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Abstract

In this study, we give some fundamental set-theoretical solutions of Yang-
Baxter equation in triangle algebras and state triangle algebras. We prove
that the necessary and sufficient condition for certain mappings to be set-
theoretical solutions of Yang-Baxter equation on these structures is that
these structures must be also MTL-(state) triangle algebras, BL-(state) tri-
angle algebras or RL-(state) triangle algebras. In accordance with these,

we recursively introduce new operators Ñ and M. Then, we define the no-
tion of formula on triangle algebra as a classical logic structure. Moreover,
we state the relationship of transferring of set-theoretical solutions of Yang-
Baxter equation among (MTL,BL, RL)-(state) triangle algebras and state
(MTL,BL, RL)-(state) triangle algebras. Then, we give a scheme to explain
clearly these relations.
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1. Introduction

Yang-Baxter equation was firstly introduced by the Nobel laureate Yang in theo-
retical physics [1] and by Baxter in statistical mechanics [2, 3]. The Yang-Baxter
equation has been attracted more researchers’ attention among in a wide range of
disciplines such as knot theory, link invariants, quantum computing, braided cat-
egories, quantum groups, the analysis of integrable systems, quantum mechanics,
etc. in recent years. Moreover, one of the uses of Yang-Baxter equations is pure
mathematics; especially, finding set-theoretical solutions in algebraic structures.
For example, Berceanu et al. examined algebraic structures arising from Yang-
Baxter Systems [4]; Oner, Senturk et al. have constructed new set theoretical
solutions for Yang-Baxter equation in MV-algebras [10], Belavin and Drinfeld
have worked on solutions of the classical Yang-Baxter equation for simple Lie
algebras [6], Senturk and Bozdağ handle Geometrical approach on set theoreti-
cal solutions of Yang-Baxter equation in Lie algebras [7], Massuyeau and Nichita
consider the problem of constructing knot invariants from Yang-Baxter operators
associated to (unitary associative) algebra structures [11], Gateva-Ivanova exam-
ined set theoretical solutions of the Yang-Baxter equation, braces and symmetric
groups [5], Wang and Ma provide a new framework of obtaining singular solu-
tions of the quantum Yang-Baxter equation by constructing weak quasi triangular
structures [8] and Nichita and Parashar have studied Spectral-parameter depen-
dent Yang-Baxter operators and Yang-Baxter systems from algebraic structures
[9], and etc.

The notion of triangle algebras was firstly given by Van Gasse et al. as a
variety of residuated lattices fitted with unary operators ν and µ together with
a third angular point u that is different from 0 and 1. And also, It is shown
that these algebras are served as an equational representation of interval-valued
residuated lattices. These authors introduced triangle logic and proved that this
logic is sound and complete corresponding with the variety of triangle algebras
[12]. Moreover, triangle algebras are dissimilar to other algebraic structures.
Therefore, triangle algebras have an important position in studying fuzzy logics
and the related algebraic structures [16].

The notion of states on MV-algebras was introduced by Mundici [17]. It
benefited from averaging processes for formulas in  Lukasiewicz logics. It was not
only a generalization of the usual probability measures on Boolean algebras but
also a semantical interpreter of the probability of fuzzy events. An alternative
approach to states on MV-algebras was given by Flamino and Montagna [18].
They put in a new unary operation σ to the language of MV-algebras, that
preserves the usual properties of states. The notion of states has been used to
other logical algebras. For example, Zahiri and Saeid introduced the concept of
state triangle algebras [16].
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In this work, this paper is organized as follows. In Section 2, we recall some
notions, basic definitions, lemmas and their relevant results for Sheffer stroke
basic algebras. In Section 3, we handle some fundamental set-theoretical solu-
tions of Yang-Baxter equation on triangle algebras. We show that the necessary
and sufficient condition for certain mappings to be set-theoretical solutions of
Yang-Baxter equation on these structures is that these structures must be also
MTL-triangle algebras, BL-algebras or RL-algebras. We constitute the set of
νµ-equal elements. Then, we define the notion of formulas on triangle algebras.
In parallel with previous step, we build the set of νµ-equal formulas. Then, we
introduce recursively quasi-negation operator Ñ on triangle algebras. We find
equal formulas to each other by applying Ñ operator. In the following step,
we present a new operator M to reproduce a formula by recursively rewriting
elements and operations in reverse order. Moreover, we give some fundamen-
tal relations between these operators. Lastly, we show that if the the mapping
S(x, y) is a set-theoretical solution of the Yang-Baxter equation in triangle alge-
bras and the equality S(x, y) = S(N(y), N(x)) is verified for all x, y ∈ A, then
the mappings Ñ(S(Ñ(y, x))) and M(S(y, x)) are also set-theoretical solutions
of the Yang-Baxter equation in triangle algebras. In section 4, we give some
fundamental set-theoretical solutions of Yang-Baxter Equation in state triangle
algebras. Then, we state the relationship of transferring of set-theoretical solu-
tions of Yang-Baxter equation among (MTL,BL, RL)-triangle algebras and state
(MTL,BL, RL)-triangle algebras. We give a scheme to explain clearly these rela-
tions. Then, we give some fundamental relations between the operators M and
Ñ in triangle algebras. Moreover, we obtain that the mapping S(x, y) is a the
set-theoretical solution of the Yang-Baxter equation in state triangle algebras. If
the equality S(x, y) = S(N(σ(y)), N(σ(x))) for all x, y ∈ A, then the mappings
Ñ(S(Ñ (σ(y), σ(x)))) and M(S(σ(y), σ(x))) are also set-theoretical solutions of
the Yang-Baxter equation in state triangle algebras. Also, we give place to some
attractive examples.

2. Preliminaries

In this section, we deal with some fundamental definitions, lemmas and proposi-
tions with reference to residuated lattices, triangle algebras, state triangle alge-
bras and Yang-Baxter equation that will be used in the following sections.

Definition 1 [12]. A bounded commutative residuated lattice is an algebra L =
(L,∨,∧, ∗,→, 0, 1) with four binary operations and two constants 0, 1 such that:

• (L,∨,∧, 0, 1) is a bounded lattice,

• operation ∗ is associative and commutative, with 1 is neutral element, and
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• a ∗ b ≤ c if and only if a ≤ b→ c, for all a, b, c ∈ L.

The binary ordering relation ≤ and the unary negation operator ¬ are defined
in a residuated lattice L = (L,∨,∧, ∗,→, 0, 1) as follows.

Definition 2 [12]. Let L = (L,∨,∧, ∗,→, 0, 1) be a residuated lattice and let
a, b ∈ L. The binary relation ≤ defined on L as below

a ≤ b if and only if a ∧ b = a

is an order on L.

Lemma 3 [12]. Let L = (L,∨,∧, ∗,→, 0, 1) be a residuated lattice and let a, b ∈ L.

Then the following conditions are equivalent to each other:

(i) a ∧ b = a,

(ii) a ∨ b = b,

(iii) a→ b = 1.

Definition 4 [12]. Let L = (L,∨,∧, ∗,→, 0, 1) be a residuated lattice and let
a, b ∈ L. The unary operation ¬ defined on L as below

¬a = a→ 0

is called negation a on L.

