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1. Introduction32

Yang-Baxter equation was firstly introduced by the Nobel laureate C.N. Yang33

in theoretical physics [1] and by R.J. Baxter in statistical mechanics [2, 3]. The34

Yang–Baxter equation has been attracted more researchers’ attention among in35

a wide range of disciplines such as knot theory, link invariants, quantum com-36

puting, braided categories, quantum groups, the analysis of integrable systems,37

quantum mechanics, etc. in recent years. Moreover, one of the uses of Yang-38

Baxter equations is pure mathematics; especially, finding set-theoretical solu-39

tions in algebraic structures. For example, Berceanu et al. examined algebraic40

structures arising from Yang–Baxter Systems [4]; Oner, Senturk et. al have con-41

structed new set theoretical solutions for Yang–Baxter equation in MV-algebras42

[10], Belavin and Drinfeld have worked on solutions of the classical Yang–Baxter43

equation for simple Lie algebras [6], Senturk and Bozdağ handle Geometrical ap-44

proach on set theoretical solutions of Yang-Baxter equation in Lie algebras [7],45

Massuyeau and Nichita consider the problem of constructing knot invariants from46

Yang-Baxter operators associated to (unitary associative) algebra structures [11],47

Gateva-Ivanova examined set theoretical solutions of the Yang–Baxter equation,48

braces and symmetric groups [5], Wang and Ma provide a new framework of49

obtaining singular solutions of the quantum Yang–Baxter equation by construct-50

ing weak quasi triangular structures [8] and Nichita and Parashar have studied51

Spectral-parameter dependent Yang-Baxter operators and Yang-Baxter systems52

from algebraic structures [9], and etc.53

The notion of triangle algebras was firstly given by Van Gasse et al. as a54

variety of residuated lattices fitted with unary operators ν and µ together with55

a third angular point u that is different from 0 and 1. And also, It is shown56

that these algebras are served as an equational representation of interval-valued57

residuated lattices. These authors introduced triangle logic and proved that this58

logic is sound and complete corresponding with the variety of triangle algebras59

[12]. Moreover, triangle algebras are dissimilar to other algebraic structures.60

Therefore, triangle algebras have an important position in studying fuzzy logics61

and the related algebraic structures [16].62

The notion of states on MV-algebras was introduced by Munduci [17]. It63

benefited from averaging processes for formulas in  Lukasiewicz logics. It was not64

only a generalization of the usual probability measures on Boolean algebras but65

also a semantical interpreter of the probability of fuzzy events. An alternative66

approach to states on MV-algebras was given by Flamino and Montagna [18].67

They put in a new unary operation σ to the language of MV-algebras, that68

preserves the usual properties of states. The notion of states has been used to69

other logical algebras. For example, Zahiri and Saeid introduced the concept of70

state triangle algebras [16].71
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In this work, this paper is organized as follows: In Section 2, we recall some72

notions, basic definitions, lemmas and their relevant results for Sheffer stroke73

basic algebras. In Section 3, we handle some fundamental set-theoretical solu-74

tions of Yang-Baxter equation on triangle algebras. We show that the necessary75

and sufficient condition for certain mappings to be set-theoretical solutions of76

Yang-Baxter equation on these structures is that these structures must be also77

MTL-triangle algebras, BL-algebras or RL-algebras. We constitute the set of78

νµ−equal elements. Then, we define the notion of formulas on triangle algebras.79

In parallel with previous step, we build the set of νµ−equal formulas. Then, we80

introduce recursively quasi-negation operator Ñ on triangle algebras. We find81

equal formulas to each other by applying Ñ operator. In the following step,82

we present a new operator M to reproduce a formula by recursively rewriting83

elements and operations in reverse order. Moreover, we give some fundamen-84

tal relations between these operators. Lastly, we show that if the the mapping85

S(x, y) is a set-theoretical solution of the Yang-Baxter equation in triangle alge-86

bras and the equality S(x, y) = S(N(y), N(x)) is verified for all x, y ∈ A, then87

the mappings Ñ(S(Ñ(y, x))) and M(S(y, x)) are also set-theoretical solutions88

of the Yang-Baxter equation in triangle algebras. In section 4, we give some89

fundamental set-theoretical solutions of Yang-Baxter Equation in state triangle90

algebras. Then, we state the relationship of transferring of set-theoretical solu-91

tions of Yang-Baxter equation among (MTL,BL, RL)-triangle algebras and state92

(MTL,BL, RL)-triangle algebras. We give a scheme to explain clearly these rela-93

tions. Then, we give some fundamental relations between the operators M and94

Ñ in triangle algebras. Moreover, we obtain that the mapping S(x, y) is a the95

set-theoretical solution of the Yang-Baxter equation in state triangle algebras. If96

the equality S(x, y) = S(N(σ(y)), N(σ(x))) for all x, y ∈ A, then the mappings97

Ñ(S(Ñ (σ(y), σ(x)))) and M(S(σ(y), σ(x))) are also set-theoretical solutions of98

the Yang-Baxter equation in state triangle algebras. Also, we give place to some99

attractive examples.100

2. Preliminaries101

In this section, we deal with some fundamental definitions, lemmas and proposi-102

tions with reference to residuated lattices, triangle algebras, state triangle alge-103

bras and Yang-Baxter equation that will be used in the following sections.104

Definition 1 [12]. A bounded commutative residuated lattice is an algebra L =105

(L,∨,∧, ∗,→, 0, 1) with four binary operations and two constants 0, 1 such that:106

• (L,∨,∧, 0, 1) is a bounded lattice,107

• operation ∗ is associative and commutative, with 1 is neutral element, and108
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• a ∗ b ≤ c if and only if a ≤ b→ c, for all a, b, c ∈ L.109

The binary ordering relation ≤ and the unary negation operator ¬ are defined110

in a residuated lattice L = (L,∨,∧, ∗,→, 0, 1) as follows.111

Definition 2 [12]. Let L = (L,∨,∧, ∗,→, 0, 1) be a residuated lattice and let
a, b ∈ L. The binary relation ≤ defined on L as below

a ≤ b if and only if a ∧ b = a

is an order on L.112

Lemma 3 [12]. Let L = (L,∨,∧, ∗,→, 0, 1) be a residuated lattice and let a, b ∈ L.113

Then the following conditions are equivalent to each other:114

(i) a ∧ b = a,115

(ii) a ∨ b = b,116

(iii) a→ b = 1.117

Definition 4 [12]. Let L = (L,∨,∧, ∗,→, 0, 1) be a residuated lattice and let
a, b ∈ L. The unary operation ¬ defined on L as below

¬a = a→ 0

is called negation a on L.118

Lemma 5 [19]. Let L = (L,∨,∧, ∗,→, 0, 1) be a residuated lattice. Then the
following equality verifies for each a ∈ L:

a→ 0 = ((a→ 0) → 0) → 0.

