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Abstract

The additive monoid of non-negative integers N is isomorphic to the right
unit submonoid of the (bisimple) bicyclic semigroup B = N × N. The aim
of this note is to construct a similar pair of monoids (B† = N × N, B‡ =
N×N×N×N). The monoid B† gives rise to a bisimple inverse monoid B‡

of quadruples of non-negative integers like as Warne’s 2-dimensional bicyclic
semigroup. The links with the monoid of non-negative integers N and with
the bicyclic semigroup may turn out to be expedient also for the computation
of the corresponding Möbius functions.
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1. Introduction

A well-known and thus much cited combinatorial bisimple inverse monoid is the
bicyclic semigroup B which is a monoid of pairs of non-negative integers, B =
N× N, equipped with the multiplication defined by

(k,m) · (r, s) =

{

(k,m− r + s) if m ≥ r
(k −m+ r, s) if m < r.

As a monoid of transformations, the bicyclic semigroup B is generated by the
following transformations α, β, ι : N → N defined by

(n)α =

{

0 if n = 0
n− 1 if n > 0

(n)β = n+ 1 and (n)ι = n.

https://doi.org/10.7151/dmgaa.1440
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The bicyclic semigroup B is a monoid admitting the following presentation:

B = 〈a, b | ba = 1〉.

The elements are words of the form akbm for k,m ∈ N (with the understanding
a0 = b0 = 1). The multiplication is given by

akbmarbs = ak−m+max(m,r)bmax(m,r)−r+s.

The element 1 = (0, 0) ∈ N×N is the identity of B and the submonoid of right
units in B (the R-class of B containing the identity) is isomorphic to the monoid
of the non-negative integers N with the usual addition. It is well-know that
bisimple inverse monoids are described in terms of their right unit submonoid
(Clifford [1] see also [6, Chapter 10, Section 1]). The right unit submonoid of
a bisimple inverse monoid is right cancellative monoid satisfying the Clifford
condition. A monoid S is said to satisfy the Clifford condition if for all x, y ∈ S
there exists z ∈ S such that Sx ∩ Sy = Sz. Having a right cancellative monoid
satisfying the Clifford condition there is a well-known process of constructing a
bisimple inverse monoid from a such monoid. The pair (N, B = N×N) describe
the standard example to illustrate Clifford’s theory of bisimple inverse monoids.

In this note we consider an example of ”Clifford’s pair” (B† = N × N, B‡ =
N×N×N×N) which is close to the ”bicyclic pair” (N, B). Already the construction
of B† ensures this goal and Proposition 3.1 expresses the internal connections
between them. Although the monoid B† is described as the bicyclic semigroup
B, this monoid is not inverse as the bicyclic semigroup, but it is right cancellative
satisfying the Clifford condition, it is atomic and half factorial, it is Möbius (in
the sense of Leroux [5, 7]), locally right Garside (in the sense of Dehornoy [2]) and
ℓ-RILL monoid (in the sense of Schwab [8]), properties which are also satisfied
by the additive monoid of non-negative integers. This monoid has a special place
in the class of monoids considered in [3, Section 4]. Now, the monoid B‡ is
combinatorial, bisimple, and inverse as the bicyclic semigroup; the monoid B†

being isomorphic to the right units of B‡ (exactly as in the case of N and B).
The links with the bicyclic semigroup may be found throughout the paper. The
Möbius function of the locally finite partially ordered set (B‡,≤) (where ≤ is the
natural partial order of the inverse monoid B‡) is given in Section 4.

The computations are simple, and this note assumes only elementary knowl-
edge of semigroup theory. A monoid T is called an inverse monoid if for each
t ∈ T there exists a unique inverse (denoted by t−1) such that tt−1t = t and
t−1tt−1 = t−1. Note that an inverse monoid T is combinatorial if and only if its
group of units is trivial, and it is bisimple if and only if for each pair of elements
s, t ∈ S there exists an element x ∈ S such that ss−1 = xx−1 and x−1x = t−1t.
We refer the reader to the book of Petrich [6] for results and terminologies in
inverse semigroup theory.
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2. The right cancellative monoid B†

Define the mappings α, β, ι : N → N as follows

(n)α =

{

0 if n = 0
n+ 1 if n > 0

(n)β = n+ 1 and (n)ι = n.

Let B† be the monoid generated by these transformations. We observe that

(∀n ∈ N) : (n)βα = (n+ 1)α = n+ 2 = (n)ββ

that is,
βα = β2.