Lemma 5 [19]. Let L = (L,∨,∧, ∗,→, 0, 1) be a residuated lattice. Then the

following equality verifies for each a ∈ L

a→ 0 = ((a→ 0) → 0) → 0.

Definition 6 [12]. Let L = (L,∨,∧, ∗,→, 0, 1) be a residuated lattice and let
a ∈ L. The element a is called nilpotent element of L if an = 0 for some n ∈ N.

Lemma 7 [13, 14]. Let L = (L,∨,∧, ∗,→, 0, 1) be a residuated lattice. Then the

following properties are verified for each a, b, c ∈ L :

(i) a ∨ b ≤ (a→ b) → b,

(ii) a→ b ≤ (a ∗ c) → (b ∗ c),

(iii) (a→ b) ∗ (b→ c) ≤ a→ c,

(iv) If a ≤ b, then a ∗ c ≤ b ∗ c, c→ a ≤ c→ b and b→ c ≤ a→ c,

(v) a→ (b→ c) = b→ (a→ c) = (a ∗ b) → c,

(vi) a→ b ≤ (b→ c) → (a→ c).

Definition 8 [12]. Let A = (A,∨,∧) be a lattice. The triangularization of A,
which is shown by T(A), is the structure T(A) = (Int(A),∨,∧) defined by
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• Int(A) = {[a1, a2]|(a1, a2) ∈ A×A and a1 ≤ a2},

• [a1, a2] ∧ [b1, b2] = [a1 ∧ b1, a2 ∧ b2],

• [a1, a2] ∨ [b1, b2] = [a1 ∨ b1, a2 ∨ b2].

The set DA = {[a, a]|a ∈ A} is called the diagonal of T(A).

Definition 9 [12]. A triangle algebra is a structure A = (A,∨,∧, ∗,→, ν, µ, 0, u, 1)
in which (A,∨,∧, ∗,→, 0, 1) is a residuated lattice, ν and µ are unary operations
on A, u a constant, and satisfying the following conditions

(T1)νa ≤ a, (T ′

1
)a ≤ µa,

(T2)νa ≤ ννa, (T ′

2
)µµa ≤ µa,

(T3)ν(a ∧ b) = νa ∧ νb, (T ′

3
)µ(a ∧ b) = µa ∧ µb,

(T4)ν(a ∨ b) = νa ∨ νb, (T ′

4
)µ(a ∨ b) = µa ∨ µb,

(T5)νu = 0, (T ′

5
)µu = 1,

(T6)νµa = µa, (T ′

6
)µνa = νa,

(T7)ν(a→ b) ≤ νa→ νb,

(T8)(νa↔ νb) ∗ (µa↔ µb) ≤ (a↔ b),
(T9)νa→ νb ≤ ν(νa→ νb).

Proposition 10 [12]. Suppose (A,∨,∧,→, 0, 1) is a residuated lattice such that

¬ is involutive. If there exists an element u in A such that ¬u = u, if ν is a unary

operator on A that satisfies (T1) − (T6), (T8), (T9) and if (νa ↔ νb) ∗ (ν¬a ↔
ν¬b) ≤ a ↔ b, then (A,∨,∧, ∗,→, ν, µ, 0, u, 1) is a triangle algebra if we define

µa = ¬ν¬a.

Definition 11 [15]. A triangle algebra A is called an MTL-triangle algebra if
(a→ b)∨ (b→ a) = 1. An MTL-triangle algebra A is called BL-triangle algebra
if a ∧ b = a ∗ (a→ b) for all a, b ∈ A.

Definition 12 [16]. A triangle algebra A is called an RL-triangle algebra if
a ∧ b = a ∗ (a→ b) for all a, b ∈ A.

Proposition 13 [20]. In a triangle algebra (A,∨,∧, ∗,→, ν, µ, 0, u, 1), the impli-

cation → and the product ∗ are completely determined by their action on E(A)
and the value of u ∗ u, where E(A) = {a ∈ A|νa = a}. More specifically:

• ν(a→ b) = (νa→ νb) ∧ (µa→ µb).

• µ(a→ b) = (µa→ (µ(u ∗ u) → µb)) ∧ (νa→ µb).

• ν(a ∗ b) = νa ∗ νb.

• µ(a ∗ b) = (νa ∗ µb) ∨ (µa ∗ νb) ∨ (µa ∗ µb ∗ µ(u ∗ u)).

Definition 14 [16]. Let A be triangle algebra. A mapping σ : A→ A such that,
for all x, y ∈ A, we have
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(ST1) σ(0) = 0,

(ST2) σ(x→ y) = σ(x) → σ(x ∨ y),

(ST3) σ(x ∗ y) = σ(x) ∗ σ(x→ (x ∗ y)),

(ST4) σ(σ(x) ∗ σ(y)) = σ(x) ∗ σ(y),

(ST5) σ(σ(x) → σ(y)) = σ(x) → σ(y),

(ST6) σ(σ(x) ∨ σ(y)) = σ(x) ∨ σ(y),

(ST7) σ(σ(x) ∧ σ(y)) = σ(x) ∧ σ(y),

(ST8) σ(νx) = ν(σ(x)),

(ST9) σ(µx) = µ(σ(x))

is said to be a state operator on A and the pair (A, σ) is said to be a state triangle
algebra.

Lemma 15 [16]. Let (A, σ) be state triangle algebra. Then, we have following

statements for all x, y ∈ A:

(i) σ(1) = 1,

(ii) σ(¬x) = ¬σ(x),

(iii) If x ≤ y, then σ(x) ≤ σ(y),

(iv) σ(σ(x)) = σ(x),

(v) σ(A) = {x ∈ A|x = σ(x)},

(vi) σ(x→ y) = σ(x) → σ(y) if and only if σ(y → x) = σ(y) → σ(x),

(vii) if A is linear and faithful, then σ(x) = x for all x ∈ A.

Let F be a field where tensor products are defined and W be a F -space. The
mapping over W ⊗W is denoted by δ. The twist map on this structure is given
by δ(w1⊗w2) = w2⊗w1 and the identity map on F is defined by I : W →W ; for
S : W ⊗W →W ⊗W a F -linear map, let S12 = S⊗I, S13 = (I⊗δ)(S⊗I)(δ⊗I)
and S23 = I ⊗ S.

Definition 16 [21]. A Yang-Baxter operator is an invertible F -linear map S :
W ⊗ W → W ⊗ W that verifies the braid condition (called the Yang-Baxter
equation)

S12 ◦ S23 ◦ S12 = S23 ◦ S12 ◦ S23.(1)

If S verifies Equation (1), then both S ◦ µ and µ ◦ S verify the quantum Yang-
Baxter equation (QYBE)

S12 ◦ S13 ◦ S23 = S23 ◦ S13 ◦ S12.(2)

Lemma 17 [21]. Equations (1) and (2) are equivalent to each other.
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To construct set-theoretical solutions of Yang-Baxter equation in Lie alge-
bras, we need the following definition.

