 0 and r > 0, then

B†x ∩B†y = {aubv+m | u, v ∈ N} ∩ [Xr,s ∪ Yr,s] = B†x,

since B†x ⊆ Yr,s.70

(iii) If k > 0 and r = 0, then

B†x ∩B†y = [Xk,m ∪ Yk,m] ∩ {aubv+s | u, v ∈ N} = B†x,

since Xk,m, Yk,m ⊆ B†y.71

(iv) If k > 0 and r > 0, then

B†x ∩B†y = [Xk,m ∪ Yk,m] ∩ [Xr,s ∪ Yr,s] = B†x,

since Xk,m, Yk,m ⊆ Yr,s.72

Case 3: m ≤ r + s and m 6= s. Then 0 ≤ r + s−m ≤ k.73

(i) If r = 0 then m < s and k > 0. It follows

B†x ∩B†y = [Xk,m ∪ Yk,m] ∩ {aubv+s | u, v ∈ N} = Yk,m = B†bk+m+1,

since Xk,m ∩B†y = ∅ and Yk,m ⊆ B†y.74

(ii) If r > 0 and k = 0, then m = r + s and

B†x ∩B†y = {aubv+m | u, v ∈ N} ∩ [Xr,s ∪ Yr,s] = Yr,s = B†br+s+1 = B†bk+m+1,

since B†x ∩Xr,s = ∅ and Yr,s ⊂ B†x.75

(iii) If r > 0 and k > 0 then

B†x ∩B†y = [Xk,m ∪ Yk,m] ∩ [Xr,s ∪ Yr,s] = Yk,m = B†bk+m+1,

since Xk,m ∩B†y = ∅, B†x ∩Xr,s = ∅ and Yk,m ⊆ Yr,s.76

In conclusion,

B†akbm ∩B†arbs =


B†akbm if m > r + s or [m = s and k ≥ r]
B†arbs if s > k +m or [m = s and k ≤ r]

B†bk+m+1 if 0 ≤ r + s−m ≤ k and m 6= s
B†br+s+1 if 0 ≤ k +m− s ≤ r and m 6= s.

Hence the right cancellative monoid B† satisfies the Clifford condition.77
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Remarks. Since the identity (0, 0) is indecomposable in B†, the right can-78

cellative law implies that the right divisibility is an ordering on B†. Clifford’s79

condition involves that two elements with common left multiple admit a least80

common left multiple (LL-condition). Thus the monoid B† is a RILL monoid81

(i.e. it is right cancellative (R), having the identity indecomposable (I), and sat-82

isfying the LL-condition). The monoid B† is atomic with two atoms a = (1, 0),83

b = (0, 1); and it is half-factorial (i.e. two decomposition into atoms of a non-84

identity element (m,n) have the same length, namely `(m,n) = m + n). By [8,85

Proposition 2.1], B† is a locally right Garside monoid in the sense of Dehornoy86

[2], and from [7, Proposition 3.1] it follows that B† is a Möbius monoid (i.e. a87

Möbius category in the sense of Leroux [5] with a single object). A small cate-88

gory C is Möbius if 1) it is decomposition finite (i.e., for any morphism α ∈MorC89

there is only a finite number of pairs (β, γ) ∈MorC ×MorC such that βγ = α),90

2) each identity morphism is indecomposable (i.e., 1 = βγ ⇒ β = γ = 1), and91

3) βγ = γ always implies that β is an identity morphism (see [5]). Note that92

in [4] the Möbius monoid was defined as the R-class containing the identity of a93

combinatorial bisimple inverse monoid.94

3. The bisimple inverse monoid B‡95

In this section we apply Clifford’s [1] construction of bisimple inverse monoids
from a right cancellative monoid satisfying the Clifford condition, namely from
the monoid B†. Since 1 is indecomposable in B†, this bisimple inverse monoid
B‡ is given by:

B‡ = B† ×B†

equipped with the operation � defined by

(x, y) � (z, w) = (px, qw),

where B†y ∩B†z = B†t and py = qz = t, for some p, q, t ∈ B†. More concretely,
if y = akbm and z = arbs then the multiplication in B‡ is given by

(x, y) � (z, w) =



(x, ak−rw) if k ≥ r and m = s
(x, akbm−r−sw) if m > r + s

(bx, bk+m−r−s+1w) if 0 ≤ r + s−m ≤ k and m 6= s
(ar−kx,w) if k ≤ r and m = s

(arbs−k−mx,w) if s > k +m
(br+s−k−m+1x, bw) if 0 ≤ k +m− s ≤ r and m 6= s.