If k and m are positive integers then

(n)αk =

{

0 if n = 0
n+ k if n > 0

and (n)βm = n+m.

More generally,

(n)αkβm =

{

m if n = 0
n+ k +m if n > 0.

Let γ be an element of B†, γ = γ1γ2...γn, where γi = α or γi = β. If j (≤ n) is
the smallest index such that γj = β then γ = αj−1βn−j+1 since βα = β2 (if such
a positive integer j does not exist then γ = αn, and if j = 1 then γ = βn). Hence

B† =
{

αkβm | k,m ∈ N
}

(where α0 = β0 = ι). Note that αkβm = αrβs if and only if k = r and m = s.
This means that

B† = 〈a, b | ba = b2〉

is a monoid presentation of B†. The elements are words of the form akbm for
k,m ∈ N (with the understanding a0 = b0 = 1). The multiplication is defined as
follows

akbmarbs =

{

ak+rbs if m = 0
akbm+r+s if m > 0.

So B† is the monoid of pairs of non-negative integers,

B† = N× N,

with multiplication determined by the rule

(k,m)(r, s) =

{

(k + r, s) if m = 0
(k,m+ r + s) if m > 0.
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Proposition 1. The monoid B† is right cancellative and satisfies the Clifford

condition.

Proof. Let x = akbm, x′ = ak
′
bm

′
and y = arbs.

Case 1. m = 0 and m′ 6= 0 (similarly if m′ = 0 and m 6= 0). Then xy = x′y
implies

ak+rbs = ak
′

bm
′+r+s that is k + r = k′ and s = m′ + r + s,

which is impossible since m′ > 0.

Case 2. m = m′ = 0. Then xy = x′y implies

ak+rbs = ak
′+rbs that is k = k′,

and therefore x = x′

Case 3. m > 0 and m′ > 0. Then xy = x′y implies

akbm+r+s = ak
′

bm
′+r+s that is k = k′ and m = m′,

and therefore x = x′. This proves the first part of the assertion.

Now, it is straightforward to check that

B†akbm =

{

{aubv+m | u, v ∈ N} if k = 0,
Xk,m ∪ Yk,m if k > 0,

where

Xk,m =
{

au+kbm | u ∈ N
}

and Yk,m =
{

aubv+k+m | u ∈ N, v ∈ N
∗
}

.

Let x = akbm, y = arbs and assume that

k +m ≥ r + s.

Case 1. m = s. Then k ≥ r. The equality k = r implies x = y and therefore
B†x = B†y. Assume that k > r, and therefore k > 0. Then

B†x ∩B†y = [Xk,m ∪ Yk,m] ∩B†y.

(i) If r = 0, then

B†x ∩B†y = [{au+kbm | u ∈ N} ∪ {aubv+k+m | u ∈ N, v ∈ N
∗}]

∩{aubv+s | u, v ∈ N} = B†x.
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(ii) If r > 0 then

B†x ∩B†y = [Xk,m ∪ Yk,m] ∩ [Xr,s ∪ Yr,s] = B†x

since Xk,m ⊆ Xr,s and Yk,m ⊆ Yr,s.

Case 2. m > r + s.

(i) If k = r = 0, then

B†x ∩B†y = {aubv+m | u, v ∈ N} ∩ {aubv+s | u, v ∈ N} = B†x,

since m > s.

(ii) If k = 0 and r > 0, then

B†x ∩B†y = {aubv+m | u, v ∈ N} ∩ [Xr,s ∪ Yr,s] = B†x,

since B†x ⊆ Yr,s.

(iii) If k > 0 and r = 0, then

B†x ∩B†y = [Xk,m ∪ Yk,m] ∩ {aubv+s | u, v ∈ N} = B†x,

since Xk,m, Yk,m ⊆ B†y.

(iv) If k > 0 and r > 0, then

B†x ∩B†y = [Xk,m ∪ Yk,m] ∩ [Xr,s ∪ Yr,s] = B†x,

since Xk,m, Yk,m ⊆ Yr,s.

Case 3. m ≤ r + s and m 6= s. Then 0 ≤ r + s−m ≤ k.

(i) If r = 0 then m < s and k > 0. It follows

B†x ∩B†y = [Xk,m ∪ Yk,m] ∩ {aubv+s | u, v ∈ N} = Yk,m = B†bk+m+1,

since Xk,m ∩B†y = ∅ and Yk,m ⊆ B†y.