Definition 18 [21]. Let A be a set and S : A×A→ A×A, S(a1, a2) = (a′
1
, a′

2
)

be a map. The map S is set-theoretical solution of Yang-Baxter equation if it
verifies the following equality

S12 ◦ S23 ◦ S12 = S23 ◦ S12 ◦ S23,(3)

which is also equivalent to

S12 ◦ S13 ◦ S23 = S23 ◦ S13 ◦ S12,(4)

where

S12 : A3 → A3, S12(a1, a2, a3) = (a′1, a
′

2, a3),

S23 : A3 → A3, S23(a1, a2, a3) = (a1, a
′

2, a
′

3),

S13 : A3 → A3, S13(a1, a2, a3) = (a′1, a2, a
′

3).

3. Set-theoretical solutions for Yang-Baxter equation in

triangle algebras

In this part of this paper, we handle some fundamental set-theoretical solutions of
Yang-Baxter equation on triangle algebras. We show that the necessary and suffi-
cient condition for certain mappings to be set-theoretical solutions of Yang-Baxter
equation on these structures is that these structure must be also MTL-triangle
algebras, BL-triangle algebras or RL-triangle algebras. We constitute the set of
νµ-equal elements. Then, we define the notion of formulas on triangle algebras.
In parallel with previous step, we build the set of νµ-equal formulas. Then, we
introduce recursively quasi-negation operator Ñ on triangle algebras. We find
equal formulas to each other by applying Ñ operator. In the following step,
we present a new operator M to reproduce a formula by recursively rewriting
elements and operations in reverse order. Moreover, we give some fundamen-
tal relations between these operators. Lastly, we show that if the the mapping
S(x, y) is a set-theoretical solution of the Yang-Baxter equation in triangle alge-
bras and the equality S(x, y) = S(N(y), N(x)) is verified for all x, y ∈ A, then
the mappings Ñ(S(Ñ (y, x))) and M(S(y, x)) are also set-theoretical solutions of
the Yang-Baxter equation in triangle algebras.

Lemma 19. Let A be a residuated lattice. Then the following mappings are set-

theoretical solutions of Yang-Baxter equation where u is constant (uncertainty,

u 6= 0, u 6= 1):
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(i) if S is an identity map,

(ii) if S(a, b) = (0, 0),

(iii) if S(a, b) = (1, 1),

(iv) if S(a, b) = (u, u),

(v) if S(a, b) = (a, u),

(vi) if S(a, b) = (u, b),

(vii) if S(a, b) = (a, 0),

(viii) if S(a, b) = (a, 1),

(ix) if S(a, b) = (0, b),

(x) if S(a, b) = (1, b).

Proof. The proof of parts (i)–(iv) are straightforward.

(v) Let S12 and S23 be defined as follows

S12(a1, a2, a3) = (a1, u, a3),

S23(a1, a2, a3) = (a1, a2, u).

We satisfy the equation S12 ◦S23 ◦S12 = S23 ◦S12 ◦S23, for all (a1, a2, a3) ∈ A3.

(S12 ◦ S23 ◦ S12)(a1, a2, a3) = S12(S23(S12(a1, a2, a3)))

= S12(S23(a1, u, a3))

= S12(a1, u, u)

= (a1, u, u)

= S23(a1, u, u)

= S23(S12(a1, a2, u))

= S23(S12(S23(a1, a2, a3)))

= (S23 ◦ S12 ◦ S23)(a1, a2, a3).

Therefore, S(a, b) = (a, u) is a set-theoretical solution of Yang-Baxter equation
in triangle algebras. The proof of parts (vi)–(x) is similar to proof of (v).

Let A be a triangle algebra. The mapping N and Nu are defined on A as

N(x) := x→ 0 and Nu(x) := x→ u

for each x ∈ A.

Lemma 20. Let A be a residuated lattice. The mapping N and Nu are antitone

on A.
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Proof. Let x, y ∈ A and x ≤ y. By the help of Lemma 7 (iv), we obtain
y → 0 ≤ x→ 0. So, we have N(y) ≤ N(x). Then, N is an antitone mapping.

Similarly, we get that Nu is also an antitone mapping.

Lemma 21. Let A be a residuated lattice. The mappings S1(x, y) = (N(y), N(x))
and S2(x, y) = (Nu(y), Nu(x)) verify the braid condition on this structure. Then,

they are set-theoretical solutions of the Yang-Baxter equation on A.

Lemma 22. Let A be a residuated lattice and let a = N(x) and b = N(N(y)).
Then the following identity holds

N(a) → N(b) = b→ a.

Proof. Assume that a, b ∈ A such that a = N(x) and b = N(N(y)). By using
Lemma 7, we obtain

N(a) → N(b) = N(N(x)) → N(N(N(y)))

= ((x→ 0) → 0) → (((y → 0) → 0) → 0)

= ((y → 0) → 0) → (((x→ 0) → 0) → 0)

= b→ a.

Lemma 23. Let A be a residuated lattice. The mappings

(i) S(x, y) = (1, x ∧ y)

(ii) S(x, y) = (x ∧ y, 1)

(iii) S(x, y) = (x ∨ y, 0)

(iv) S(x, y) = (0, x ∨ y),

(v) S(x, y) = (x ∨ y, x ∧ y)

(v) S(x, y) = (x ∧ y, x ∨ y)

verify the braid condition on this structure. Therefore, they are set-theoretical

solutions of Yang-Baxter equation on residuated lattices.

Proposition 24. If a mapping verifies the braid condition on residuated lattices,

then it also verifies the braid condition on triangle algebras.

Proposition 25. Let A be a triangle algebra. The mappings

(i) S(x, y) = (ν(x ∨ y), ν(x ∧ y)),

(ii) S(x, y) = (µ(x ∨ y), µ(x ∧ y)),

(iii) S(x, y) = (ν(x ∧ y), ν(x ∨ y)),

(iv) S(x, y) = (µ(x ∧ y), µ(x ∨ y))
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verify the braid condition on this structure. Therefore, they are set-theoretical

solutions of Yang-Baxter equation on A.

Lemma 26. Let A be a triangle algebra. The mappings

(i) S(x, y) = ((x→ y) → (y → x), 1)

(ii) S(x, y) = (1, (x → y) → (y → x))

verify the braid condition on this structure if and only if A is also an MTL-

triangle algebra.

Proof. (i) (⇒) Assume that the mapping S(x, y) = ((x → y) → (y → x), 1)
verifies the braid condition on this structure. Then, we have

(5)

(S12 ◦ S23 ◦ S12)(x, y, z)

= S12(S23(S12(x, y, z)))

= S12(S23((x→ y) → (y → x), 1, z))

= S12((x→ y) → (y → x), (1 → z) → (z → 1), 1)

= S12((x→ y) → (y → x), 1, 1)

= (((x→ y) → (y → x) → 1) → (1 → (x→ y) → (y → x)), 1, 1)

= ((x→ y) → (y → x), 1, 1)

and

(6)

(S23 ◦ S12 ◦ S23)(x, y, z)

= S23(S12(S23(x, y, z)))

= S23(S12(x, (y → z) → (z → y), 1))

= S23((x→ ((y → z) → (z → y))) → (((y → z) → (z → y)) → x), 1, 1)

= ((x→ ((y → z) → (z → y))) → (((y → z) → (z → y)) → x), 1, 1).