One of the realisation of this monoid is the Cartesian product N × N × N × N
with respect to the multiplication:

(p, q, k,m) � (r, s, u, v) =
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(p, q, k − r + u, v) if k ≥ r and m = s
(p, q, k,m− r − s+ u+ v) if m > r + s

(0, p+ q + 1, 0, k +m− r − s+ u+ v + 1) if 0 ≤ r + s−m ≤ k and m 6= s
(r − k + p, q, u, v) if k ≤ r and m = s

(r, s− k −m+ p+ q, u, v) if s > k +m
(0, r + s− k −m+ p+ q + 1, 0, u+ v + 1) if 0 ≤ k +m− s ≤ r and m 6= s.

Proposition 2. Let ε1 : N −→ B†, ε2 : N −→ B, ε3 : B† −→ B‡, ε4 : B −→ B‡

four maps defined by

(n)ε1 = (n, 0), (n)ε2 = (0, n), (k,m)ε3 = (0, 0, k,m), (k,m)ε4 = (k, 0,m, 0).

Then ε1, ε2, ε3 and ε4 are all injective monoid homomorphisms (embeddings;96

N being the additive monoid of non-negative integers) such that the following97

diagram commutes:98

N
ε2
��

ε1 // B†

ε3
��

B ε4
// B‡

Proof. Clearly, ε1 and ε2 are embeddings of the additive monoid N of non-99

negative integers in B† and B, respectively.100

If (k,m), (r, s) ∈ B† then

(k,m)ε3 � (r, s)ε3 = (0, 0, k,m) � (0, 0, r, s) =

{
(0, 0, k + r, s) if m = 0

(0, 0, k,m+ r + s) if m > 0,

and

(k,m)(r, s) =

{
(k + r, s) if m = 0

(k,m+ r + s) if m > 0.

Hence ε3 : B† −→ B‡ is an injective monoid homomorphism.101

If (k,m), (r, s) ∈ B then

(k,m)ε4 � (r, s)ε4 = (k, 0,m, 0) � (r, 0, s, 0) =

{
(k, 0,m− r + s, 0) if m ≥ r
(r −m+ k, 0, s, 0) if m < r,

and

(k,m) · (r, s) =

{
(k,m− r + s) if m ≥ r
(k −m+ r, s) if m < r.

Hence ε4 : B −→ B‡ is also an injective monoid homomorphism. Now, it is102

straightforward to check that the above diagram is commutative.103
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Proposition 3. Let ι × ι × τ : N × N × N × N −→ N × N × N × N be the
transformation given by

(k,m, r, s)(ι× ι× τ) = (k,m, s, r),

and let ε5 : B −→ B‡ be defined by

(k,m)ε5 = (0, k, 0,m).

Then ε5 is (also) an injective monoid homomorphism (embedding) such that the104

following diagram commutes:105

N

ι

ε1 // B† = N× N ε3 // B‡ = N× N× N× NOO

ι×ι×τ
��

N ε2
// B = N× N ε5

// B‡ = N× N× N× N

Proof. We prove that ε5 is a monoid homomorphism. If (k,m), (r, s) ∈ B then

(k,m)ε5 � (r, s)ε5 = (0, k, 0,m) � (0, r, 0, s) =


(0, k, 0, s) if m = r

(0, k, 0,m− r + s) if m > r
(0, r −m+ k, 0, s) if m < r,

and

(k,m) · (r, s) =

{
(k,m− r + s) if m ≥ r
(k −m+ r, s) if m < r.

Hence ε5 : B −→ B‡ is an injective monoid homomorphism.106

Now, it is straightforward to check (again) that this new diagram is also107

commutative.108

Both monoids B and B‡ are bisimple inverse monoids. Both are combinato-109

rial since 0 and (0,0) are indecomposable in N and B†, respectively. The bicyclic110

semigroup B is E-unitary since N is cancellative, but B‡ is not E-unitary since111

the right cancellative monoid B† is not left cancellative.112

4. The Möbius function113

A locally finite poset is a partially ordered set (P,≤) for which every closed
interval [x, y] = {z | x ≤ z ≤ y} is finite. The incidence algebra of a locally
finite poset (P,≤) is the set A(P ) = {f : I(P ) → C} of all complex valued
maps defined on the set I(P ) of all nonempty intervals [x, y], equipped with the



A bisimple inverse monoid of quadruples of ... 9

pointwise addition and scalar multiplication and a convolution (multiplication)
given by

(f ∗ g)[x, y] =
∑
z∈[x,y]

f [x, z]g[z, y].