Definition 6 [12]. Let L = (L,∨,∧, ∗,→, 0, 1) be a residuated lattice and let119

a ∈ L. The element a is called nilpotent element of L if an = 0 for some n ∈ N.120

Lemma 7 [13, 14]. Let L = (L,∨,∧, ∗,→, 0, 1) be a residuated lattice. Then the121

following properties are verified for each a, b, c ∈ L :122

(i) a ∨ b ≤ (a→ b) → b,123

(ii) a→ b ≤ (a ∗ c) → (b ∗ c),124

(iii) (a→ b) ∗ (b→ c) ≤ a→ c,125

(iv) If a ≤ b, then a ∗ c ≤ b ∗ c, c→ a ≤ c→ b and b→ c ≤ a→ c,126
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(v) a→ (b→ c) = b→ (a→ c) = (a ∗ b) → c,127

(vi) a→ b ≤ (b→ c) → (a→ c).128

Definition 8 [12]. Let A = (A,∨,∧) be a lattice. The triangularization of A,129

which is shown by T(A), is the structure T(A) = (Int(A),∨,∧) defined by130

• Int(A) = {[a1, a2]|(a1, a2) ∈ A×A and a1 ≤ a2},131

• [a1, a2] ∧ [b1, b2] = [a1 ∧ b1, a2 ∧ b2],132

• [a1, a2] ∨ [b1, b2] = [a1 ∨ b1, a2 ∨ b2].133

The set DA = {[a, a]|a ∈ A} is called the diagonal of T(A).134

Definition 9 [12]. A triangle algebra is a structure A = (A,∨,∧, ∗,→, ν, µ, 0, u, 1)135

in which (A,∨,∧, ∗,→, 0, 1) is a residuated lattice, ν and µ are unary operations136

on A, u a constant, and satisfying the following conditions:137

138

(T1)νa ≤ a, (T ′

1
)a ≤ µa,

(T2)νa ≤ ννa, (T ′

2
)µµa ≤ µa,

(T3)ν(a ∧ b) = νa ∧ νb, (T ′

3
)µ(a ∧ b) = µa ∧ µb,

(T4)ν(a ∨ b) = νa ∨ νb, (T ′

4
)µ(a ∨ b) = µa ∨ µb,

(T5)νu = 0, (T ′

5
)µu = 1,

(T6)νµa = µa, (T ′

6
)µνa = νa,

(T7)ν(a→ b) ≤ νa→ νb,

(T8)(νa↔ νb) ∗ (µa↔ µb) ≤ (a↔ b),
(T9)νa→ νb ≤ ν(νa→ νb).

139

Proposition 10 [12]. Suppose (A,∨,∧,→, 0, 1) is a residuated lattice such that140

¬ is involutive. If there exists an element u in A such that ¬u = u, if ν is a unary141

operator on A that satisfies (T1) − (T6), (T8), (T9) and if (νa ↔ νb) ∗ (ν¬a ↔142

ν¬b) ≤ a ↔ b, then (A,∨,∧, ∗,→, ν, µ, 0, u, 1) is a triangle algebra if we define143

µa = ¬ν¬a.144

Definition 11 [15]. A triangle algebra A is called an MTL−triangle algebra145

if (a → b) ∨ (b → a) = 1. An MTL−triangle algebra A is called BL−triangle146

algebra if a ∧ b = a ∗ (a→ b) for all a, b ∈ A.147

Definition 12 [16]. A triangle algebra A is called an RL−triangle algebra if148

a ∧ b = a ∗ (a→ b) for all a, b ∈ A.149

Proposition 13 [20]. In a triangle algebra (A,∨,∧, ∗,→, ν, µ, 0, u, 1), the impli-150

cation → and the product ∗ are completely determined by their action on E(A)151

and the value of u ∗ u, where E(A) = {a ∈ A|νa = a}. More specifically:152
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• ν(a→ b) = (νa→ νb) ∧ (µa→ µb).153

• µ(a→ b) = (µa→ (µ(u ∗ u) → µb)) ∧ (νa→ µb).154

• ν(a ∗ b) = νa ∗ νb.155

• µ(a ∗ b) = (νa ∗ µb) ∨ (µa ∗ νb) ∨ (µa ∗ µb ∗ µ(u ∗ u)).156

Definition 14 [16]. Let A be triangle algebra. A mapping σ : A→ A such that,157

for all x, y ∈ A, we have158

(ST1) σ(0) = 0,159

(ST2) σ(x→ y) = σ(x) → σ(x ∨ y),160

(ST3) σ(x ∗ y) = σ(x) ∗ σ(x→ (x ∗ y)),161

(ST4) σ(σ(x) ∗ σ(y)) = σ(x) ∗ σ(y),162

(ST5) σ(σ(x) → σ(y)) = σ(x) → σ(y),163

(ST6) σ(σ(x) ∨ σ(y)) = σ(x) ∨ σ(y),164

(ST7) σ(σ(x) ∧ σ(y)) = σ(x) ∧ σ(y),165

(ST8) σ(νx) = ν(σ(x)),166

(ST9) σ(µx) = µ(σ(x))167

is said to be a state operator on A and the pair (A, σ) is said to be a state triangle168

algebra.169

Lemma 15 [16]. Let (A, σ) be state triangle algebra. Then, we have following170

statements for all x, y ∈ A:171

(i) σ(1) = 1,172

(ii) σ(¬x) = ¬σ(x),173

(iii) If x ≤ y, then σ(x) ≤ σ(y),174

(iv) σ(σ(x)) = σ(x),175

(v) σ(A) = {x ∈ A|x = σ(x)},176

(vi) σ(x→ y) = σ(x) → σ(y) if and only if σ(y → x) = σ(y) → σ(x),177

(vii) if A is linear and faithful, then σ(x) = x for all x ∈ A.178
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Let F be a field where tensor products are defined and W be a F -space. The179

mapping over W ⊗W is denoted by δ. The twist map on this structure is given180

by δ(w1⊗w2) = w2⊗w1 and the identity map on F is defined by I : W →W ; for181

S : W⊗W →W⊗W a F−linear map, let S12 = S⊗I, S13 = (I⊗δ)(S⊗I)(δ⊗I)182

and S23 = I ⊗ S.183

Definition 16 [21]. A Yang-Baxter operator is an invertible F−linear map S :184

W ⊗ W → W ⊗ W that verifies the braid condition (called the Yang–Baxter185

equation):186

S12 ◦ S23 ◦ S12 = S23 ◦ S12 ◦ S23. (1)

If S verifies Equation (1), then both S ◦ µ and µ ◦ S verify the quantum Yang–187

Baxter equation (QYBE):188

S12 ◦ S13 ◦ S23 = S23 ◦ S13 ◦ S12. (2)

Lemma 17 [21]. Equations (1) and (2) are equivalent to each other.189

To construct set-theoretical solutions of Yang–Baxter equation in Lie alge-190

bras, we need the following definition.191

Definition 18 [21]. Let A be a set and S : A×A→ A×A, S(a1, a2) = (a′
1
, a′

2
)192

be a map. The map S is set-theoretical solution of Yang–Baxter equation if it193

verifies the following equality:194

S12 ◦ S23 ◦ S12 = S23 ◦ S12 ◦ S23, (3)

which is also equivalent to195

S12 ◦ S13 ◦ S23 = S23 ◦ S13 ◦ S12, (4)

where196

S12 : A3 → A3, S12(a1, a2, a3) = (a′1, a
′

2, a3),

S23 : A3 → A3, S23(a1, a2, a3) = (a1, a
′

2, a
′

3),

S13 : A3 → A3, S13(a1, a2, a3) = (a′1, a2, a
′

3).