(ii) If r > 0 and k = 0, then m = r + s and

B†x ∩B†y = {aubv+m | u, v ∈ N} ∩ [Xr,s ∪ Yr,s] = Yr,s = B†br+s+1 = B†bk+m+1,

since B†x ∩Xr,s = ∅ and Yr,s ⊂ B†x.

(iii) If r > 0 and k > 0, then

B†x ∩B†y = [Xk,m ∪ Yk,m] ∩ [Xr,s ∪ Yr,s] = Yk,m = B†bk+m+1,

since Xk,m ∩B†y = ∅, B†x ∩Xr,s = ∅ and Yk,m ⊆ Yr,s.
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In conclusion,

B†akbm ∩B†arbs =



















B†akbm if m > r + s or [m = s and k ≥ r]

B†arbs if s > k +m or [m = s and k ≤ r]

B†bk+m+1 if 0 ≤ r + s−m ≤ k and m 6= s

B†br+s+1 if 0 ≤ k +m− s ≤ r and m 6= s.

Hence the right cancellative monoid B† satisfies the Clifford condition.

Remarks. Since the identity (0, 0) is indecomposable inB†, the right cancellative
law implies that the right divisibility is an ordering on B†. Clifford’s condition
involves that two elements with common left multiple admit a least common left
multiple (LL-condition). Thus the monoid B† is a RILL monoid (i.e., it is right
cancellative (R), having the identity indecomposable (I), and satisfying the LL-
condition). The monoid B† is atomic with two atoms a = (1, 0), b = (0, 1); and
it is half-factorial (i.e., two decomposition into atoms of a non-identity element
(m,n) have the same length, namely ℓ(m,n) = m+ n). By [8, Proposition 2.1],
B† is a locally right Garside monoid in the sense of Dehornoy [2], and from [7,
Proposition 3.1] it follows that B† is a Möbius monoid (i.e., a Möbius category
in the sense of Leroux [5] with a single object). A small category C is Möbius
if 1) it is decomposition finite (i.e., for any morphism α ∈ MorC there is only a
finite number of pairs (β, γ) ∈ MorC ×MorC such that βγ = α), 2) each identity
morphism is indecomposable (i.e., 1 = βγ ⇒ β = γ = 1), and 3) βγ = γ always
implies that β is an identity morphism (see [5]). Note that in [4] the Möbius
monoid was defined as the R-class containing the identity of a combinatorial
bisimple inverse monoid.

3. The bisimple inverse monoid B‡

In this section we apply Clifford’s [1] construction of bisimple inverse monoids
from a right cancellative monoid satisfying the Clifford condition, namely from
the monoid B†. Since 1 is indecomposable in B†, this bisimple inverse monoid
B‡ is given by

B‡ = B† ×B†

equipped with the operation ⋄ defined by

(x, y) ⋄ (z, w) = (px, qw),

where B†y ∩B†z = B†t and py = qz = t, for some p, q, t ∈ B†. More concretely,
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if y = akbm and z = arbs then the multiplication in B‡ is given by

(x, y) ⋄ (z, w) =































(x, ak−rw) if k ≥ r and m = s
(x, akbm−r−sw) if m > r + s
(bx, bk+m−r−s+1w) if 0 ≤ r + s−m ≤ k and m 6= s
(ar−kx,w) if k ≤ r and m = s
(arbs−k−mx,w) if s > k +m
(br+s−k−m+1x, bw) if 0 ≤ k +m− s ≤ r and m 6= s.

One of the realisation of this monoid is the Cartesian product N × N × N × N

with respect to the multiplication

(p, q, k,m) ⋄ (r, s, u, v) =































(p, q, k − r + u, v) if k ≥ r and m = s
(p, q, k,m− r − s+ u+ v) if m > r + s
(0, p + q + 1, 0, k +m− r − s+ u+ v + 1) if 0 ≤ r + s−m ≤ k and m 6= s
(r − k + p, q, u, v) if k ≤ r and m = s
(r, s − k −m+ p+ q, u, v) if s > k +m
(0, r + s− k −m+ p+ q + 1, 0, u + v + 1) if 0 ≤ k +m− s ≤ r and m 6= s.

