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Abstract

Let R be a k-torsion free semiprime and F, d : R → R be two addi-
tive mappings which satisfy the algebraic identity F (x2n) = F (xn)α(xn) +
β(xn)d(xn) for all x ∈ R, where α and β are automorphisms on R. Then
F is a generalized (α, β)-derivation with associated (α, β)-derivation d on
R, where k ∈ {2, n, 2n − 1}. On the other hand, it is proved that f

is a generalized Jordan left (α, β)-derivation associated with Jordan left
(α, β)-derivation δ on R if they satisfy the algebraic identity f(x2n) =
α(xn)f(xn)+β(xn)δ(xn) for all x ∈ R together with some restrictions on R.
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1. Introduction

Throughout the present paper R will denote an associative ring with identity.
Z(R) denotes the center of R, Ql(RC) is left Martindale ring of quotients and C its
extended centroid. A ring R is termed as n-torsion free if nx = 0, implies x = 0,
∀ x ∈ R, where n > 1 is an integer. The commutator xy−yx will be represented as
usual by [x, y]. Recall that a ring R is known as prime if aRb = {0} implies either
a = 0 or b = 0, and is called semiprime if aRa = {0} implies a = 0. An additive
mapping d from R to itself is known as a derivation if d(xy) = d(x)y + xd(y) for
all x, y ∈ R and is said to be a Jordan derivation in case d(x2) = d(x)x + xd(x)
is fulfilled for all x ∈ R. Clearly, every derivation is a Jordan derivation, but
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the converse is not always true. Herstein’s classical conclusion [8, Theorem 3.3]
argues that a Jordan derivation on a prime ring with a characteristic other than
two is a derivation. This conclusion has been generalized by Cusack [6] to the
2-torsion free semiprime ring. An additive mapping F from R to itself is known
as a generalized derivation if there exists a derivation d from R to itself such that
F (xy) = F (x)y + xd(y) for each pair x, y ∈ R. An additive mapping F : R → R

is known as a generalized Jordan derivation if there exists a Jordan derivation
d : R → R such that F (x2) = F (x)x+xd(x) for all x ∈ R. It is easy to verify that
every generalized derivation is generalized Jordan derivation but the converse is
not true in general. Suppose that α and β are two endomorphisms defined on
R. An additive mapping d from R to itself is termed as an (α, β)-derivation (re-
spectively Jordan (α, β)-derivation) if d(xy) = d(x)α(y) + β(x)d(y) (respectively
d(x2) = d(x)α(x) + β(x)d(x)) fulfills for all x, y ∈ R. Every (α, β)-derivation is a
Jordan (α, β)-derivation, although the converse is not always true. On 2-torsion
free semiprime ring, both are same (for details see [9]). An additive mapping F

from R to itself is known as a generalized (α, β)-derivation (respectively general-
ized Jordan (α, β)-derivation) if there exists an (α, β)-deviation (respectively Jor-
dan (α, β)-deviation) d from R to itself such that F (xy) = F (x)α(y) + β(x)d(y)
(respectively F (x2) = F (x)α(x) + β(x)d(x)) for all x, y ∈ R. Every general-
ized (α, β)-derivation is generalized Jordan (α, β)-derivation but in general, the
converse does not hold. If R is 2-torsion free semiprime ring it is valid (see
[2]). Now, if F is a generalized (α, β)-derivation (respectively generalized Jor-
dan (α, β)-derivation) associated with an (α, β)-derivation (respectively Jordan
(α, β)-derivation) d on R, then the identity F (x2n) = F (xn)α(xn) + β(xn)d(xn)
holds for all x ∈ R but what about the converse? In this article, we have studied
the converse of the this statement. Specifically, we planned under what condition
on R, F is a generalized (α, β)-derivation associated with an (α, β)-derivation d

if it satisfies the algebraic identity F (x2n) = F (xn)α(xn) + β(xn)d(xn) for all
x ∈ R. In the present paper, author uses the tools of Vander Monde determinant
to relax the torsion condition on R in respect of the complimentary work carried
by the authors in [4]. The suitable arguments and substantial modification are
made to establish the proof of Theorem 2.1.