Since this mapping satisfy the braid condition on this structure, the Equation
(5) and the Equation (6) must be equal to each other. This condition is only
verified when the equation (a→ b) ∨ (b→ a) = 1 is correct for each a, b ∈ A. By
Definition 11, we obtain that the structure A is also an MTL-triangle algebra.

(⇐) Assume that A is also an MTL-triangle algebra. Then, we have (a →
b)∨ (b→ a) = 1 for each a, b ∈ A. So, we get S(x, y) = ((x→ y) → (y → x), 1) =
(1, 1). Then, it easily show that the mapping S(x, y) is verified braid condition
on A.

(ii) We also obtain same conclusion for the mapping S(x, y) = (1, (x → y) →
(y → x)) by using similar procedure in (i).
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Proposition 27. Let A be a triangle algebra. The mappings

(i) S(x, y) = (νy, νx),

(ii) S(x, y) = (µy, µx)

verify the braid condition on this structure. Therefore, they are set-theoretical

solutions of Yang-Baxter equation on A.

Proof. (i) We show that this mapping satisfies the braid condition on this struc-
ture. Then, we get the following equalities

(S12 ◦ S23 ◦ S12)(x, y, z) = S12(S23(S12(x, y, z)))

= S12(S23(νy, νx, z))

= S12(νy, νz, ννx)

= (ννz, ννy, ννx)

= S23(ννz, νx, νy)

= S12(S23(x, νz, νy))

= S23(S12(S23(x, y, z))) = (S23 ◦ S12 ◦ S23)(x, y, z).

(ii) By the help of similar method in (i), we can show that the mapping
S(x, y) = (µy, µx) satisfies the braid condition.

Using Lemma 23, Definition 9 and Proposition 27, we obtain Proposition 25.

Lemma 28. Let A be a triangle algebra. The mappings

(i) S(x, y) = (x ∗ (x→ y), 1),

(ii) S(x, y) = (1, x ∗ (x→ y)),

(iii) S(x, y) = (y ∗ (y → x), 1),

(iv) S(x, y) = (1, y ∗ (y → x)),

(v) S(x, y) = (νx ∗ (νx→ νy), 1),

(vi) S(x, y) = (1, νx ∗ (νx→ νy)),

(vii) S(x, y) = (νy ∗ (νy → νx), 1),

(viii) S(x, y) = (1, νy ∗ (νy → νx)),

(ix) S(x, y) = (µx ∗ (µx→ µy), 1),

(vi) S(x, y) = (1, µx ∗ (µx→ µy)),

(vii) S(x, y) = (µy ∗ (µx→ µx), 1),

(viii) S(x, y) = (1, µy ∗ (µx→ µx))

verify the braid condition on this structure if and only if the structure A is also

an RL-triangle algebra or a BL-triangle algebra.
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Proof. (i) (⇒) Assume that the mapping S(x, y) = (x ∗ (x → y), 1) verifies the
braid condition on this structure. Then, we have

(7)

(S12 ◦ S23 ◦ S12)(x, y, z)

= S12(S23(S12(x, y, z)))

= S12(S23(x ∗ (x→ y), 1, z))

= S12(x ∗ (x→ y), 1 ∗ (1 → z), 1)

= ((x ∗ (x→ y)) ∗ ((x ∗ (x→ y)) → (1 ∗ (1 → z))), 1, 1)

and

(8)

(S23 ◦ S12 ◦ S23)(x, y, z)

= S23(S12(S23(x, y, z)))

= S23(S12(x, y ∗ (y → z), 1))

= S23(x ∗ (x→ (y ∗ (y → z))), 1, 1)

= (x ∗ (x→ (y ∗ (y → z))), 1, 1).

Since this mapping satisfy the braid condition on this structure, the Equation
(7) and the Equation (8) must be equal to each other. This condition is only
verified when the equation a ∧ b = a ∗ (a → b) is correct for each a, b ∈ A. By
Definition Definition 11 and Definition 12, we obtain that the structure A is also
an RL-triangle algebra or BL-triangle algebra.

(⇐) Let the structure A be also an RL-triangle algebra or BL-triangle al-
gebra. Then, we have a ∧ b = a ∗ (a → b) for each a, b ∈ A. So, we get
S(x, y) = (x ∗ (x → y), 1) = (x ∧ y, 1). By the help of Lemma 23, it easily show
that the mapping S(x, y) is verified braid condition on A.

(ii)–(viii) Since the proof of these parts follow a similar procedure to the
proof of (i), we omit them.

In a triangle algebra, the model operators ν and µ correspond to the necessity
and possibility, respectively. By taking into consideration these, we can define a
set of formulas which are equal under the necessity and possibility operators in
triangle algebras.

Definition 29. Let A be a triangle algebra. For an element x ∈ A, if νx = µx,
then it is called νµ− equal element. The set of νµ− equal elements is illustrated
with the following set

Eνµ =: {x ∈ A|νx = µx}.

During this paper, a formula is said to be atomic on triangle algebra, if it
contains no connectives.
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Lemma 30. If the formula ψ is not atomic on triangle algebra, then there are

formulas φ→ θ, φ ∗ θ, φ ∨ θ, φ ∧ θ, ν(φ) or µ(φ) which are equal to ψ such that

φ, θ ∈ A.

Example 31. Let A be a triangle algebra. Then,

• ψ(x, y) := x, ψ(x, y) := y, ψ(x, y) := u or ψ(x, y) := 1 and etc. are atomic
formulas because there is no operator in them.

• ψ(x, y) := x → y, ψ(x, y) := x → (y ∗ x), ψ(x, y) := 0 → 1 or ψ(x, y) :=
µy ∗ (µx → µx) and etc. are not atomic formulas because they contain
operators.

For a formula ψ ∈ A, if νψ = µψ, then it is called νµ-equal formula. The set
of νµ-equal formulas is illustrated with the following set

EFOR
νµ =: {ψ ∈ A| νψ = µψ}.

Lemma 32. Let A be a triangle algebra. If x ∈ Eνµ, then x = νx = µx. And

also, if ψ ∈ EFOR
νµ , then ψ = νψ = µψ.

Proposition 33. Let A be a triangle algebra. The mapping S(x, y) = (µψ(y),
νφ(x)) verifies the braid condition on this structure where νφ(µψ(y)) = µψ(νφ(y))
for each y ∈ A. Therefore, this mapping is a set-theoretical solution of Yang-

Baxter equation on A.

Proof. We show that this mapping satisfies the braid condition on this structure.
Then, we obtain the following eqaulities

(S12 ◦ S23 ◦ S12)(x, y, z) = S12(S23(S12(x, y, z)))

= S12(S23(µψ(y), νφ(x), z))

= S12(µψ(y), µψ(z), νφ(νφ(x)))(9)

= (µψ(µψ(z)), νφ(µψ(y)), νφ(νφ(x)))

and

(S23 ◦ S12 ◦ S23)(x, y, z) = S23(S12(S23(x, y, z)))

= S23(S12(x, µψ(z), νφ(y)))

= S23(µψ(µψ(z)), νφ(x), νφ(y))(10)

= (µψ(µψ(z)), µψ(νφ(y)), νφ(νφ(x))).