Proposition 2. Let ε1 : N −→ B†, ε2 : N −→ B, ε3 : B
† −→ B‡, ε4 : B −→ B‡

four maps defined by

(n)ε1 = (n, 0), (n)ε2 = (0, n), (k,m)ε3 = (0, 0, k,m), (k,m)ε4 = (k, 0,m, 0).

Then ε1, ε2, ε3 and ε4 are all injective monoid homomorphisms (embeddings;

N being the additive monoid of non-negative integers) such that the following

diagram commutes:

N

ε2
��

ε1 // B†

ε3
��

B ε4
// B‡

Proof. Clearly, ε1 and ε2 are embeddings of the additive monoid N of non-
negative integers in B† and B, respectively.

If (k,m), (r, s) ∈ B†, then

(k,m)ε3 ⋄ (r, s)ε3 = (0, 0, k,m) ⋄ (0, 0, r, s) =

{

(0, 0, k + r, s) if m = 0
(0, 0, k,m + r + s) if m > 0,

and

(k,m)(r, s) =

{

(k + r, s) if m = 0
(k,m+ r + s) if m > 0.
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Hence ε3 : B
† −→ B‡ is an injective monoid homomorphism.

If (k,m), (r, s) ∈ B, then

(k,m)ε4 ⋄ (r, s)ε4 = (k, 0,m, 0) ⋄ (r, 0, s, 0) =

{

(k, 0,m − r + s, 0) if m ≥ r
(r −m+ k, 0, s, 0) if m < r,

and

(k,m) · (r, s) =

{

(k,m− r + s) if m ≥ r
(k −m+ r, s) if m < r.

Hence ε4 : B −→ B‡ is also an injective monoid homomorphism. Now, it is
straightforward to check that the above diagram is commutative.

Proposition 3. Let ι × ι × τ : N × N × N × N −→ N × N × N × N be the

transformation given by

(k,m, r, s)(ι × ι× τ) = (k,m, s, r),

and let ε5 : B −→ B‡ be defined by

(k,m)ε5 = (0, k, 0,m).

Then ε5 is (also) an injective monoid homomorphism (embedding) such that the

following diagram commutes:

N

ι

ε1 // B† = N× N
ε3 // B‡ = N× N× N× NOO

ι×ι×τ
��

N ε2
// B = N× N ε5

// B‡ = N×N× N× N.

Proof. We prove that ε5 is a monoid homomorphism. If (k,m), (r, s) ∈ B, then

(k,m)ε5 ⋄ (r, s)ε5 = (0, k, 0,m) ⋄ (0, r, 0, s) =







(0, k, 0, s) if m = r
(0, k, 0,m − r + s) if m > r
(0, r −m+ k, 0, s) if m < r,

and

(k,m) · (r, s) =

{

(k,m− r + s) if m ≥ r
(k −m+ r, s) if m < r.

Hence ε5 : B −→ B‡ is an injective monoid homomorphism.
Now, it is straightforward to check (again) that this new diagram is also

commutative.

Both monoids B and B‡ are bisimple inverse monoids. Both are combinato-
rial since 0 and (0,0) are indecomposable in N and B†, respectively. The bicyclic
semigroup B is E-unitary since N is cancellative, but B‡ is not E-unitary since
the right cancellative monoid B† is not left cancellative.
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4. The Möbius function

A locally finite poset is a partially ordered set (P,≤) for which every closed
interval [x, y] = {z | x ≤ z ≤ y} is finite. The incidence algebra of a locally
finite poset (P,≤) is the set A(P ) = {f : I(P ) → C} of all complex valued
maps defined on the set I(P ) of all nonempty intervals [x, y], equipped with the
pointwise addition and scalar multiplication and a convolution (multiplication)
given by

(f ∗ g)[x, y] =
∑

z∈[x,y]

f [x, z]g[z, y].

(Here, in this section, we shall write function symbols on the left.) The Kronecker
delta function δP defined by δP [x, y] = 1 if x = y and 0 otherwise, is the identity
with respect to the convolution, and the convolution inverse µP≤

of the zeta
function ζP given by ζP [x, y] = 1 for any nonempty interval [x, y], is the Möbius
function of the locally finite poset (P,≤).

Now, if M is a right cancellative Möbius monoid (that is 1 ∈ M is indecom-
posable and for any a ∈ M there are a finite number of pairs (b, c) ∈ M ×M
such that a = bc) then the convolution f ∗ g of two elements f, g ∈ A(M) = {f :
M → C} is defined by

(f ∗ g)(a) =
∑

a=bc

f(b)g(c).