3. Set-Theoretical Solutions for Yang-Baxter Equation in197

Triangle Algebras198

In this part of this paper, we handle some fundamental set-theoretical solutions of199

Yang-Baxter equation on triangle algebras. We show that the necessary and suffi-200

cient condition for certain mappings to be set-theoretical solutions of Yang-Baxter201
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equation on these structures is that these structure must be also MTL-triangle202

algebras, BL-triangle algebras or RL-triangle algebras. We constitute the set of203

νµ−equal elements. Then, we define the notion of formulas on triangle algebras.204

In parallel with previous step, we build the set of νµ−equal formulas. Then, we205

introduce recursively quasi-negation operator Ñ on triangle algebras. We find206

equal formulas to each other by applying Ñ operator. In the following step,207

we present a new operator M to reproduce a formula by recursively rewriting208

elements and operations in reverse order. Moreover, we give some fundamen-209

tal relations between these operators. Lastly, we show that if the the mapping210

S(x, y) is a set-theoretical solution of the Yang-Baxter equation in triangle alge-211

bras and the equality S(x, y) = S(N(y), N(x)) is verified for all x, y ∈ A, then212

the mappings Ñ(S(Ñ (y, x))) and M(S(y, x)) are also set-theoretical solutions of213

the Yang-Baxter equation in triangle algebras.214

Lemma 19. Let A be a residuated lattice. Then the following mappings are set-215

theoretical solutions of Yang–Baxter equation where u is constant (uncertainty,216

u 6= 0, u 6= 1):217

(i) if S is an identity map,218

(ii) if S(a, b) = (0, 0),219

(iii) if S(a, b) = (1, 1),220

(iv) if S(a, b) = (u, u),221

(v) if S(a, b) = (a, u),222

(vi) if S(a, b) = (u, b),223

(vii) if S(a, b) = (a, 0),224

(viii) if S(a, b) = (a, 1),225

(ix) if S(a, b) = (0, b),226

(x) if S(a, b) = (1, b).227

Proof. The proof of parts (i) − (iv) are straightforward.228

(v) Let S12 and S23 be defined as follows:229

S12(a1, a2, a3) = (a1, u, a3),

S23(a1, a2, a3) = (a1, a2, u).
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We satisfy the equation S12 ◦S23 ◦S12 = S23 ◦S12 ◦S23, for all (a1, a2, a3) ∈ A3.230

(S12 ◦ S23 ◦ S12)(a1, a2, a3) = S12(S23(S12(a1, a2, a3)))

= S12(S23(a1, u, a3))

= S12(a1, u, u)

= (a1, u, u)

= S23(a1, u, u)

= S23(S12(a1, a2, u))

= S23(S12(S23(a1, a2, a3)))

= (S23 ◦ S12 ◦ S23)(a1, a2, a3).

Therefore, S(a, b) = (a, u) is a set-theoretical solution of Yang-Baxter equation231

in triangle algebras. The proof of parts (vi)–(x) is similar to proof of (v).232

Let A be a triangle algebra. The mapping N and Nu are defined on A as

N(x) := x→ 0 and Nu(x) := x→ u

for each x ∈ A.233

Lemma 20. Let A be a residuated lattice. The mapping N and Nu are antitone234

on A.235

Proof. Let x, y ∈ A and x ≤ y. By the help of Lemma 7 (iv), we obtain236

y → 0 ≤ x→ 0. So, we have N(y) ≤ N(x). Then, N is an antitone mapping.237

Similarly, we get that Nu is also an antitone mapping.238

Lemma 21. Let A be a residuated lattice. The mappings S1(x, y) = (N(y), N(x))239

and S2(x, y) = (Nu(y), Nu(x)) verify the braid condition on this structure. Then,240

they are set-theoretical solutions of the Yang-Baxter equation on A.241

Lemma 22. Let A be a residuated lattice and let a = N(x) and b = N(N(y)).
Then the following identity holds:

N(a) → N(b) = b→ a.

Proof. Assume that a, b ∈ A such that a = N(x) and b = N(N(y)). By using242

Lemma 7, we obtain243

N(a) → N(b) = N(N(x)) → N(N(N(y)))

= ((x→ 0) → 0) → (((y → 0) → 0) → 0)

= ((y → 0) → 0) → (((x→ 0) → 0) → 0)

= b→ a.

244
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Lemma 23. Let A be a residuated lattice. The mappings245

(i) S(x, y) = (1, x ∧ y)246

(ii) S(x, y) = (x ∧ y, 1)247

(iii) S(x, y) = (x ∨ y, 0)248

(iv) S(x, y) = (0, x ∨ y),249

(v) S(x, y) = (x ∨ y, x ∧ y)250

(v) S(x, y) = (x ∧ y, x ∨ y)251

verify the braid condition on this structure. Therefore, they are set-theoretical252

solutions of Yang-Baxter equation on residuated lattices.253

Proposition 24. If a mapping verifies the braid condition on residuated lattices,254

then it also verifies the braid condition on triangle algebras.255

Proposition 25. Let A be a triangle algebra. The mappings256

(i) S(x, y) = (ν(x ∨ y), ν(x ∧ y)),257

(ii) S(x, y) = (µ(x ∨ y), µ(x ∧ y)),258

(iii) S(x, y) = (ν(x ∧ y), ν(x ∨ y)),259

(iv) S(x, y) = (µ(x ∧ y), µ(x ∨ y))260

verify the braid condition on this structure. Therefore, they are set-theoretical261

solutions of Yang-Baxter equation on A.262

Lemma 26. Let A be a triangle algebra. The mappings263

(i) S(x, y) = ((x→ y) → (y → x), 1)264

(ii) S(x, y) = (1, (x → y) → (y → x))265

verify the braid condition on this structure if and only if A is also an MTL−triangle266

algebra.267
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Proof. (i) (⇒:) Assume that the mapping S(x, y) = ((x → y) → (y → x), 1)268

verifies the braid condition on this structure. Then, we have269

(S12 ◦ S23 ◦ S12)(x, y, z)

= S12(S23(S12(x, y, z)))

= S12(S23((x→ y) → (y → x), 1, z))

= S12((x→ y) → (y → x), (1 → z) → (z → 1), 1)

= S12((x→ y) → (y → x), 1, 1)

= (((x→ y) → (y → x) → 1) → (1 → (x→ y) → (y → x)), 1, 1)

= ((x→ y) → (y → x), 1, 1) (5)

and270

(S23 ◦ S12 ◦ S23)(x, y, z)

= S23(S12(S23(x, y, z)))

= S23(S12(x, (y → z) → (z → y), 1))

= S23((x→ ((y → z) → (z → y))) → (((y → z) → (z → y)) → x), 1, 1)

= ((x→ ((y → z) → (z → y))) → (((y → z) → (z → y)) → x), 1, 1). (6)

Since this mapping satisfy the braid condition on this structure, the Equation271