By the hypothesis, we have νφ(µψ(y)) = µψ(νφ(y)) for each y ∈ A. Therefore,
we verify the braid condition from the Equality (9) and (10). As a result, this
mapping is a set-theoretical solution of Yang-Baxter equation on A.
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Proposition 34. Let A be a triangle algebra. The mappings (i)–(ii) in Proposi-

tion 27 and the following mappings:

(iii) S(x, y) = (νy, µx),

(iv) S(x, y) = (µy, νx)

verify the braid condition on this structure where x, y ∈ Eνµ. Therefore, the

Yang-Baxter equation has a set-theoretical solution in triangle algebra.

Proof. It is clear from Proposition 27 and Lemma 32.

Proposition 35. Let A be a triangle algebra. The mappings (i)–(iv) in Propo-

sition 25 and the following mappings:

(v) S(x, y) = (ν(x ∨ y), µ(x ∧ y)),

(vi) S(x, y) = (µ(x ∨ y), ν(x ∧ y)),

(vii) S(x, y) = (ν(x ∧ y), µ(x ∨ y)),

(viii) S(x, y) = (µ(x ∧ y), ν(x ∨ y))

verify the braid condition on this structure where x, y ∈ Eνµ. Therefore, they are

set-theoretical solutions of Yang-Baxter equation on triangle algebras.

Let A be a triangle algebra. The mapping NFOR are defined as

NFOR(ψ) := ψ → 0

for each formula ψ on A.

Theorem 36. Let A be a triangle algebra. For all formula ψ on A, we have

ν(NFOR(ψ)) ≤ NFOR(ν(ψ)).

Proof. Assume that ψ be a formula on A. Then, we have following inequality
by the help of Definition 9

ν
(
NFOR(ψ)

)
= ν(ψ → 0) ≤ ν(ψ) → ν0 = ν(ψ) → 0 = NFOR(ν(ψ)).

Definition 37. Let A be a triangle algebra. The unary quasi-negation operator
Ñ is recursively defined as follows

Ñ(ψ) =





N(ψ), if ψ is atomic,

Ñ(φ) → Ñ(θ), if ψ = θ → φ,

Ñ(φ) ∗ Ñ(θ), if ψ = θ ∗ φ,

Ñ(φ) ∧ Ñ(θ), if ψ = θ ∧ φ,

Ñ(φ) ∨ Ñ(θ), if ψ = θ ∨ φ,

ν(Ñ(φ)), if ψ = ν(φ),

µ(Ñ(φ)), if ψ = µ(φ)

for any formula ψ, φ and θ on A.
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Example 38. Let A be a triangle algebra. The formula ψ(x, y) = (µa→ (µ(u ∗
u) → µb)) ∧ (νa → µb) is given. Then, we have the following equality by the
Definition 37

Ñ(ψ(x, y))

= Ñ((µa→ (µ(u ∗ u) → µb)) ∧ (νa→ µb))

= Ñ(νa→ µb) ∧ Ñ(µa→ (µ(u ∗ u) → µb))

= (Ñ(µb) → Ñ(νa)) ∧ (Ñ(µ(u ∗ u) → µb) → Ñ(µa))

= (µ(Ñ(b)) → ν(Ñ(a))) ∧ ((Ñ (µb) → Ñ(µ(u ∗ u))) → µ(Ñ(a)))

= (µ(Ñ(b)) → ν(Ñ(a))) ∧ ((µ(Ñ (b)) → µ(Ñ(u ∗ u))) → µ(Ñ (a)))

= (µ(Ñ(b)) → ν(Ñ(a))) ∧ ((µ(Ñ (b)) → µ(Ñ(u) ∗ Ñ(u))) → µ(Ñ(a))).

Theorem 39. Let A be a triangle algebra. The mapping NFOR is an antitone

on A but the mapping Ñ is not an antitone on A.

Proof. Let ψ and θ be two formulas on A. Assume that ψ ≤ θ. Then, we have
ψ → θ = 1. By using Lemma 3 and Lemma 7, we get following result

1 ≥ NFOR(θ) → NFOR(ψ) = (θ → 0) → (ψ → 0) ≥ ψ → θ = 1.

Then, we getNFOR(θ) → NFOR(ψ) = 1. This means thatNFOR(θ) ≤ NFOR(ψ).
So, the mapping NFOR is an antitone.

Let ψ and θ be two formulas on A such that ψ ≤ θ. Then, we have ψ → θ = 1.
Assume that Ñ(θ) ≤ Ñ(ψ). We attain Ñ(θ) → Ñ(ψ) = 1. By using Definition
37, we get Ñ(ψ → θ) = Ñ(1) = 1. This is contradiction since Ñ(1) = N(1) =
0 6= 1. So, the mapping Ñ is not an antitone.

Definition 40. Let A be a triangle algebra. The binary quasi-negation operator
Ñ is defined as follows

Ñ(φ, θ) = (Ñ (φ), Ñ (θ))

holds for any formulas φ, θ ∈ A.

Lemma 41. Let A be a triangle algebra. The mapping S(x, y) = Ñ(1 → y, 1 →
x) verifies the braid condition on this structure. Therefore, this mapping is a

set-theoretical solution of Yang-Baxter equation on A.

Proof. Using Definition 40 and Definition 37, we get

S(x, y) = Ñ(1 → x, 1 → y) = ((x→ 0) → 0, (y → 0) → 0).
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We show that this mapping verifies the braid condition. Then, we have

(11)

(S12 ◦ S23 ◦ S12)(x, y, z)

= S12(S23(S12(x, y, z)))

= S12(S23((x→ 0) → 0, (y → 0) → 0, z))

= S12((x→ 0) → 0, (((y → 0) → 0) → 0) → 0, (z → 0) → 0)

= ((((x → 0) → 0) → 0) → 0, (((((y → 0) → 0) → 0) → 0) → 0) → 0,

(z → 0) → 0)

and

(12)

(S23 ◦ S12 ◦ S23)(x, y, z)

= S23(S12(S23(x, y, z)))

= S23(S12(x, (y → 0) → 0, (z → 0) → 0))

= S23((x→ 0) → 0, (((y → 0) → 0) → 0) → 0, (z → 0) → 0)

= ((x→ 0) → 0, (((((x → 0) → 0) → 0) → 0) → 0) → 0,

(((z → 0) → 0) → 0) → 0).

By the help of Lemma 5, we get the equality of (11) and (12). So, it verifies the
braid condition on this structure. Therefore, this mapping is a set-theoretical
solution of Yang-Baxter equation on A.