The identity with respect to the convolution is the delta function δM defined
by δM (a) = 1 if a is the identity of M and 0 otherwise, and the convolution
inverse µM of the zeta function ζM given by ζM (a) = 1 for every a ∈ M , is the
Möbius function of the Möbius monoid M . In the case of a right cancellative
Möbius category C, all these considerations can be formulated without difficulty
(M being substituted by the set of all morphisms of C).

The notations used in the following µP≤
, µM and µC will indicate the order

or algebraic structures to which the Möbius function is related.

It is straightforward to see that the additive monoid of non-negative integers
N and the monoid B† are right cancellative Möbius monoids. In the case of
the additive monoid N, the incidence algebra A(N) is the algebra of arithmetic
functions with Cauchy convolution and the Möbius function µN is given by

µN(m) =







1 if m = 0
−1 if m = 1
0 if m > 1.

In the case of the right cancellative Möbius monoid B† the algebra A(B†) is an
algebra of arithmetic functions of two variables. By [10, Proposition 4.2] the
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Möbius function µB† is given by

µB†(m,n) =







1 if [m = 0, n = 0] or [m = 0, n = 2];
−1 if [m = 1, n = 0] or [m = 0, n = 1]
0 otherwise.

A Möbius function, as an arithmetic function of two variables, more related to
µN via the Möbius monoid B† can be obtained by a breaking process described
in [9]. It is straightforward to see that B†

b = {akbm ∈ B†| k = 0} is a (Möbius)

submonoid of B† such that the binary operation on B† induces a right action of B†
b

on B†−B†
b . Thus a two objects (denoted 1 and 2) Möbius category C(B†/B†

b ) is
formed for which the set of morphismsB† is broken up into two parts, one of which
Hom

C(B†/B†
b
)
(1, 1) = B†

b and the second one is Hom
C(B†/B†

b
)
(1, 2) = B† − B†

b

(Hom
C(B†/B†

b
)
(2, 2) is a singleton and Hom

C(B†/B†
b
)
(2, 1) = ∅). The composition

of morphisms in C(B†/B†
b ) is completely determined by the binary operation on

B† (via the induced right action of B†
b on B† −B†

b).

2@@

B†−B†
b

��
�

��
�

id //___ 2

1
B†

b

// 1

Obviously, for any pair of non-negative integers (k,m), we have (see also [9,
Corollary 4.1]):

µ
C(B†/B†

b
)
(akbm) =

{

µN(m) if k = 0
µN(m+ 1) if k > 0.

The same equality holds, namely

µ
C(B†/B†

a)
(akbm) =

{

µN(k) if m = 0
µN(k + 1) if m > 0

for any pair of non-negative integers (k,m), if the two objects broken Möbius

category C(B†/B†
a) is the category in which the set of morphisms B† is broken

up into two parts, one of which Hom
C(B†/B†

a)
(2, 2) = B†

a = {akbm ∈ B†| m = 0}

and the second one is Hom
C(B†/B†

a)
(1, 2) = B† − B†

a (Hom
C(B†/B†

a)
(1, 1) being a

singleton and Hom
C(B†/B†

a)
(2, 1) = ∅).

2@@

B†−B†
a

�
�
�

�
�
�

B†
a // 2

1
id //___ 1
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Another is when we use the submonoid

B†
ev. =

{

akbm ∈ B†| k and m are both even
}

in the breaking process.

C(B†/B†
ev.) : 2@@

B†−B†
ev.

�
�
�

�
�
�

id //___ 2

1
B†

ev.

// 1

Proposition 4. The Möbius function µ
C(B†/B†

ev.)
of the broken Möbius category

C(B†/B†
ev.) is given by

µ
C(B†/B†

ev.)
(akbm) =















µB†

(

k
2 ,

m
2

)

if akbm ∈ B†
ev.;

−1 if m = 1 or [m = 0 and k = 1];
1 if m = 3
0 otherwise.

Proof. Since B† and B†
ev. are isomorphic it follows that µ

C(B†/B†
ev.)

(akbm) =

µB†

(

k
2 ,

m
2

)

if akbm ∈ B†
ev..

Now, let akbm ∈ B† −B†
ev.. Then,

0 =

(

δ ∗ µ
C
(

B†/B†
ev.

)

)

(

akbm
)

=
∑

akbm=apbqa2rb2s

δ
(

apbq
)

µ
C(B†/B†

ev.)

