DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score: 0.4

SJR: 0.203

SNIP: 0.562

MCQ: 0.12

Index Copernicus: 121.02

Discussiones Mathematicae - General Algebra and Applications

Article in press


Authors:

I. Senturk

Ibrahim Senturk

Ege University, Faculty of Sciences
Department of Mathematics, 35100 İzmir Turkey

email: ibrahim.senturk@ege.edu.tr

T. Oner

Tahsin Oner

Department of Mathematics
Faculty of Science, Ege University
Izmir, Turkey

email: tahsin.oner@ege.edu.tr

A. Borumand Saeid

Arsham Borumand Saeid

Department of Pure Mathematics
Faculty of Mathematics and Computer
Shahid Bahonar University of Kerman
Kerman, Iran

email: arsham@uk.ac.ir

Title:

Set-theoretical solutions for the Yang-Baxter equation in triangle algebras

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications

Received: 2021-11-07 , Revised: 2022-09-07 , Accepted: 2022-09-08 , Available online: 2023-06-07 , https://doi.org/10.7151/dmgaa.1431

Abstract:

In this study, we give some fundamental set-theoretical solutions of Yang-Baxter equation in triangle algebras and state triangle algebras. We prove that the necessary and sufficient condition for certain mappings to be set-theoretical solutions of Yang-Baxter equation on these structures is that these structures must be also MTL-(state) triangle algebras, BL-(state) triangle algebras or RL-(state) triangle algebras. In accordance with these, we recursively introduce new operators $\widetilde{N}$ and $\mathfrak{M}$. Then, we define the notion of formula on triangle algebra as a classical logic structure. Moreover, we state the relationship of transferring of set-theoretical solutions of Yang-Baxter equation among (MTL,BL, RL)-(state) triangle algebras and state (MTL,BL, RL)-(state) triangle algebras. Then, we give a scheme to explain clearly these relations.

Keywords:

triangle algebra, Yang-Baxter equation, set-theoretical solution, residuated lattice, state operator, (MTL,BL, RL)-triangle algebras

References:

  1. C.N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19 (1967) 1312–1315.
    https://doi.org/10.1103/PhysRevLett.19.1312
  2. R.J. Baxter, Partition function for the eight-vertex lattice model, Ann. Phys. 70 (1972) 193–228.
    https://doi.org/10.1016/0003-4916(72)90335-1
  3. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London, UK, 1982).
  4. R. Berceanu Barbu, F.F. Nichita and C. Popescu, Algebra structures arising from Yang-Baxter systems, Commun. Alg. 41(12) (2013) 4442–4452.
    https://doi.org/10.1080/00927872.2012.703736
  5. T. Gateva-Ivanova, Set-theoretic solutions of the Yang-Baxter equation, braces and symmetric groups, Adv. Math. 338 (2018) 649–701.
    https://doi.org/10.1016/j.aim.2018.09.005
  6. A.A. Belavin and V.G. Drinfeld, Solutions of the classical Yang-Baxter equation for simple Lie algebras, Funct. Anal. Its Appl. 16(3) (1982) 159–180.
    https://doi.org/10.1007/BF01081585
  7. I. Senturk and ŞN. Bozdağ, Geometrical approach on set-theoretical solutions of Yang-Baxter equation in Lie algebras, Malaya J. Mat. 10(3) (2022) 237–256.
    https://doi.org/10.26637/mjm1003/006
  8. S.H. Wang and T.S. Ma, Singular solutions to the quantum Yang-Baxter equations, Comm. Alg. 37(1) (2009) 296–316.
    https://doi.org/10.1080/00927870802243911
  9. F.F. Nichita and D. Parashar, Spectral-parameter dependent Yang-Baxter operators and Yang-Baxter systems from algebra structures, Comm. Alg. 34 (2006) 2713–2726.
    https://doi.org/10.1080/00927870600651661
  10. T. Oner, I. Senturk and G. Oner, An independent set of axioms of MV-algebras and solutions of the set-theoretical Yang-Baxter equation, Axioms 6(3) (2017) 1–17.
    https://doi.org/10.3390/axioms6030017
  11. G. Massuyeau and F.F. Nichita, Yang-Baxter operators arising from algebra structures and the Alexander polynomial of knots, Comm. Alg. 33(7) (2005) 2375–2385.
    https://doi.org/10.1081/AGB-200063495
  12. B. Van Gasse, C. Cornelis, G. Deschrijver and E.E. Kerre, Triangle algebras: A formal logic approach to interval-valued residuated lattices, Fuzzy Sets and Syst. 159(9) (2008) 1042–1060.
    https://doi.org/10.1016/j.fss.2007.09.003
  13. Piciu D. Algebra of Fuzzy Logic, Editura Universiteria, University Craivo, 2007.
  14. B. Van Gasse, G. Deschrijver, C. Cornelis and E.E. Kerre, Filters of residuated lattices and triangle algebras, Inform. Sci. 180(16) (2010) 3006–3020.
    https://doi.org/10.1016/j.ins.2010.04.010
  15. S. Zahiri, A. Borumand Saeid and E. Eslami, On maximal filters in triangle algebras, J. Int. $\&$ Fuzzy Syst. 30(2) (2016) 1181–1193.
    https://doi.org/10.3233/IFS-151842
  16. S. Zahiri and A. Borumand Saeid, The role of states in triangle algebras, Iranian J. Fuzzy Syst. 17(3) (2020) 163–176.
    https://doi.org/10.22111/IJFS.2020.5356
  17. D. Mundici, Averaging the truth-value in \L ukasiewicz logic, Studia Logica 55(1) (1995) 113–127.
    https://doi.org/10.1007/BF01053035
  18. T. Flaminio and F. Montagna, An Algebraic Approach to States on MV-algebras (EUSFLAT Conf. (2), 2007).
  19. E. Turunen, J. Mertanen and G. Deschrijver, States on semi-divisible residuated lattices, Soft Computing 12 (2008) 353–357.
    https://doi.org/10.1007/s00500-007-0182-y
  20. B. Van Gasse, C. Cornelis, G. Deschrijver and E.E. Kerre, A characterization of interval-valued residuated lattices, Int. J. Approximate Reason. 49(2) (2008) 478–487.
    https://doi.org/10.1016/j.ijar.2008.04.006
  21. F.F. Nichita, Yang-Baxter equations, Comp. Meth. Appl. Axioms 4(4) (2015) 423–435.
    https://doi.org/10.3390/axioms4040423

Close