Example 42. Let A be a triangle algebra. The mappings

(i) S1(x, y) = (1 → x, 1 → y)

(ii) S2(x, y) = ((x→ 0) → y, 0)

are two set-theoretical solutions of the Yang-Baxter equation in triangle algebras.
The mapping

T1(x, y) = Ñ(S1(x, y))

= Ñ(1 → x, 1 → y)

= (Ñ(1 → y), Ñ (1 → x))

= ((y → 0) → 0, (x→ 0) → 0)

is also a set-theoretical solution of the Yang-Baxter equation in triangle algebras.
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We show that the mapping T1(x, y) verifies the braid condition on this structure

(13)

(T 12

1
◦ T 23

1
◦ T 12

1
)(x, y, z)

= T 12

1
(T 23

1
(T 12

1
(x, y, z)))

= T 12
1

(T 23
1

(((y → 0) → 0, (x → 0) → 0, z))

= T 12
1

((y → 0) → 0, (z → 0) → 0, (((x → 0) → 0) → 0) → 0)

= ((((z → 0) → 0) → 0) → 0, (((y → 0) → 0) → 0) → 0,

(((x→ 0) → 0) → 0) → 0)

and

(14)

(T 23
1

◦ T 12
1

◦ T 23
1

)(x, y, z)

= T 23
1

(T 12
1

(T 23
1

(x, y, z)))

= T 23
1

(T 12
1

((x, (z → 0) → 0, (y → 0) → 0))

= T 23

1
((((z → 0) → 0) → 0) → 0, (x→ 0) → 0, (y → 0) → 0)

= ((((z → 0) → 0) → 0) → 0, (((y → 0) → 0) → 0) → 0,

(((x→ 0) → 0) → 0) → 0)

Since the Equation (13) and the Equation (14) are equal to each other, the
mapping T1(x, y) verifies the braid condition on this structure. But the mapping

T2(x, y) = Ñ(S2(x, y)) = Ñ((x→ 0) → y, 0)

= (Ñ (0), Ñ ((x→ 0) → y)) = (1, (y → 0) → (x→ 0))

is not a set-theoretical solution of the Yang-Baxter equation in triangle algebras.
Because, we get

(T 12

2 ◦ T 23

2 ◦ T 12

2 )(x, y, z)

= T 12

2 (T 23

2 (T 12

2 (x, y, z)))

= T 12

2 (T 23

2 ((1, (y → 0) → (x→ 0), z))(15)

= T 12

2 (1, 1, (z → 0) → (((y → 0) → (x→ 0)) → 0))

= (1, 1, (z → 0) → (((y → 0) → (x→ 0)) → 0))
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and

(T 23

2 ◦ T 12

2 ◦ T 23

2 )(x, y, z)

= T 23

2 (T 12

2 (T 23

2 (x, y, z)))

= T 23

2 (T 12

2 ((x, 1, (z → 0) → (y → 0)))(16)

= T 23

2 (1, (1 → 0) → (x→ 0), (z → 0) → (y → 0))

= T 23

2 (1, 1, (z → 0) → (y → 0))

= (1, 1, (((z → 0) → (y → 0)) → 0) → (1 → 0)).

Since the Equation (15) and the Equation (16) are not equal to each other, the
mapping T2(x, y) does not verify the braid condition.

Lemma 43. Let A be a triangle algebra and let ψ be any formula from A×A to

A. Then the following identity

Ñ(ψ(Ñ (x, y))) =





ψ(y, x), if ψ is atomic,

ψ(N(y), N(x)), if ψ ∈ {θ → φ, θ ∗ φ, θ ∧ φ, θ ∨ φ, ν(φ), µ(φ)}

such that θ and φ are any atomic formulas,

is satisfied for each (x, y) ∈ A×A.

Proof. Let x, y and k be any three elements in A. Assume that ψ is an atomic
formula from A×A to A. Then ψ(x, y) = x (first projection mapping), ψ(x, y) =
y (second projection mapping) or ψ(x, y) = k (constant mapping). We assume
that ψ(x, y) = x. Then we have

Ñ(ψ(Ñ (x, y))) = Ñ(ψ(Ñ (y), Ñ (x))) = Ñ(ψ(N(y), N(x)))

= Ñ(N(y)) = N(N(y)) = y = ψ(y, x).

For other parts of atomic formulas could be similarly obtained.
Let (x, y) be any element in A×A and ψ be a formula from A×A to A. We

assume that ψ is not atomic formula, then we have ψ ∈ {θ → φ, θ ∗ φ, θ ∧ φ, θ ∨
φ, ν(φ), µ(φ)}. Assume that ψ = φ→ θ. Then, we get

Ñ(ψ(Ñ (x, y))) = Ñ(ψ(Ñ (y), Ñ (x))) = Ñ(ψ(N(y), N(x)))

= Ñ(φ(N(y), N(x)) → θ(N(y), N(x)))

= N(θ(N(y), N(x))) → N(φ(N(y), N(x)))

= φ(N(y), N(x)) → θ(N(y), N(x)) = ψ(N(y), N(x)).

Similarly, we obtain Ñ(ψ(Ñ (x, y))) = ψ(N(y), N(x)) where ψ ∈ {θ → φ, θ∗φ, θ∧
φ, θ ∨ φ, ν(φ), µ(φ)}.
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Definition 44. Let A be a triangle algebra. Then the mapping M is defined on
A as follows

M(ψ(x, y)) =





ψ(y, x), if ψ is atomic,

M(θ(y, x)) → M(φ(y, x)), if ψ(x, y) = φ(x, y) → θ(x, y),

M(θ(y, x)) ∗M(φ(y, x)), if ψ(x, y) = φ(x, y) ∗ θ(x, y),

M(θ(y, x)) ∧M(φ(y, x)), if ψ(x, y) = φ(x, y) ∧ θ(x, y),

M(θ(y, x)) ∨M(φ(y, x)), if ψ(x, y) = φ(x, y) ∨ θ(x, y),

M(ν(φ(y, x))), if ψ(x, y) = ν(φ(y, x)),

M(µ(φ(y, x))), if ψ(x, y) = µ(φ(y, x))

for any formula ψ, φ and θ ∈ A.

Example 45. Let A be a triangle algebra and let the formula ψ(a, b) = ((a →
b) → a) → (b → a) be given. Then, the image of ψ under the mapping M is
found as below.

For this aim, we firstly determine φ(x, y) = (x→ y) → x and θ(x, y) = y → x.
So, we obtain φ(y, x) = (y → x) → y and θ(y, x) = x→ y by substituting [x := y]
and [y := x] simultaneously

M(ψ(x, y)) = M(θ(y, x)) → M(φ(y, x))

= M(x→ y) → M((y → x) → y)

= (M(y) → M(x)) → (M(y) → M(y → x))

= (y → x) → (y → (M(x) → M(y)))

= (y → x) → (y → (x→ y)).

Consequently, the mapping M gives a new formula which is obtained by rewriting
all binary connectives in inverse order and by substituting [x := y] and [y := x]
in formula simultaneously.

Theorem 46. Let A be a triangle algebra.Then, the following identity

M(ψ(x, y)) = Ñ(ψ(Ñ (y, x)))

for all ψ(x, y) ∈ A.