Next, an additive mapping δ : R → R is said to be a left derivation (re-
spectively Jordan left derivation) if δ(xy) = xδ(y) + yδ(x) (respectively δ(x2) =
2xδ(x)) holds for all x, y ∈ R. An additive mapping δ : R → R is said to be a
right derivation (respectively Jordan right derivation) if δ(xy) = δ(x)y + δ(y)x
(respectively δ(x2) = 2δ(x)x) holds for all x, y ∈ R. If δ is both left as well as
right derivation, then it is a derivation. Clearly, every left (respectively right)
derivation on a ring R is a Jordan left (respectively Jordan right) derivation
but the converse need not be true in general (Details are present in [12]). Fol-
lowing [5], an additive mapping f from R to itself is known as a generalized
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left derivation (respectively generalized Jordan left derivation) if there exists a
Jordan left deviation δ from R to itself such that f(xy) = xf(y) + yδ(x) (re-
spectively f(x2) = xf(x) + xδ(x)) for all x, y ∈ R. Following Zalar [13], an
additive mapping T : R → R is termed as a left (respectively right) centralizer
of R if T (xy) = T (x)y (respectively T (xy) = xT (y)) for all x, y ∈ R. Par-
ticularly, T will be a Jordan left (respectively Jordan right) centralizer of R if
x = y. It is obvious that f is a generalized left derivation if and only if f has
the form f = δ + T , where δ is a left derivation and T is the right central-
izer of R. Generalized left derivations encompass the notion of left derivation.
A generalized left derivation with δ = 0 incorporates the idea of right central-
izer. The sum of two generalized left derivations will also be a generalized left
derivation. If δ is any left derivation of R, then for any fixed element a ∈ R,
every mapping of the form f(x) = xa + δ(x) will be a generalized left deriva-
tion. An additive mapping δ : R → R is called a left (α, β)-derivation (respec-
tively Jordan left (α, β)-derivation) if δ(xy) = α(x)δ(y) + β(y)δ(x) (respectively
δ(x2) = α(x)δ(x) + β(x)δ(x)) for all x, y ∈ R. An additive mapping f : R → R

is termed as a generalized left (α, β)-derivation (respectively generalized Jordan
left (α, β)-derivation) if there is a Jordan left (α, β)-deviation δ : R → R such
that f(xy) = α(x)f(y)+β(y)δ(x) (respectively f(x2) = α(x)f(x)+β(x)δ(x)) for
all x, y ∈ R. An additive mapping T : R → R is known as a left (respectively
right) α-centralizer of R if T (xy) = T (x)α(y) (respectively T (xy) = α(x)T (y))
for all x, y ∈ R. An additive mapping T : R → R is called Jordan left (re-
spectively Jordan right) α-centralizer of R if T (x2) = T (x)α(x) (respectively
T (x2) = α(x)T (x)) for all x ∈ R. Obviously, every left α-centralizer is a Jordan
left α-centralizer on R. Same conclusion holds for right α-centralizer on R. It is
obvious that f is a generalized left (α, β)-derivation if and only if f = δ+T , where
δ and T are a left (α, β)-derivation and a right α-centralizer of R, respectively.
Generalized left (α, β)-derivations encompass the idea of left (α, β)-derivation. A
generalized left (α, β)-derivation with δ = 0 incorporates the concept of right α-
centralizer. Furthermore, the sum of two generalized left (α, β)-derivations will be
a generalized left (α, β)-derivation. If δ is any left (α, β)-derivation of R and a is
any fixed element in R, then every mapping of the form f(x) = α(x)a + δ(x)
will be a generalized left (α, β)-derivation on R. Suppose that a ∈ R is a
fixed element, then for any generalized left (α, β)-derivation f , the mapping g

from R to itself such that g(x) = f(x) + α(x)a or g(x) = f(x) − α(x)a will
also be a generalized left (α, β)-derivation on R. If f is a generalized Jordan
left (α, β)-derivation with associated Jordan left (α, β)-derivation δ on R, then
f(x2n) = α(xn)f(xn) + β(xn)δ(xn) holds for all x ∈ R but the converse is not
true in general. In this paper, we study the converse of this statement. More
precisely, f is a generalized Jordan left (α, β)-derivation associated with Jordan
left (α, β)-derivation δ on R if f(x2n) = α(xn)f(xn) + β(xn)δ(xn) holds for all
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x ∈ R with some restrictions on R.

Let us start with the following theorem.

2. Main theorems

Theorem 2.1. Let n ≥ 1 be any fixed integer and R be a k-torsion free semiprime

ring. Suppose that F, d : R → R are two additive mappings which satisfy the

algebraic identity F (x2n) = F (xn)α(xn) + β(xn)d(xn) for all x ∈ R, where α

and β are automorphisms on R. Then F is a generalized (α, β)-derivation with

associated (α, β)-derivation d on R, where k ∈ {2, n, 2n − 1}.

Proof. We have given that

(2.1) F (x2n) = F (xn)α(xn) + β(xn)d(xn) for all x ∈ R.

If we replace x by x+ py in the above equation, then we find

F
(

x2n +
(2n
1

)

x2n−1py +
(2n
2

)

x2n−2p2y2 + · · · + p2ny2n
)

= F
(

xn +
(

n
1

)

xn−1py +
(

n
2

)

xn−2p2y2 + · · ·+ pnyn
)(

α(xn) +
(

n
1

)

α(xn−1py)

+
(

n
2

)

α(xn−2p2y2) + · · ·+ pnα(yn)
)

+
(

β(xn) +
(

n
1

)

β(xn−1py) +
(

n
2

)

β(xn−2p2y2)

+ · · ·+ pnβ(yn)
)

d
(

xn +
(

n
1

)

xn−1py +
(

n
2

)

xn−2p2y2 + · · ·+ pnyn
)

for all x, y ∈ R, i.e.,

p
[

(

2n
1

)