(

a2rb2s
)

+ δ(id2)µ
C
(

B†/B†
ev.)

(akbm
)

,

that is
µ
C(B†/B†

ev.)

(

akbm
)

= −
∑

akbm=apbqa2rb2s

µB†(r, s).

Case 1. m = 0. Then k = 2ℓ+ 1 and

µ
C(B†/B†

ev.)
(ak) = −

ℓ
∑

r=0

µB†(r, 0) =

{

−1 if ℓ = 0
0 if ℓ > 0.

Case 2. m = 1. Then

µ
C(B†/B†

ev.)
(akb) = −µB†(0, 0) = −1

for any non-negative integer k.
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Case 3. m = 2n (n > 0). Then

µ
C(B†/B†

ev.)

(

akbm
)

= −µB†(0, 0) −
n−1
∑

r=1

µB†(r, 0) −
n
∑

s=1

µB†(0, s) −
∑

r,s≥1,r+s<n

µB†(r, s) = 0,

for any non-negative odd integer k.

Case 4. m = 2n + 1 (n > 0). Then

µ
C(B†/B†

ev.)

(

akbm
)

= −µB†(0, 0) −
n
∑

r=1

µB†(r, 0) −
n
∑

s=1

µB†(0, s) −
∑

r,s≥1,r+s≤n

µB†(r, s)

=

{

−1 + 1 + 1 = 1 if n = 1
−1 + 1− (−1 + 1)− 0 = 0 if n > 1

for any non-negative integer k.

The proof of Proposition 4 is now complete.

Now, let (S, T ) be a Clifford pair (i.e., S is a right cancellative monoid which
satisfies the Clifford condition and T is a bisimple inverse monoid such that
the subsemigroup of right units is isomorphic to the monoid S). If the right
cancellative monoid S is a Möbius monoid (as above the monoids N and B†)
then T is combinatorial (since 1 ∈ S is indecomposable). More like this, the pair
(T,≤) is a locally finite poset, where ≤ is the well-known natural partial order
for inverse semigroups (t ≤ u if and only if tt−1u = t).

It is straightforward to check that for the bicyclic semigroup B the natural
partial order ≤ is given by

(m,n) ≤ (m′, n′) if and only if m−m′ = n− n′ ∈ N.

Proposition 5. The Möbius function µB≤
of the bicyclic semigroup with the

natural partial order relation ≤ is given by

µB≤
[(m,n), (m′, n′)] =







1 if m = m′

−1 if m = m′ + 1
0 if m−m′ > 1.

Proof. Taking into account [7, Proposition 2.6 (2)] we have µB≤
[(m,n), (m′, n′)]

= µN(m−m′), and the statement is proved.
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The natural partial order in the case of the bisimple inverse monoid B‡ is
somewhat more complicated. We have

(m,n, p, q) ≤ (m′, n′, p′, q′) if and only if (m,n,m, n)⋄(m′, n′, p′, q′) = (m,n, p, q)

that is

(m,n, p, q) ≤ (m′, n′, p′, q′) if and only if






n = n′ q = q′ and m−m′ = p− p′ ∈ N,
or
p = m, q = n−m′ − n′ + p′ + q′ and n > m′ + n′.

However the Möbius function µ
B‡

≤

of the bisimple inverse monoid B‡ with the

natural partial order relation ≤ is more simple, and clearly expresses a close
relationship with the Möbius function of the bicyclic semigroup but also with the
Möbius function of the Möbius monoid B†

Proposition 6. The Möbius function µ
B‡

≤

of the bisimple inverse monoid B‡

with the natural partial order relation ≤ is given by

µ
B‡

≤

[(m,n, p, q), (m′, n′, p′, q′)]

=

{

µB≤
[(m, p), (m′, p′)] if n = n′, q = q′ and m−m′ = p− p′ ∈ N

µB†(m,n −m′ − n′) if p = m, q = n−m′ − n′ + p′ + q′ and n > m′ + n′.

Proof. By [7, Proposition 2.6 (2)] it follows that µ
B‡

≤

[(m,n, p, q), (m′, n′, p′, q′)] =

µB†(x, y), where (x, y) ∈ B† such that (x, y)(m′, n′) = (m,n). In the case n =
n′, q = q′, m − m′ = p − p′ ∈ N, we have y = 0 and x = m − m′. Thus
µ
B‡

≤

[(m,n, p, q), (m′, n′, p′, q′)] = µB†(m − m′, 0) = µB≤
[(m, p), (m′, p′)]. In the

case p = m, q = n − m′ − n′ + p′ + q′, n > m′ + n′, we have x = m and
y = n−m′ − n′. So, the assertion of Proposition 6 is proved completely.