Proof. We prove this theorem by using induction on formulas:

• Assume that ψ(x, y) is an atomic formula on A. Then, the equality is clearly
obtained from the Definition 44 and the Lemma 43.

• Assume that ψ(x, y) = φ(x, y) → θ(x, y) such that M(φ(x, y)) = Ñ(φ(Ñ (y, x)))
and M(θ(x, y)) = Ñ(θ(Ñ(y, x))). By using hypothesis, we get
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M(ψ(x, y)) = M(φ(x, y) → θ(x, y))

= M(θ(x, y)) → M(φ(x, y))

= Ñ(θ(Ñ(y, x))) → Ñ(φ(Ñ (y, x)))

= Ñ(φ(Ñ (y, x)) → θ(Ñ(y, x))) = Ñ(ψ(Ñ (y, x))).

Similarly, we obtain M(ψ(x, y)) = Ñ(ψ(Ñ (y, x))) where ψ ∈ {θ → φ, θ ∗ φ, θ ∧
φ, θ ∨ φ, ν(φ), µ(φ)}.

So, the identity M(ψ(x, y)) = Ñ(ψ(Ñ (y, x))) holds for all ψ(x, y) ∈ A.

Theorem 47. Let A be a triangle algebra. Assume that the mapping S(x, y)
is a set-theoretical solution of the Yang-Baxter equation in triangle algebras.

If the equality S(x, y) = S(N(y), N(x)) for all x, y ∈ A, then the mappings

Ñ(S(Ñ (y, x))) and M(S(y, x)) are also set-theoretical solutions of the Yang-

Baxter equation in triangle algebras.

4. Set-Theoretical Solutions of Yang-Baxter Equation in State

Triangle Algebras

In this section, we handle some fundamental set-theoretical solutions of Yang-
Baxter Equation in state triangle algebras. Then, we state the relationship of
transferring of set-theoretical solutions of Yang-Baxter equation among (MTL,BL,
RL)-triangle algebras and state (MTL,BL, RL)-triangle algebras. Then, we give
a scheme to explain clearly these relations. Then, we give some fundamental
relations between the operators M and Ñ in triangle algebras. Moreover, we ob-
tain that the mapping S(x, y) is a the set-theoretical solution of the Yang-Baxter
equation in state triangle algebras. If the equality S(x, y) = S(N(σ(y)), N(σ(x)))
for all x, y ∈ A, then the mappings Ñ(S(Ñ(σ(y), σ(x)))) and M(S(σ(y), σ(x)))
are also set-theoretical solutions of the Yang-Baxter equation in state triangle
algebras.

Lemma 48. Let (A, σ) be a state triangle algebra. The mappings

(i) S(x, y) = (σx, σy),

(ii) S(x, y) = (σy, σx)

verify the braid condition on this structure. Therefore, the Yang-Baxter equation

has a set-theoretical solution in state triangle algebra.

Proof. (i) We show that this mapping satisfies the braid condition on this struc-
ture. Then, we obtain the following eqaulities
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(S12 ◦ S23 ◦ S12)(x, y, z) = S12(S23(S12(x, y, z)))

= S12(S23(σ(x), σ(y), z))

= S12(σ(x), σ(σ(y)), σ(z))(17)

= (σ(σ(x)), σ(σ(σ(y))), σ(z))

and

(S23 ◦ S12 ◦ S23)(x, y, z) = S23(S12(S23(x, y, z)))

= S23(S12(x, σ(y), σ(z)))

= S23(σ(x), σ(σ(y)), σ(z))(18)

= (σ(x), σ(σ(σ(y))), σ(σ(z))).

By Lemma 15, we have σ(x) = σ(σ(x)) and σ(z) = σ(σ(z)).Therefore, we verify
the braid condition from the equality (17) and (18). As a result, this mapping is
a set-theoretical solution in state triangle algebra.

(ii) We show that this mapping satisfies the braid condition on this structure.
Then, we get the following equalities

(S12 ◦ S23 ◦ S12)(x, y, z) = S12(S23(S12(x, y, z)))

= S12(S23(σ(y), σ(x), z))

= S12(σ(y), σ(z), σ(σ(x)))

= (σ(σ(z)), σ(σ(y)), σ(σ(x)))

= S23(σ(σ(z)), σ(x), σ(y))

= S12(S23(x, σ(z), σ(y)))

= S23(S12(S23(x, y, z))) = (S23 ◦ S12 ◦ S23)(x, y, z).

Proposition 49. Let (A, σ) be a state triangle algebra. The mappings

(i) S(x, y) = (σ(νy), σ(νx)),

(ii) S(x, y) = (σ(µy), σ(µx))

verify the braid condition on this structure. Therefore, the Yang-Baxter equation

has a set-theoretical solution in state triangle algebra.

Proof. It is straightforward from Lemma 22 and Definition 14.

Proposition 50. Let (A, σ) be a state triangle algebra. The mappings

(i) S(x, y) = (σ(ν(σ(x ∨ y))), σ(ν(σ(x ∧ y)))),
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(ii) S(x, y) = (σ(µ(σ(x ∨ y))), σ(µ(σ(x ∧ y)))),

(iii) S(x, y) = (σ(ν(σ(x ∧ y))), σ(ν(σ(x ∨ y)))),

(iv) S(x, y) = (σ(µ(σ(x ∧ y))), σ(µ(σ(x ∨ y))))

(v) S(x, y) = (σ(σ(ν(x ∨ y))), σ(σ(ν(x ∧ y)))),

(vi) S(x, y) = (σ(σ(µ(x ∨ y))), σ(σ(µ(x ∧ y)))),

(vii) S(x, y) = (σ(σ(ν(x ∧ y))), σ(σ(ν(x ∨ y)))),

(viii) S(x, y) = (σ(σ(µ(x ∧ y))), σ(σ(µ(x ∨ y))))

verify the braid condition on this structure. Therefore, the Yang-Baxter equation

has a set-theoretical solution in state triangle algebra.

Proof. It is shown by Proposition 25 and Definition 14.

Now, we can give the following scheme to explain clearly the relationship of
transferring of set-theoretical solutions of Yang-Baxter equation among (MTL,BL,
RL)-triangle algebras and state (MTL,BL, RL)-triangle algebras.

Residuated Lattice

Triangle Algebra

MTL-Triangle
Algebra

BL-Triangle
Algebra State Triangle

Algebra

RL-Triangle
Algebra

State MTL-Triangle
Algebra

State BL-Triangle
Algebra

State RL-Triangle
Algebra
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Example 51. Let L = {0, x, y, z, t, 1}. The relations of elements in A are given
as Figure 1

1

t

x

z

y

0

Figure 1. Hasse Diagram of L.

and the binary operations ∧,∨, ∗ and → on this structure are defined as the
Cayley Table 1, 2, 3 and 4.

∧ 0 x y z t 1

0 0 0 0 0 0 0
x 0 x 0 0 x x

y 0 0 y y 0 y

z 0 0 y z 0 z

t 0 x 0 0 t t

1 0 x y z t 1

Table 1. ∧-operation on L.

and

∨ 0 x y z t 1

0 0 x y z t 1
x x x 1 1 t 1
y y 1 y z 1 1
z z 1 z z 1 1
t t t 1 1 t 1
1 1 1 1 1 1 1

Table 2. ∨-operation on L.