(5) and the Equation (6) must be equal to each other. This condition is only272

verified when the equation (a→ b) ∨ (b→ a) = 1 is correct for each a, b ∈ A. By273

Definition 11, we obtain that the structure A is also an MTL−triangle algebra.274

(⇐:) Assume that A is also an MTL−triangle algebra. Then, we have (a→275

b)∨ (b→ a) = 1 for each a, b ∈ A. So, we get S(x, y) = ((x→ y) → (y → x), 1) =276

(1, 1). Then, it easily show that the mapping S(x, y) is verified braid condition277

on A.278

(ii) We also obtain same conclusion for the mapping S(x, y) = (1, (x → y) →279

(y → x)) by using similar procedure in (i).280

Proposition 27. Let A be a triangle algebra. The mappings281

(i) S(x, y) = (νy, νx),282

(ii) S(x, y) = (µy, µx)283

verify the braid condition on this structure. Therefore, they are set-theoretical284

solutions of Yang-Baxter equation on A.285
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Proof. (i) We show that this mapping satisfies the braid condition on this struc-286

ture. Then, we get the following equalities:287

(S12 ◦ S23 ◦ S12)(x, y, z) = S12(S23(S12(x, y, z)))

= S12(S23(νy, νx, z))

= S12(νy, νz, ννx)

= (ννz, ννy, ννx)

= S23(ννz, νx, νy)

= S12(S23(x, νz, νy))

= S23(S12(S23(x, y, z))) = (S23 ◦ S12 ◦ S23)(x, y, z).

(ii) By the help of similar method in (i), we can show that the mapping288

S(x, y) = (µy, µx) satisfies the braid condition.289

Using Lemma 23, Definition 9 and Proposition 27, we obtain Proposition 25.290

Lemma 28. Let A be a triangle algebra. The mappings291

(i) S(x, y) = (x ∗ (x→ y), 1),292

(ii) S(x, y) = (1, x ∗ (x→ y)),293

(iii) S(x, y) = (y ∗ (y → x), 1),294

(iv) S(x, y) = (1, y ∗ (y → x)),295

(v) S(x, y) = (νx ∗ (νx→ νy), 1),296

(vi) S(x, y) = (1, νx ∗ (νx→ νy)),297

(vii) S(x, y) = (νy ∗ (νy → νx), 1),298

(viii) S(x, y) = (1, νy ∗ (νy → νx)),299

(ix) S(x, y) = (µx ∗ (µx→ µy), 1),300

(vi) S(x, y) = (1, µx ∗ (µx→ µy)),301

(vii) S(x, y) = (µy ∗ (µx→ µx), 1),302

(viii) S(x, y) = (1, µy ∗ (µx→ µx))303

verify the braid condition on this structure if and only if the structure A is also304

an RL−triangle algebra or a BL−triangle algebra.305
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Proof. (i) (⇒:) Assume that the mapping S(x, y) = (x ∗ (x→ y), 1) verifies the306

braid condition on this structure. Then, we have307

(S12 ◦ S23 ◦ S12)(x, y, z)

= S12(S23(S12(x, y, z)))

= S12(S23(x ∗ (x→ y), 1, z))

= S12(x ∗ (x→ y), 1 ∗ (1 → z), 1)

= ((x ∗ (x→ y)) ∗ ((x ∗ (x→ y)) → (1 ∗ (1 → z))), 1, 1) (7)

and308

(S23 ◦ S12 ◦ S23)(x, y, z)

= S23(S12(S23(x, y, z)))

= S23(S12(x, y ∗ (y → z), 1))

= S23(x ∗ (x→ (y ∗ (y → z))), 1, 1)

= (x ∗ (x→ (y ∗ (y → z))), 1, 1). (8)

Since this mapping satisfy the braid condition on this structure, the Equation309

(7) and the Equation (8) must be equal to each other. This condition is only310

verified when the equation a ∧ b = a ∗ (a → b) is correct for each a, b ∈ A. By311

Definition Definition 11 and Definition 12, we obtain that the structure A is also312

an RL−triangle algebra or BL−triangle algebra.313

(⇐:) Let the structure A be also an RL−triangle algebra or BL−triangle314

algebra. Then, we have a ∧ b = a ∗ (a → b) for each a, b ∈ A. So, we get315

S(x, y) = (x ∗ (x → y), 1) = (x ∧ y, 1). By the help of Lemma 23, it easily show316

that the mapping S(x, y) is verified braid condition on A.317

(ii)–(viii): Since the proof of these parts follow a similar procedure to the318

proof of (i), we omit them.319

In a triangle algebra, the model operators ν and µ correspond to the necessity320

and possibility, respectively. By taking into consideration these, we can define a321

set of formulas which are equal under the necessity and possibility operators in322

triangle algebras.323

Definition 29. Let A be a triangle algebra. For an element x ∈ A, if νx = µx,
then it is called νµ− equal element. The set of νµ− equal elements is illustrated
with the following set:

Eνµ =: {x ∈ A|νx = µx}.

During this paper, a formula is said to be atomic on triangle algebra, if it324

contains no connectives.325
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Lemma 30. If the formula ψ is not atomic on triangle algebra, then there are326

formulas φ→ θ, φ ∗ θ, φ ∨ θ, φ ∧ θ, ν(φ) or µ(φ) which are equal to ψ such that327

φ, θ ∈ A.328

Example 31. Let A be a triangle algebra. Then,329

• ψ(x, y) := x, ψ(x, y) := y, ψ(x, y) := u or ψ(x, y) := 1 and etc. are atomic330

formulas because there is no operator in them.331

• ψ(x, y) := x → y, ψ(x, y) := x → (y ∗ x), ψ(x, y) := 0 → 1 or ψ(x, y) :=332

µy ∗ (µx → µx) and etc. are not atomic formulas because they contain333

operators.334

For a formula ψ ∈ A, if νψ = µψ, then it is called νµ − equal formula. The
set of νµ− equal formulas is illustrated with the following set:

EFOR
νµ =: {ψ ∈ A|νψ = µψ}.

Lemma 32. Let A be a triangle algebra. If x ∈ Eνµ, then x = νx = µx. And335

also, if ψ ∈ EFOR
νµ , then ψ = νψ = µψ.336

Proposition 33. Let A be a triangle algebra. The mapping S(x, y) = (µψ(y), νφ(x))337

verifies the braid condition on this structure where νφ(µψ(y)) = µψ(νφ(y)) for338

each y ∈ A. Therefore, this mapping is a set-theoretical solution of Yang-Baxter339

equation on A.340

Proof. We show that this mapping satisfies the braid condition on this structure.341

Then, we obtain the following eqaulities:342

(S12 ◦ S23 ◦ S12)(x, y, z) = S12(S23(S12(x, y, z)))

= S12(S23(µψ(y), νφ(x), z))

= S12(µψ(y), µψ(z), νφ(νφ(x)))

= (µψ(µψ(z)), νφ(µψ(y)), νφ(νφ(x))) (9)

and343

(S23 ◦ S12 ◦ S23)(x, y, z) = S23(S12(S23(x, y, z)))

= S23(S12(x, µψ(z), νφ(y)))

= S23(µψ(µψ(z)), νφ(x), νφ(y))

