DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score: 0.4

SJR: 0.203

SNIP: 0.562

MCQ: 0.12

Index Copernicus: 121.02

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

A.Z. Ansari

Abu Zaid Ansari

Department of Mathematics
Faculty of Science Islamic University of Madinah, K.S.A

email: ansari.abuzaid@gmail.com

Title:

Additive mappings satisfying algebraic identities in semiprime rings

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 43(2) (2023) 327-337

Received: 2021-08-29 , Revised: 2022-05-23 , Accepted: 2022-05-23 , Available online: 2023-01-13 , https://doi.org/10.7151/dmgaa.1422

Abstract:

Let $R$ be a $k$-torsion free semiprime ring. Suppose that $F, d : R\to R$ be two additive mappings which satisfy the algebraic identity $F(x^{2n})=F(x^n) \alpha(x^n)+ \beta(x^n) d(x^n)$ for all $x\in R$, where $\alpha$ and $\beta$ are automorphisms on $R$. Then $F$ is a generalized $(\alpha,\beta)$-derivation with associated $(\alpha,\beta)$-derivation $d$ on $R$, where $k\in\{2,n,2n-1\}$. On the other hand, it is proved that $f$ is a generalized Jordan left $(\alpha, \beta)$-derivation associated with Jordan left $(\alpha, \beta)$-derivation $\delta$ on $R$ if they satisfy the algebraic identity $f(x^{2n})=\alpha(x^n) f(x^n)+ \beta(x^n)\delta(x^n)$ for all $x\in R$ together with some restrictions on $R$.

Keywords:

semiprime rings, generalized $(\alpha, \beta)$-derivation, generalized left $(\alpha, \beta)$-derivation and additive mappings

References:

  1. S. Ali, On generalized left derivations in rings and Banach algebras, Aequat. Math. 81 (2011) 209–226.
    https://doi.org/10.1007/s00010-011-0070-5
  2. S. Ali and C. Haetinger, Jordan $\alpha$-centralizer in rings and some applications, Bol. Soc. Paran. Mat. 26 (2008) (1–2) 71–80.
    https://doi.org/10.5269/bspm.v26i1-2.7405
  3. A.Z. Ansari, On identities with additive mappings in rings, Iranian J. Math. Sci. Inform. 15 (1) (2020) 125–133. http://ijmsi.ir/article-1-1051-en.html
  4. A.Z. Ansari and F. Shujat, Additive mappings covering generalized $(\alpha_1, \alpha_2)$-derivations in semiprime rings, Gulf J. Math. 11 (2) (2021) 19–26. https://gjom.org/index.php/gjom/article/view/495
  5. M. Ashraf and S. Ali, On generalized Jordan left derivations in rings, Bull. Korean Math. Soc. 45 (2) (2008) 253–261.
    https://doi.org/10.4134/BKMS.2008.45.2.253
  6. J.M. Cusack, Jordan derivations in rings, Proc. Amer. Math. Soc. 53 (2) (1975) 321–324.
    https://doi.org/10.1090/S0002-9939-1975-0399182-5
  7. F. Shujat and A.Z. Ansari, Additive mappings satisfying certain identities of semiprime rings, Preprint in Bulletin of Korean Mathematical Society.
  8. I.N. Herstein, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957) 1104–1110.
    https://doi.org/10.1090/S0002-9939-1957-0095864-2
  9. C. Lanski, Generalized derivations and n-th power maps in rings, Comm. Algebra 35 (11) (2007) 3660–3672.
    https://doi.org/10.1080/00927870701511426
  10. E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. (1957) 1093–1100.
    https://doi.org/10.1090/S0002-9939-1957-0095863-0
  11. J. Vukman, On left Jordan derivations on rings and Banach algebras, Aequationes Math. 75 (2008) 260–266.
    https://doi.org/10.1007/s00010-007-2872-z
  12. S.M.A. Zaidi, M. Ashraf and S. Ali, On Jordan ideals and left $(\theta,\theta)$-derivation in prime rings, Int. J. Math. Math. Sci. 37 (2004) 1957–1965.
    https://doi.org/10.1155/S0161171204309075
  13. B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carol. 32 (1991) 609–614. http://eudml.org/doc/247321
  14. J. Zhu and C. Xiong, Generalized derivations on rings and mappings of P-preserving kernel into range on Von Neumann algebras, Acta Math. Sinica 41 (1998) 795–800.
    https://doi.org/10.12386/A19980133

Close