(Here, in this section, we shall write function symbols on the left.) The Kronecker114

delta function δP defined by δP [x, y] = 1 if x = y and 0 otherwise, is the identity115

with respect to the convolution, and the convolution inverse µP≤ of the zeta116

function ζP given by ζP [x, y] = 1 for any nonempty interval [x, y], is the Möbius117

function of the locally finite poset (P,≤).118

Now, if M is a right cancellative Möbius monoid (that is 1 ∈M is indecom-
posable and for any a ∈ M there are a finite number of pairs (b, c) ∈ M ×M
such that a = bc) then the convolution f ∗ g of two elements f, g ∈ A(M) = {f :
M → C} is defined by

(f ∗ g)(a) =
∑
a=bc

f(b)g(c).

The identity with respect to the convolution is the delta function δM defined119

by δM (a) = 1 if a is the identity of M and 0 otherwise, and the convolution120

inverse µM of the zeta function ζM given by ζM (a) = 1 for every a ∈ M , is the121

Möbius function of the Möbius monoid M . In the case of a right cancellative122

Möbius category C, all these considerations can be formulated without difficulty123

(M being substituted by the set of all morphisms of C).124

The notations used in the following µP≤ , µM and µC will indicate the order125

or algebraic structures to which the Möbius function is related.126

It is straightforward to see that the additive monoid of non-negative integers
N and the monoid B† are right cancellative Möbius monoids. In the case of
the additive monoid N, the incidence algebra A(N) is the algebra of arithmetic
functions with Cauchy convolution and the Möbius function µN is given by

µN(m) =


1 if m = 0
−1 if m = 1
0 if m > 1.

In the case of the right cancellative Möbius monoid B† the algebra A(B†) is an
algebra of arithmetic functions of two variables. By [10, Proposition 4.2] the
Möbius function µB† is given by:

µB†(m,n) =


1 if [m = 0, n = 0] or [m = 0, n = 2];
−1 if [m = 1, n = 0] or [m = 0, n = 1]
0 otherwise.

A Möbius function, as an arithmetic function of two variables, more related to
µN via the Möbius monoid B† can be obtained by a breaking process described
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in [9]. It is straightforward to see that B†b = {akbm ∈ B†| k = 0} is a (Möbius)

submonoid of B† such that the binary operation on B† induces a right action of B†b
on B†−B†b . Thus a two objects (denoted 1 and 2) Möbius category C(B†/B†b) is
formed for which the set of morphismsB† is broken up into two parts, one of which
HomC(B†/B†b )

(1, 1) = B†b and the second one is HomC(B†/B†b )
(1, 2) = B† − B†b

(HomC(B†/B†b )
(2, 2) is a singleton and HomC(B†/B†b )

(2, 1) = ∅). The composition

of morphisms in C(B†/B†b) is completely determined by the binary operation on

B† (via the induced right action of B†b on B† −B†b).

2@@

B†−B†b

id // 2

1
B†b

// 1

Obviously, for any pair of non-negative integers (k,m), we have (see also [9,
Corollary 4.1]):

µC(B†/B†b )
(akbm) =

{
µN(m) if k = 0

µN(m+ 1) if k > 0.

The same equality holds, namely

µC(B†/B†a)
(akbm) =

{
µN(k) if m = 0

µN(k + 1) if m > 0

for any pair of non-negative integers (k,m), if the two objects broken Möbius

category C(B†/B†a) is the category in which the set of morphisms B† is broken

up into two parts, one of which HomC(B†/B†a)
(2, 2) = B†a = {akbm ∈ B†| m = 0}

and the second one is HomC(B†/B†a)
(1, 2) = B† − B†a (HomC(B†/B†a)

(1, 1) being a

singleton and HomC(B†/B†a)
(2, 1) = ∅).

2@@

B†−B†a

B†a // 2

1
id // 1

Another is when we use the submonoid

B†ev. = {akbm ∈ B†| k and m are both even}
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in the breaking process.

C(B†/B†ev.) : 2@@

B†−B†ev.

id // 2

1
B†ev.

// 1

Proposition 4. The Möbius function µC(B†/B†ev.)
of the broken Möbius category

C(B†/B†ev.) is given by:

µC(B†/B†ev.)
(akbm) =


µB†(

k
2 ,

m
2 ) if akbm ∈ B†ev.;

−1 if m = 1 or [m = 0 and k = 1];
1 if m = 3
0 otherwise.

Proof. Since B† and B†ev. are isomorphic it follows that µC(B†/B†ev.)
(akbm) =127

µB†(
k
2 ,

m
2 ) if akbm ∈ B†ev..128

Now, let akbm ∈ B† −B†ev.. Then,

0 = (δ ∗ µC(B†/B†ev.))(a
kbm) =∑

akbm=apbqa2rb2s

δ(apbq)µC(B†/B†ev.)
(a2rb2s) + δ(id2)µC(B†/B†ev.)