= (µψ(µψ(z)), µψ(νφ(y)), νφ(νφ(x))). (10)

By the hypothesis, we have νφ(µψ(y)) = µψ(νφ(y)) for each y ∈ A. Therefore,344

we verify the braid condition from the Equality (9) and (10). As a result, this345

mapping is a set-theoretical solution of Yang-Baxter equation on A.346
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Proposition 34. Let A be a triangle algebra. The mappings (i) − (ii) in Propo-347

sition 27 and the following mappings348

(iii) S(x, y) = (νy, µx),349

(iv) S(x, y) = (µy, νx)350

verify the braid condition on this structure where x, y ∈ Eνµ. Therefore, the351

Yang-Baxter equation has a set-theoretical solution in triangle algebra.352

Proof. It is clear from Proposition 27 and Lemma 32.353

Proposition 35. Let A be a triangle algebra. The mappings (i)− (iv) in Propo-354

sition 25 and the following mappings355

(v) S(x, y) = (ν(x ∨ y), µ(x ∧ y)),356

(vi) S(x, y) = (µ(x ∨ y), ν(x ∧ y)),357

(vii) S(x, y) = (ν(x ∧ y), µ(x ∨ y)),358

(viii) S(x, y) = (µ(x ∧ y), ν(x ∨ y))359

verify the braid condition on this structure where x, y ∈ Eνµ. Therefore, they are360

set-theoretical solutions of Yang-Baxter equation on triangle algebras.361

Let A be a triangle algebra. The mapping NFOR are defined as

NFOR(ψ) := ψ → 0

for each formula ψ on A.362

Theorem 36. Let A be a triangle algebra. For all formula ψ on A, we have363

ν(NFOR(ψ)) ≤ NFOR(ν(ψ)).364

Proof. Assume that ψ be a formula on A. Then, we have following inequality365

by the help of Definition 9:366

ν(NFOR(ψ)) = ν(ψ → 0)

≤ ν(ψ) → ν0

= ν(ψ) → 0

= NFOR(ν(ψ)).

367



16 I. Senturk, T. Oner and A. Borumand Saeid

Definition 37. Let A be a triangle algebra. The unary quasi-negation operator368

Ñ is recursively defined as follows:369

Ñ(ψ) =





N(ψ), if ψ is atomic,

Ñ(φ) → Ñ(θ), if ψ = θ → φ,

Ñ(φ) ∗ Ñ(θ), if ψ = θ ∗ φ,

Ñ(φ) ∧ Ñ(θ), if ψ = θ ∧ φ,

Ñ(φ) ∨ Ñ(θ), if ψ = θ ∨ φ,

ν(Ñ(φ)), if ψ = ν(φ),

µ(Ñ(φ)), if ψ = µ(φ)

for any formula ψ, φ and θ on A.370

Example 38. Let A be a triangle algebra. The formula ψ(x, y) = (µa→ (µ(u ∗371

u) → µb)) ∧ (νa → µb) is given. Then, we have the following equality by the372

Definition 37:373

Ñ(ψ(x, y))

= Ñ((µa→ (µ(u ∗ u) → µb)) ∧ (νa→ µb))

= Ñ(νa→ µb) ∧ Ñ(µa→ (µ(u ∗ u) → µb))

= (Ñ (µb) → Ñ(νa)) ∧ (Ñ (µ(u ∗ u) → µb) → Ñ(µa))

= (µ(Ñ (b)) → ν(Ñ(a))) ∧ ((Ñ(µb) → Ñ(µ(u ∗ u))) → µ(Ñ(a)))

= (µ(Ñ (b)) → ν(Ñ(a))) ∧ ((µ(Ñ (b)) → µ(Ñ(u ∗ u))) → µ(Ñ(a)))

= (µ(Ñ (b)) → ν(Ñ(a))) ∧ ((µ(Ñ (b)) → µ(Ñ(u) ∗ Ñ(u))) → µ(Ñ(a))).

Theorem 39. Let A be a triangle algebra. The mapping NFOR is an antitone374

on A but the mapping Ñ is not an antitone on A.375

Proof. Let ψ and θ be two formulas on A. Assume that ψ ≤ θ. Then, we have376

ψ → θ = 1. By using Lemma 3 and Lemma 7, we get following result:377

1 ≥ NFOR(θ) → NFOR(ψ) = (θ → 0) → (ψ → 0)

≥ ψ → θ = 1.

Then, we getNFOR(θ) → NFOR(ψ) = 1. This means thatNFOR(θ) ≤ NFOR(ψ).378

So, the mapping NFOR is an antitone.379

Let ψ and θ be two formulas on A such that ψ ≤ θ. Then, we have ψ → θ = 1.380

Assume that Ñ(θ) ≤ Ñ(ψ). We attain Ñ(θ) → Ñ(ψ) = 1. By using Definition381

37, we get Ñ(ψ → θ) = Ñ(1) = 1. This is contradiction since Ñ(1) = N(1) =382

0 6= 1. So, the mapping Ñ is not an antitone.383
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Definition 40. Let A be a triangle algebra. The binary quasi-negation operator384

Ñ is defined as follows:385

Ñ(φ, θ) = (Ñ (φ), Ñ (θ))

holds for any formulas φ, θ ∈ A.386

Lemma 41. Let A be a triangle algebra. The mapping S(x, y) = Ñ(1 → y, 1 →387

x) verifies the braid condition on this structure. Therefore, this mapping is a388

set-theoretical solution of Yang-Baxter equation on A.389

Proof. Using Definition 40 and Definition 37, we get

S(x, y) = Ñ(1 → x, 1 → y) = ((x→ 0) → 0, (y → 0) → 0).

We show that this mapping verifies the braid condition. Then, we have390

(S12 ◦ S23 ◦ S12)(x, y, z)

= S12(S23(S12(x, y, z)))

= S12(S23((x→ 0) → 0, (y → 0) → 0, z))

= S12((x→ 0) → 0, (((y → 0) → 0) → 0) → 0, (z → 0) → 0)

= ((((x → 0) → 0) → 0) → 0, (((((y → 0) → 0) → 0) → 0) → 0) → 0,

(z → 0) → 0) (11)

and391

(S23 ◦ S12 ◦ S23)(x, y, z)

= S23(S12(S23(x, y, z)))

= S23(S12(x, (y → 0) → 0, (z → 0) → 0))

= S23((x→ 0) → 0, (((y → 0) → 0) → 0) → 0, (z → 0) → 0)

= ((x→ 0) → 0, (((((x → 0) → 0) → 0) → 0) → 0) → 0,

(((z → 0) → 0) → 0) → 0). (12)

By the help of Lemma 5, we get the equality of (11) and (12). So, it verifies the392

braid condition on this structure. Therefore, this mapping is a set-theoretical393

solution of Yang-Baxter equation on A.394

Example 42. Let A be a triangle algebra. The mappings395

(i) S1(x, y) = (1 → x, 1 → y)396

(ii) S2(x, y) = ((x→ 0) → y, 0)397
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are two set-theoretical solutions of the Yang-Baxter equation in triangle algebras.398

The mapping399

T1(x, y) = Ñ(S1(x, y))

= Ñ(1 → x, 1 → y)