∗ 0 x y z t 1

0 0 0 0 0 0 0
x 0 x 0 0 x x

y 0 0 y y 0 y

z 0 0 t z 0 z

t 0 x 0 z t t

1 0 x y z t 1

Table 3. ∗-operation on L.

and

→ 0 x y z t 1

0 1 1 1 1 1 1
x z 1 z z 1 1
y t t 1 1 t 1
z x x 1 1 t 1
t y 1 y z 1 1
1 0 x y z t 1

Table 4. →-operation on L.

So, the algebraic structure L = (L,∨,∧, ∗,→, 0, 1) is a residuated lattice. By the
help of this residuated lattice, we construct a triangle algebra.
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Let A = ([0, 0], [0, x], [0, y], [0, z], [0, t], [0, 1], [x, t], [x, 1], [y, y], [y, z], [y, 1],
[t, t], [t, 1], [z, z], [z, 1], [1, 1]). If the operators ν, µ, ∨, ∧, ∗ and → are defined as
follows

ν[a, b] = [a, a],

µ[a, b] = [b, b],

[a, b] ∨ [c, d] = [a ∨ c, b ∨ d]

[a, b] ∧ [c, d] = [a ∧ c, b ∧ d],

[a, b] ∗ [c, d] = [a ∗ c, b ∗ d]

[a, b] → [c, d] = [(a→ c) ∧ (b→ d), b→ d].

The algebraic structure A = (A,∨,∧, ∗,→, ν, µ, [0, 0], [0, 1], [1, 1]) is a triangle al-
gebra with the smallest element [0, 0], the greatest element [1, 1] and new constant
[0, 1]. The Hasse diagram of A is given in Figure 2.

[1, 1]

[0, 0]

[0, 1]

[0, x]

[0, t][x, x]

[x, t]

[x, 1] [t, t]

[t, 1]

[0, y]

[0, z] [y, y]

[y, z]

[y, 1][z, z]

[z, 1]

Figure 2. Hasse Diagram of A.
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Also, the state operator σ is defined as

σ(a) =





[0, 0], a ∈ {[0, 0], [0, x], [0, y], [0, z], [0, t], [0, 1]},

[x, x], a ∈ {[x, 0], [x, t], [x, 1]},

[y, y], a ∈ {[y, y], [y, z], [y, 1]},

[t, t], a ∈ {[t, t], [t, 1]},

[z, z], a ∈ {[z, z], [z, 1]},

[1, 1], a ∈ {[1, 1]}.

Then the structure (A, σ) is a state triangle algebra. Moreover, we get for each
a, b ∈ A

σ(a ∗ b) = σ(a) ∗ σ(b) and σ(a→ b) = σ(a) → σ(b).

Then, the state mapping σ is also an endomorphism. In addition to this, we
attain

Ker(σ) = {[1, 1]}.

So, we obtain the state operator σ is faithful. In accordance with these, all of
the set-theoretical solutions given in Section 3 and Section 4 could be verified on
this example.

Lemma 52. Let A be a state triangle algebra. The mappings

(i) S(x, y) = (σ(x) ∗ (σ(x) → σ(y)), 1),

(ii) S(x, y) = (1, σ(x) ∗ (σ(x) → σ(y))),

(iii) S(x, y) = (σ(y) ∗ (σ(y) → σ(x)), 1),

(iv) S(x, y) = (1, σ(y) ∗ (σ(y) → σ(x))),

(v) S(x, y) = (σ(νx) ∗ (σ(νx) → σ(νy)), 1),

(vi) S(x, y) = (1, σ(νx) ∗ (σ(νx) → σ(νy))),

(vii) S(x, y) = (σ(νy) ∗ (σ(νy) → σ(νx)), 1),

(viii) S(x, y) = (1, σ(νy) ∗ (σ(νy) → σ(νx))),

(ix) S(x, y) = (σ(µx) ∗ (σ(µx) → σ(µy)), 1),

(vi) S(x, y) = (1, σ(µx) ∗ (σ(µx) → σ(µy))),

(vii) S(x, y) = (σ(µy) ∗ (σ(µy) → σ(µx)), 1),

(viii) S(x, y) = (1, σ(µy) ∗ (σ(µy) → σ(µx)))

verify the braid condition if and only if A is a state RL-triangle algebra or a state

BL-triangle algebra.

Proof. It is obtained from Definition 14 and Lemma 28.
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Lemma 53. Let A be a state triangle algebra and let ψ be any formula from

A×A to A. Then the following identity

Ñ(ψ(Ñ (σ(x), σ(y)))) =





ψ(σ(y), σ(x)), if ψ is atomic,

if ψ ∈ {θ → φ, θ ∗ φ, θ ∧ φ,

ψ(N(σ(y)), N(σ(x))), θ ∨ φ, ν(φ), µ(φ)} such that

θ and φ are any atomic

formulas,

is satisfied for each (x, y) ∈ A×A.

Proof. The proof is verified by using Definition 14, Lemma 15 and Lemma 43.

Theorem 54. Let A be a state triangle algebra.Then, the following identity

M(ψ(σ(x), σ(y))) = Ñ(ψ(Ñ (σ(y), σ(x))))

for all ψ(x, y) ∈ A.

Proof. It is obtained from Definition 14, Lemma 15 and Theorem 46.

Theorem 55. Let A be a state triangle algebra. Assume that the mapping S(x, y)
is a the set-theoretical solution of the Yang-Baxter equation in state triangle al-

gebras. If the equality S(x, y) = S(N(σ(y)), N(σ(x))) for all x, y ∈ A, then

the mappings Ñ(S(Ñ (σ(y), σ(x)))) and M(S(σ(y), σ(x))) are also set-theoretical

solutions of the Yang-Baxter equation in state triangle algebras.

Proof. It is straightforward from Definition 14, Lemma 15 and Theorem 47.

5. Conclusion

In this paper, by taking into consideration the previous research of triangle al-
gebras, we present some fundamental set-theoretical solutions of Yang-Baxter
equation in triangle algebras and state triangle algebras. We showed that the
necessary and sufficient condition for certain mappings to be set-theoretical solu-
tions of Yang-Baxter equation on these structures is that these structures must
be also MTL-(state) triangle algebras, BL-(state) triangle algebras or RL-(state)
triangle algebras. In accordance with these, we recursively introduce new op-
erators Ñ and M. Then, we define the notion of formula on triangle algebra
as a classical logic structure. Moreover, we show that some set-theoretical so-
lutions are preserved under some conditions when these mappings are written
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by using these new operators. Also, we state the relationship of transferring of
set-theoretical solutions of Yang-Baxter equation among (MTL,BL, RL)-(state)
triangle algebras and state (MTL,BL, RL)-(state) triangle algebras. Then, we
give a scheme to explain clearly these relations.

The investigation of other such applications in different algebraic structures
can be an interesting object for further work.
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