(akbm),

that is
µC(B†/B†ev.)

(akbm) = −
∑

akbm=apbqa2rb2s

µB†(r, s).

Case 1. m = 0. Then k = 2`+ 1 and

µC(B†/B†ev.)
(ak) = −

∑̀
r=0

µB†(r, 0) =

{
−1 if ` = 0
0 if ` > 0.

Case 2. m = 1. Then

µC(B†/B†ev.)
(akb) = −µB†(0, 0) = −1

for any non-negative integer k.
Case 3. m = 2n (n > 0). Then

µC(B†/B†ev.)
(akbm) =

−µB†(0, 0)−
n−1∑
r=1

µB†(r, 0)−
n∑
s=1

µB†(0, s)−
∑

r,s≥1,r+s<n
µB†(r, s) = 0,
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for any non-negative odd integer k.
Case 4. m = 2n+ 1 (n > 0). Then

µC(B†/B†ev.)
(akbm) =

−µB†(0, 0)−
n∑
r=1

µB†(r, 0)−
n∑
s=1

µB†(0, s)−
∑

r,s≥1,r+s≤n
µB†(r, s) =

{
−1 + 1 + 1 = 1 if n = 1

−1 + 1− (−1 + 1)− 0 = 0 if n > 1

for any non-negative integer k.129

The proof of Proposition 4 is now complete.130

Now, let (S, T ) be a Clifford pair (i.e., S is a right cancellative monoid which131

satisfies the Clifford condition and T is a bisimple inverse monoid such that132

the subsemigroup of right units is isomorphic to the monoid S). If the right133

cancellative monoid S is a Möbius monoid (as above the monoids N and B†)134

then T is combinatorial (since 1 ∈ S is indecomposable). More like this, the pair135

(T,≤) is a locally finite poset, where ≤ is the well-known natural partial order136

for inverse semigroups (t ≤ u if and only if tt−1u = t).137

It is straightforward to check that for the bicyclic semigroup B the natural
partial order ≤ is given by

(m,n) ≤ (m′, n′) if and only if m−m′ = n− n′ ∈ N.

Proposition 5. The Möbius function µB≤ of the bicyclic semigroup with the
natural partial order relation ≤ is given by

µB≤ [(m,n), (m′, n′)] =


1 if m = m′

−1 if m = m′ + 1
0 if m−m′ > 1.

Proof. Taking into account [7, Proposition 2.6 (2)] we have µB≤ [(m,n), (m′, n′)] =138

µN(m−m′), and the statement is proved.139

The natural partial order in the case of the bisimple inverse monoid B‡ is
somewhat more complicated. We have

(m,n, p, q) ≤ (m′, n′, p′, q′) if and only if (m,n,m, n)�(m′, n′, p′, q′) = (m,n, p, q)

that is

(m,n, p, q) ≤ (m′, n′, p′, q′) if and only if
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n = n′ q = q′ and m−m′ = p− p′ ∈ N,

or
p = m, q = n−m′ − n′ + p′ + q′ and n > m′ + n′.

However the Möbius function µ
B‡≤

of the bisimple inverse monoid B‡ with the140

natural partial order relation ≤ is more simple, and clearly expresses a close141

relationship with the Möbius function of the bicyclic semigroup but also with the142

Möbius function of the Möbius monoid B†143

Proposition 6. The Möbius function µ
B‡≤

of the bisimple inverse monoid B‡

with the natural partial order relation ≤ is given by

µ
B‡≤

[(m,n, p, q), (m′, n′, p′, q′)] =

{
µB≤ [(m, p), (m′, p′)] if n = n′, q = q′ and m−m′ = p− p′ ∈ N
µB†(m,n−m′ − n′) if p = m, q = n−m′ − n′ + p′ + q′ and n > m′ + n′.