= (Ñ(1 → y), Ñ(1 → x))

= ((y → 0) → 0, (x → 0) → 0)

is also a set-theoretical solution of the Yang-Baxter equation in triangle algebras.400

We show that the mapping T1(x, y) verifies the braid condition on this structure:401

(T 12

1 ◦ T 23

1 ◦ T 12

1 )(x, y, z)

= T 12

1 (T 23

1 (T 12

1 (x, y, z)))

= T 12

1 (T 23

1 (((y → 0) → 0, (x→ 0) → 0, z))

= T 12

1 ((y → 0) → 0, (z → 0) → 0, (((x → 0) → 0) → 0) → 0)

= ((((z → 0) → 0) → 0) → 0, (((y → 0) → 0) → 0) → 0,

(((x→ 0) → 0) → 0) → 0) (13)

and402

(T 23

1 ◦ T 12

1 ◦ T 23

1 )(x, y, z)

= T 23

1 (T 12

1 (T 23

1 (x, y, z)))

= T 23

1 (T 12

1 ((x, (z → 0) → 0, (y → 0) → 0))

= T 23

1 ((((z → 0) → 0) → 0) → 0, (x → 0) → 0, (y → 0) → 0)

= ((((z → 0) → 0) → 0) → 0, (((y → 0) → 0) → 0) → 0,

(((x→ 0) → 0) → 0) → 0) (14)

Since the Equation (13) and the Equation (14) are equal to each other, the403

mapping T1(x, y) verifies the braid condition on this structure. But the mapping404

T2(x, y) = Ñ(S2(x, y))

= Ñ((x→ 0) → y, 0)

= (Ñ(0), Ñ ((x→ 0) → y))

= (1, (y → 0) → (x→ 0))

is not a set-theoretical solution of the Yang-Baxter equation in triangle algebras.405

Because, we get406
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407

(T 12

2 ◦ T 23

2 ◦ T 12

2 )(x, y, z)

= T 12

2 (T 23

2 (T 12

2 (x, y, z)))

= T 12

2 (T 23

2 ((1, (y → 0) → (x→ 0), z))

= T 12

2 (1, 1, (z → 0) → (((y → 0) → (x→ 0)) → 0))

= (1, 1, (z → 0) → (((y → 0) → (x→ 0)) → 0)) (15)

and408

(T 23

2 ◦ T 12

2 ◦ T 23

2 )(x, y, z)

= T 23

2 (T 12

2 (T 23

2 (x, y, z)))

= T 23

2 (T 12

2 ((x, 1, (z → 0) → (y → 0)))

= T 23

2 (1, (1 → 0) → (x→ 0), (z → 0) → (y → 0))

= T 23

2 (1, 1, (z → 0) → (y → 0))

= (1, 1, (((z → 0) → (y → 0)) → 0) → (1 → 0)). (16)

Since the Equation (15) and the Equation (16) are not equal to each other, the409

mapping T2(x, y) does not verify the braid condition.410

Lemma 43. Let A be a triangle algebra and let ψ be any formula from A×A to411

A. Then the following identity412

Ñ(ψ(Ñ (x, y))) =





ψ(y, x), if ψ is atomic,

ψ(N(y), N(x)), if ψ ∈ {θ → φ, θ ∗ φ, θ ∧ φ, θ ∨ φ, ν(φ), µ(φ)}

such that θ and φ are any atomic formulas,

is satisfied for each (x, y) ∈ A×A.413

Proof. Let x, y and k be any three elements in A. Assume that ψ is an atomic414

formula from A×A to A. Then ψ(x, y) = x (first projection mapping), ψ(x, y) =415

y (second projection mapping) or ψ(x, y) = k (constant mapping). We assume416

that ψ(x, y) = x. Then we have417

Ñ(ψ(Ñ (x, y))) = Ñ(ψ(Ñ (y), Ñ(x)))

= Ñ(ψ(N(y), N(x)))

= Ñ(N(y))

= N(N(y))

= y

= ψ(y, x).
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For other parts of atomic formulas could be similarly obtained.418

Let (x, y) be any element in A×A and ψ be a formula from A×A to A. We419

assume that ψ is not atomic formula, then we have ψ ∈ {θ → φ, θ ∗ φ, θ ∧ φ, θ ∨420

φ, ν(φ), µ(φ)}. Assume that ψ = φ→ θ. Then, we get421

Ñ(ψ(Ñ (x, y))) = Ñ(ψ(Ñ (y), Ñ (x)))

= Ñ(ψ(N(y), N(x)))

= Ñ(φ(N(y), N(x)) → θ(N(y), N(x)))

= N(θ(N(y), N(x))) → N(φ(N(y), N(x)))

= φ(N(y), N(x)) → θ(N(y), N(x))

= ψ(N(y), N(x)).

Similarly, we obtain Ñ(ψ(Ñ (x, y))) = ψ(N(y), N(x)) where ψ ∈ {θ → φ, θ∗φ, θ∧422

φ, θ ∨ φ, ν(φ), µ(φ)}.423

Definition 44. Let A be a triangle algebra. Then the mapping M is defined on424

A as follows425

M(ψ(x, y)) =





ψ(y, x), if ψ is atomic,

M(θ(y, x)) → M(φ(y, x)), if ψ(x, y) = φ(x, y) → θ(x, y),

M(θ(y, x)) ∗M(φ(y, x)), if ψ(x, y) = φ(x, y) ∗ θ(x, y),

M(θ(y, x)) ∧M(φ(y, x)), if ψ(x, y) = φ(x, y) ∧ θ(x, y),

M(θ(y, x)) ∨M(φ(y, x)), if ψ(x, y) = φ(x, y) ∨ θ(x, y),

M(ν(φ(y, x))), if ψ(x, y) = ν(φ(y, x))

M(µ(φ(y, x))), if ψ(x, y) = µ(φ(y, x))

for any formula ψ, φ and θ ∈ A.426

Example 45. Let A be a triangle algebra and let the formula ψ(a, b) = ((a →427

b) → a) → (b → a) be given. Then, the image of ψ under the mapping M is428

found as below:429

For this aim, we firstly determine φ(x, y) = (x → y) → x and θ(x, y) = y →430

x. So, we obtain φ(y, x) = (y → x) → y and θ(y, x) = x → y by substituting431

[x := y] and [y := x] simultaneously.432

M(ψ(x, y)) = M(θ(y, x)) → M(φ(y, x))

= M(x→ y) → M((y → x) → y)

= (M(y) → M(x)) → (M(y) → M(y → x))

= (y → x) → (y → (M(x) → M(y)))

= (y → x) → (y → (x→ y)).
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Consequently, the mapping M gives a new formula which is obtained by rewriting433

all binary connectives in inverse order and by substituting [x := y] and [y := x]434

in formula simultaneously.435

Theorem 46. Let A be a triangle algebra.Then, the following identity

M(ψ(x, y)) = Ñ(ψ(Ñ (y, x)))

for all ψ(x, y) ∈ A.436

Proof. We prove this theorem by using induction on formulas.437

• Assume that ψ(x, y) is an atomic formula on A. Then, the equality is clearly438

obtained from the Definition 44 and the Lemma 43.439

• Assume that ψ(x, y) = φ(x, y) → θ(x, y) such that M(φ(x, y)) = Ñ(φ(Ñ (y, x)))440

and M(θ(x, y)) = Ñ(θ(Ñ(y, x))). By using hypothesis, we get441

M(ψ(x, y)) = M(φ(x, y) → θ(x, y))

= M(θ(x, y)) → M(φ(x, y))

= Ñ(θ(Ñ(y, x))) → Ñ(φ(Ñ (y, x)))

= Ñ(φ(Ñ (y, x)) → θ(Ñ(y, x)))

= Ñ(ψ(Ñ (y, x))).