5. Final remarks

1) The computation of all examples of Möbius functions µC(M/M′) of broken
Möbius categories C(M/M′) is considered in [9], but also µ

C(B†/B†
a)

and µ
C(B†/B†

b
)

from the previous section find the solution in [9, Corollary 4.1]. They are all
Möbius functions for which for any x ∈ M−M

′, µC(M/M′)(x) = −1 if x is an
atom over M

′ (i.e., x = yz with z ∈ M
′ implies z = 1M′) and µC(M/M′)(x) van-

ishes otherwise. By Corollary 4.1 of [9] this happens if for any x ∈ M−M
′ the

set of all right divisors z ∈ M
′ of x contain a greatest element. It was necessary,
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besides the examples that satisfy the stated condition, to present an example for
which the result of Corollary 4.1 of [9] does not take place. Proposition 4.1 of
the previous section responds to this requirement.

2) One of the purpose of Warne’s paper [12] is to study a certain generaliza-
tion of the bicyclic semigroup. Warne’s 2-dimensional bicyclic semigroup (which
is isomorphic to the quadrucyclic semigroup considered in [11]) is the Bruck prod-
uct B ◦B, namely it is the Cartesian product B ×B = N

4 with the operation ⊲
defined by

(p, q, k,m) ⊲ (r, s, u, v) =























(p, q − r + s, k,m) if q > r
(p, s, k −m+ u, v) if q = r and m < u
(p, s, k, v) if q = r and m = u
(p, s, k,m− u+ v) if q = r and m > u
(p− q + r, s, u, v) if q < r.

Now, for any semigroup S it is defined a partial order ≤ on the set of idempotents
E(S) (if E(S) is not empty) by the rule that e ≤ f if and only if ef = e = fe.
In the case of an inverse semigroup S this is just the restriction to E(S) of the
natural partial order on S. It can be easily seen that if S = B ◦ B then the set
of idempotents

E(B ◦B) =
{

(p, q, k,m) ∈ N
4 | q = p and m = k

}

= {(p, p, k, k)}p,k∈N

is lexicographically ordered, that is E(B ◦B) is order isomorphic to N×N under
the order defined by:

(p, k) ≤ (r, u) if and only if p > r or p = r and k ≥ u.

It is well known (see [12, Corollary 2.1]) that an inverse monoid S is combinatorial
bisimple with E(S) lexicographically ordered if and only if S ∼= B ◦B.

Now, B‡ is a combinatorial bisimple inverse monoid of quadruples of non-
negative integers which is not isomorphic to the 2-dimensional bicyclic semigroup
B ◦B. The monoid operation ⋄ on B‡ restricted to the set of idempotents

E(B‡) = {(p, q, k,m) ∈ N
4 | k = p and m = q} = {(p, q, p, q)}p,q∈N

is given by

(p, q, p, q)⋄(r, s, r, s) =































(p, q, p, q) if p ≥ r and q = s
(p, q, p, q) if q > r + s
(0, p + q + 1, 0, p + q + 1) if 0 ≤ r + s− q ≤ p, q 6= s
(r, s, r, s) if p ≤ r and q = s
(r, s, r, s) if s > p+ q
(0, r + s+ 1, 0, r + s+ 1) if 0 ≤ p+ q − s ≤ r, q 6= s,
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As can be read in the above table, E(B‡) is order isomorphic to N×N under
a (reverse) lexicographic-type order relation given by

(p, q) ≤ (r, s) if and only if q > s+ r or q = s and p ≥ r.

If we replace B† by B†
1 =< a, b | ba = b > we get a combinatorial bisimple inverse

monoid B‡
1 (in the same way as B‡) which is just Warne’s 2-dimensional bicyclic

semigroup. Note that B†
1 is not a Möbius monoid though B†

n =< a, b | ba = bn >

is a Möbius monoid for all n > 1. The monoid B†(= B†
2) is the only half-factorial

monoid in the class {B†
n =< a, b | ba = bn >}n>1. An explicit description of the

system of sets of lengths of the non-commutative atomic monoids B†
n, n > 1, is

given in [3, Section 4].
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