Proof. By [7, Proposition 2.6 (2)] it follows that µ
B‡≤

[(m,n, p, q), (m′, n′, p′, q′)] =144

µB†(x, y), where (x, y) ∈ B† such that (x, y)(m′, n′) = (m,n). In the case n =145

n′, q = q′, m − m′ = p − p′ ∈ N, we have y = 0 and x = m − m′. Thus146

µ
B‡≤

[(m,n, p, q), (m′, n′, p′, q′)] = µB†(m − m′, 0) = µB≤ [(m, p), (m′, p′)]. In the147

case p = m, q = n − m′ − n′ + p′ + q′, n > m′ + n′, we have x = m and148

y = n−m′ − n′. So, the assertion of Proposition 6 is proved completely.149

5. Final remarks150

1) The computation of all examples of Möbius functions µC(M/M′) of broken151

Möbius categories C(M/M′) is considered in [9], but also µC(B†/B†a)
and µC(B†/B†b )

152

from the previous section find the solution in [9, Corollary 4.1]. They are all153

Möbius functions for which for any x ∈ M−M′, µC(M/M′)(x) = −1 if x is an154

atom over M′ (i.e., x = yz with z ∈ M′ implies z = 1M′) and µC(M/M′)(x) van-155

ishes otherwise. By Corollary 4.1 of [9] this happens if for any x ∈M−M′ the156

set of all right divisors z ∈M′ of x contain a greatest element. It was necessary,157

besides the examples that satisfy the stated condition, to present an example for158

which the result of Corollary 4.1 of [9] does not take place. Proposition 4.1 of159

the previous section responds to this requirement.160

2) One of the purpose of Warne’s paper [12] is to study a certain generaliza-
tion of the bicyclic semigroup. Warne’s 2-dimensional bicyclic semigroup (which
is isomorphic to the quadrucyclic semigroup considered in [11]) is the Bruck prod-
uct B ◦B, namely it is the Cartesian product B ×B = N4 with the operation .
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defined by

(p, q, k,m) . (r, s, u, v) =


(p, q − r + s, k,m) if q > r
(p, s, k −m+ u, v) if q = r and m < u

(p, s, k, v) if q = r and m = u
(p, s, k,m− u+ v) if q = r and m > u
(p− q + r, s, u, v) if q < r.

Now, for any semigroup S it is defined a partial order ≤ on the set of idempotents
E(S) (if E(S) is not empty) by the rule that e ≤ f if and only if ef = e = fe.
In the case of an inverse semigroup S this is just the restriction to E(S) of the
natural partial order on S. It can be easily seen that if S = B ◦ B then the set
of idempotents

E(B ◦B) = {(p, q, k,m) ∈ N4 | q = p and m = k} = {(p, p, k, k)}p,k∈N

is lexicographically ordered, that is E(B ◦B) is order isomorphic to N×N under
the order defined by:

(p, k) ≤ (r, u) if and only if p > r or p = r and k ≥ u.

It is well known (see [12, Corollary 2.1]) that an inverse monoid S is combinatorial161

bisimple with E(S) lexicographically ordered if and only if S ∼= B ◦B.162

Now, B‡ is a combinatorial bisimple inverse monoid of quadruples of non-
negative integers which is not isomorphic to the 2-dimensional bicyclic semigroup
B ◦B. The monoid operation � on B‡ restricted to the set of idempotents

E(B‡) = {(p, q, k,m) ∈ N4 | k = p and m = q} = {(p, q, p, q)}p,q∈N

is given by

(p, q, p, q)�(r, s, r, s) =



(p, q, p, q) if p ≥ r and q = s
(p, q, p, q) if q > r + s

(0, p+ q + 1, 0, p+ q + 1) if 0 ≤ r + s− q ≤ p, q 6= s
(r, s, r, s) if p ≤ r and q = s
(r, s, r, s) if s > p+ q

(0, r + s+ 1, 0, r + s+ 1) if 0 ≤ p+ q − s ≤ r, q 6= s,

As can be read in the above table, E(B‡) is order isomorphic to N×N under
a (reverse) lexicographic-type order relation given by

(p, q) ≤ (r, s) if and only if q > s+ r or q = s and p ≥ r.

If we replace B† by B†1 =< a, b | ba = b > we get a combinatorial bisimple inverse163

monoid B‡1 (in the same way as B‡) which is just Warne’s 2-dimensional bicyclic164
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semigroup. Note that B†1 is not a Möbius monoid though B†n =< a, b | ba = bn >165

is a Möbius monoid for all n > 1. The monoid B†(= B†2) is the only half-factorial166

monoid in the class {B†n =< a, b | ba = bn >}n>1. An explicit description of the167

system of sets of lengths of the non-commutative atomic monoids B†n, n > 1, is168

given in [3, Section 4].169
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[10] E. D. Schwab and G. Schwab, A Möbius arithmetic incidence function, Notes193

on Number Theory and Discrete Mathematics 21(3) (2015), 27-34.194

[11] Y. Shang and L. Wang, A class of regular simple ω2-semigroups I, Advances195

in Mathematics (China) 42 (2013), 631-643.196

[12] R. J. Warne, A class of bisimple inverse semigroups, Pacific J. Math. 18197

(1966), 563-577.198

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