Similarly, we obtain M(ψ(x, y)) = Ñ(ψ(Ñ (y, x))) where ψ ∈ {θ → φ, θ ∗ φ, θ ∧442

φ, θ ∨ φ, ν(φ), µ(φ)}.443

So, the identity M(ψ(x, y)) = Ñ(ψ(Ñ (y, x))) holds for all ψ(x, y) ∈ A.444

Theorem 47. Let A be a triangle algebra. Assume that the mapping S(x, y)445

is a set-theoretical solution of the Yang-Baxter equation in triangle algebras.446

If the equality S(x, y) = S(N(y), N(x)) for all x, y ∈ A, then the mappings447

Ñ(S(Ñ (y, x))) and M(S(y, x)) are also set-theoretical solutions of the Yang-448

Baxter equation in triangle algebras.449

4. Set-Theoretical Solutions of Yang-Baxter Equation in State450

Triangle Algebras451

In this section, we handle some fundamental set-theoretical solutions of Yang-452

Baxter Equation in state triangle algebras. Then, we state the relationship of453

transferring of set-theoretical solutions of Yang-Baxter equation among (MTL,BL,454

RL)-triangle algebras and state (MTL,BL, RL)-triangle algebras. Then, we give455

a scheme to explain clearly these relations. Then, we give some fundamental456
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relations between the operators M and Ñ in triangle algebras. Moreover, we ob-457

tain that the mapping S(x, y) is a the set-theoretical solution of the Yang-Baxter458

equation in state triangle algebras. If the equality S(x, y) = S(N(σ(y)), N(σ(x)))459

for all x, y ∈ A, then the mappings Ñ(S(Ñ(σ(y), σ(x)))) and M(S(σ(y), σ(x)))460

are also set-theoretical solutions of the Yang-Baxter equation in state triangle461

algebras.462

Lemma 48. Let (A, σ) be a state triangle algebra. The mappings463

(i) S(x, y) = (σx, σy),464

(ii) S(x, y) = (σy, σx)465

verify the braid condition on this structure. Therefore, the Yang-Baxter equation466

has a set-theoretical solution in state triangle algebra.467

Proof. (i) We show that this mapping satisfies the braid condition on this struc-468

ture. Then, we obtain the following eqaulities:469

(S12 ◦ S23 ◦ S12)(x, y, z) = S12(S23(S12(x, y, z)))

= S12(S23(σ(x), σ(y), z))

= S12(σ(x), σ(σ(y)), σ(z))

= (σ(σ(x)), σ(σ(σ(y))), σ(z)) (17)

and470

(S23 ◦ S12 ◦ S23)(x, y, z) = S23(S12(S23(x, y, z)))

= S23(S12(x, σ(y), σ(z)))

= S23(σ(x), σ(σ(y)), σ(z))

= (σ(x), σ(σ(σ(y))), σ(σ(z))). (18)

By Lemma 15, we have σ(x) = σ(σ(x)) and σ(z) = σ(σ(z)).Therefore, we verify471

the braid condition from the equality (17) and (18). As a result, this mapping is472

a set-theoretical solution in state triangle algebra.473

(ii) We show that this mapping satisfies the braid condition on this structure.474

Then, we get the following equalities:475

(S12 ◦ S23 ◦ S12)(x, y, z) = S12(S23(S12(x, y, z)))

= S12(S23(σ(y), σ(x), z))

= S12(σ(y), σ(z), σ(σ(x)))

= (σ(σ(z)), σ(σ(y)), σ(σ(x)))

= S23(σ(σ(z)), σ(x), σ(y))

= S12(S23(x, σ(z), σ(y)))

= S23(S12(S23(x, y, z))) = (S23 ◦ S12 ◦ S23)(x, y, z).
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476

Proposition 49. Let (A, σ) be a state triangle algebra. The mappings477

(i) S(x, y) = (σ(νy), σ(νx)),478

(ii) S(x, y) = (σ(µy), σ(µx))479

verify the braid condition on this structure. Therefore, the Yang-Baxter equation480

has a set-theoretical solution in state triangle algebra.481

Proof. It is straightforward from Lemma 22 and Definition 14.482

Proposition 50. Let (A, σ) be a state triangle algebra. The mappings483

(i) S(x, y) = (σ(ν(σ(x ∨ y))), σ(ν(σ(x ∧ y)))),484

(ii) S(x, y) = (σ(µ(σ(x ∨ y))), σ(µ(σ(x ∧ y)))),485

(iii) S(x, y) = (σ(ν(σ(x ∧ y))), σ(ν(σ(x ∨ y)))),486

(iv) S(x, y) = (σ(µ(σ(x ∧ y))), σ(µ(σ(x ∨ y))))487

(v) S(x, y) = (σ(σ(ν(x ∨ y))), σ(σ(ν(x ∧ y)))),488

(vi) S(x, y) = (σ(σ(µ(x ∨ y))), σ(σ(µ(x ∧ y)))),489

(vii) S(x, y) = (σ(σ(ν(x ∧ y))), σ(σ(ν(x ∨ y)))),490

(viii) S(x, y) = (σ(σ(µ(x ∧ y))), σ(σ(µ(x ∨ y))))491

verify the braid condition on this structure. Therefore, the Yang-Baxter equation492

has a set-theoretical solution in state triangle algebra.493

Proof. It is shown by Proposition 25 and Definition 14.494

Now, we can give the following scheme to explain clearly the relationship of495

transferring of set-theoretical solutions of Yang-Baxter equation among (MTL,BL,496

RL)-triangle algebras and state (MTL,BL, RL)-triangle algebras.497
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Residuated Lattice

Triangle Algebra

MTL-Triangle
Algebra

BL-Triangle
Algebra State Triangle

Algebra

RL-Triangle
Algebra

State MTL-Triangle
Algebra

State BL-Triangle
Algebra

State RL-Triangle
Algebra

498

Example 51. Let L = {0, x, y, z, t, 1}. The relations of elements in A are given499

as Figure 1500

1

t

x

z

y

0

Figure 1.: Hasse Diagram of L

and the binary operations ∧,∨, ∗ and → on this structure are defined as the501

Cayley Table 1, 2, 3 and 4.502

So, the algebraic structure L = (L,∨,∧, ∗,→, 0, 1) is a residuated lattice. By the503

help of this residuated lattice, we construct a triangle algebra.504
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∧ 0 x y z t 1

0 0 0 0 0 0 0
x 0 x 0 0 x x

y 0 0 y y 0 y

z 0 0 y z 0 z

t 0 x 0 0 t t

1 0 x y z t 1

Table 1.: ∧−operation on L

and

∨ 0 x y z t 1

0 0 x y z t 1
x x x 1 1 t 1
y y 1 y z 1 1
z z 1 z z 1 1
t t t 1 1 t 1
1 1 1 1 1 1 1

Table 2.: ∨−operation on L

∗ 0 x y z t 1

0 0 0 0 0 0 0
x 0 x 0 0 x x

y 0 0 y y 0 y

z 0 0 t z 0 z

t 0 x 0 z t t

1 0 x y z t 1

Table 3.: ∗−operation on L

and

→ 0 x y z t 1

0 1 1 1 1 1 1
x z 1 z z 1 1
y t t 1 1 t 1
z x x 1 1 t 1
t y 1 y z 1 1
1 0 x y z t 1

Table 4.: → −operation on L

Let A = ([0, 0], [0, x], [0, y], [0, z], [0, t], [0, 1], [x, t], [x, 1], [y, y], [y, z], [y, 1],505

[t, t], [t, 1], [z, z], [z, 1], [1, 1]). If the operators ν, µ, ∨, ∧, ∗ and → are defined506

as follows:507

ν[a, b] = [a, a],

µ[a, b] = [b, b],

[a, b] ∨ [c, d] = [a ∨ c, b ∨ d]

[a, b] ∧ [c, d] = [a ∧ c, b ∧ d],

[a, b] ∗ [c, d] = [a ∗ c, b ∗ d]

[a, b] → [c, d] = [(a→ c) ∧ (b→ d), b→ d].

The algebraic structure A = (A,∨,∧, ∗,→, ν, µ, [0, 0], [0, 1], [1, 1]) is a triangle al-508

gebra with the smallest element [0, 0], the greatest element [1, 1] and new constant509

[0, 1]. The Hasse diagram of A is given in Figure 2.510
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[1, 1]

[0, 0]

[0, 1]

[0, x]

[0, t][x, x]

[x, t]

[x, 1] [t, t]

[t, 1]

[0, y]

[0, z] [y, y]

[y, z]

[y, 1][z, z]

[z, 1]

Figure 2.: Hasse Diagram of A.

Also, the state operator σ is defined as511

σ(a) =





[0, 0], a ∈ {[0, 0], [0, x], [0, y], [0, z], [0, t], [0, 1]},

[x, x], a ∈ {[x, 0], [x, t], [x, 1]},

[y, y], a ∈ {[y, y], [y, z], [y, 1]},

[t, t], a ∈ {[t, t], [t, 1]},

[z, z], a ∈ {[z, z], [z, 1]},

[1, 1], a ∈ {[1, 1]}.

Then the structure (A, σ) is a state triangle algebra. Moreover, we get for each
a, b ∈ A:

σ(a ∗ b) = σ(a) ∗ σ(b) and σ(a→ b) = σ(a) → σ(b).

Then, the state mapping σ is also an endomorphism. In addition to this, we
attain

Ker(σ) = {[1, 1]}.

So, we obtain the state operator σ is faithful. In accordance with these, all of512

the set-theoretical solutions given in Section 3 and Section 4 could be verified on513

this example.514
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Lemma 52. Let A be a state triangle algebra. The mappings515

(i) S(x, y) = (σ(x) ∗ (σ(x) → σ(y)), 1),516

(ii) S(x, y) = (1, σ(x) ∗ (σ(x) → σ(y))),517

(iii) S(x, y) = (σ(y) ∗ (σ(y) → σ(x)), 1),518

(iv) S(x, y) = (1, σ(y) ∗ (σ(y) → σ(x))),519

(v) S(x, y) = (σ(νx) ∗ (σ(νx) → σ(νy)), 1),520

(vi) S(x, y) = (1, σ(νx) ∗ (σ(νx) → σ(νy))),521

(vii) S(x, y) = (σ(νy) ∗ (σ(νy) → σ(νx)), 1),522

(viii) S(x, y) = (1, σ(νy) ∗ (σ(νy) → σ(νx))),523

(ix) S(x, y) = (σ(µx) ∗ (σ(µx) → σ(µy)), 1),524

(vi) S(x, y) = (1, σ(µx) ∗ (σ(µx) → σ(µy))),525

(vii) S(x, y) = (σ(µy) ∗ (σ(µy) → σ(µx)), 1),526

(viii) S(x, y) = (1, σ(µy) ∗ (σ(µy) → σ(µx)))527

verify the braid condition if and only if A is a state RL−triangle algebra or a528

state BL−triangle algebra.529

Proof. It is obtained from Definition 14 and Lemma 28.530

Lemma 53. Let A be a state triangle algebra and let ψ be any formula from531

A×A to A. Then the following identity532

Ñ(ψ(Ñ (σ(x), σ(y)))) =





ψ(σ(y), σ(x)), if ψ is atomic,

if ψ ∈ {θ → φ, θ ∗ φ, θ ∧ φ,

ψ(N(σ(y)), N(σ(x))), θ ∨ φ, ν(φ), µ(φ)} such that

θ and φ are any atomic formulas,

is satisfied for each (x, y) ∈ A×A.533

Proof. The proof is verified by using Definition 14, Lemma 15 and Lemma 43.534

535
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Theorem 54. Let A be a state triangle algebra.Then, the following identity

M(ψ(σ(x), σ(y))) = Ñ(ψ(Ñ (σ(y), σ(x))))

for all ψ(x, y) ∈ A.536

Proof. It is obtained from Definition 14, Lemma 15 and Theorem 46.537

Theorem 55. Let A be a state triangle algebra. Assume that the mapping S(x, y)538

is a the set-theoretical solution of the Yang-Baxter equation in state triangle al-539

gebras. If the equality S(x, y) = S(N(σ(y)), N(σ(x))) for all x, y ∈ A, then540

the mappings Ñ(S(Ñ (σ(y), σ(x)))) and M(S(σ(y), σ(x))) are also set-theoretical541

solutions of the Yang-Baxter equation in state triangle algebras.542

Proof. It is straightforward from Definition 14, Lemma 15 and Theorem 47.543

5. Conclusion544

In this paper, by taking into consideration the previous research of triangle al-545

gebras, we present some fundamental set-theoretical solutions of Yang-Baxter546

equation in triangle algebras and state triangle algebras. We showed that the547

necessary and sufficient condition for certain mappings to be set-theoretical solu-548

tions of Yang-Baxter equation on these structures is that these structures must549

be also MTL-(state) triangle algebras, BL-(state) triangle algebras or RL-(state)550

triangle algebras. In accordance with these, we recursively introduce new op-551

erators Ñ and M. Then, we define the notion of formula on triangle algebra552

as a classical logic structure. Moreover, we show that some set-theoretical so-553

lutions are preserved under some conditions when these mappings are written554

by using these new operators. Also, we state the relationship of transferring of555

set-theoretical solutions of Yang-Baxter equation among (MTL,BL, RL)-(state)556

triangle algebras and state (MTL,BL, RL)-(state) triangle algebras. Then, we557

give a scheme to explain clearly these relations.558

The investigation of other such applications in different algebraic structures559

can be an interesting object for further work.560
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