F (x2n−1y)−
(

n
1

)

F (xn)α(xn−1y)−
(

n
1

)

F (xn−1y)α(xn)−
(

n
1

)

β(xn)d(xn−1y)

−
(

n
1

)

β(xn−1y)d(xn)
]

+ p2
[

(2n
2

)

F (x2n−2y2)−
(

n
2

)

F (xn)α(xn−2y2)

−
(

n
1

)(

n
1

)

F (xn−1y)α(xn−1y)−
(

n
2

)

F (xn−2)α(y2xn)−
(

n
2

)

d(xn−2y2)

−
(

n
1

)(

n
1

)

β(xn−1y)d(xn−1y)−
(

n
2

)

β(xn−2y2)d(xn)
]

+ · · ·

+ p2n
[

F (x2n)− F (xn)α(xn)− β(xn)d(xn)
]

= 0 for all x, y ∈ R.

Rewrite the above expression by using (2.1) as

pf1(x, y) + p2f2(x, y) + · · ·+ p2n−1f2n−1(x, y) = 0,

where fi(x, y) stand for the coefficients of pi’s for all i = 1, 2, . . . , 2n − 1. If
we replace p by 1, 2, . . . , 2n − 1, then we find a system of 2n − 1 homogeneous
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equations. It gives us a Vander Monde matrix













1 1 · · · 1
2 22 · · · 22n−1

· · ·
· · ·

2n− 1 (2n− 1)2 · · · (2n− 1)2n−1













.

Which yields that fi(x, y) = 0 for all x, y ∈ R and for all i = 1, 2, . . . , 2n− 1.
In particular, we have

f1(x, y) =
(2n
1

)

F (x2n−1y)−
(

n
1

)

F (xn)α(xn−1y)−
(

n
1

)

F (xn−1y)α(xn)

−
(

n
1

)

β(xn)d(xn−1y)−
(

n
1

)

β(xn−1y)d(xn) = 0 for all x, y ∈ R.

Let us put x = e and making use of d(e) = 0 and α(e) = β(e) = e to appear
2nF (y) = nF (e)α(y) + nF (y) + nd(y). Since R is n-torsion free, we have

(2.2) F (y) = F (e)α(y) + d(y) for all y ∈ R.

Next observe that

f2(x, y) =
(2n
2

)

F (x2n−2y2)−
(

n
2

)

F (xn)α(xn−2y2)−
(

n
1

)(

n
1

)

F (xn−1y)α(xn−1y)

−
(

n
2

)

F (xn−2)α(y2xn)−
(

n
2

)

d(xn−2y2)−
(

n
1

)(

n
1

)

β(xn−1y)d(xn−1y)

−
(

n
2

)

β(xn−2y2)d(xn) = 0 for all x, y ∈ R.

Rewrite the above expression by substituting e for x to obtain

(2n
2

)

F (y2) =
(

n
2

)

F (e)α(y2) +
(

n
1

)(

n
1

)

F (y)α(y) +
(

n
2

)

F (y2)

+
(

n
2

)

d(y2) +
(

n
1

)(

n
1

)

β(y)d(y) for all y ∈ R.

This implies that

2n(2n−1)
2 F (y2) = n(n−1)

2 F (e)α(y2) + n2F (y)α(y) + n(n−1)
2 F (y2)

+ n(n−1)
2 d(y2) + n2β(y)d(y).

Since R is n-torsion free, we get

2(2n − 1)F (y2) = (n − 1)F (e)α(y2) + 2nF (y)α(y) + n(n− 1)F (y2)

+ (n − 1)d(y2) + 2nβ(y)d(y).

A simple manipulation give us

(3n − 1)F (y2) = (n− 1)F (e)α(y2) + 2nF (y)α(y) + (n− 1)d(y2) + 2nβ(y)d(y).
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An application of (2.2) yields that

(3n− 1)
[

F (e)α(y2) + d(y2)
]

= (n− 1)F (e)α(y2) + 2n
[

F (e)α(y) + d(y)
]

α(y)

+ (n− 1)d(y2) + 2nβ(y)d(y).

On simplifying above expression, we obtain

2nd(y2) = 2nd(y)α(y) + 2nβ(y)d(y) for all y ∈ R.

2n-torsion freeness of R allow us to write last expression as d(y2) = d(y)α(y) +
β(y)d(y). That is d is a Jordan (α, β)-derivation. Since R is a 2-torsion free
semiprime ring, then use [9] to get that d is an (α, β)-derivation on R. Consider
(2.2) once again, so that

F (y2) = F (e)α(y2) + d(y2)

=
[

F (e)α(y) + d(y)
]

α(y) + β(y)d(y)

= F (y)α(y) + β(y)d(y).

Hence F is generalized Jordan (α, β)-derivation on R associated with the (α, β)-
derivation d. Using main theorem from [2], we get the required result.

There are immediate consequences of the above theorem.

Corollary 2.1. Let n ≥ 1 be any fixed integer and R be any k-torsion free

semiprime ring. If F : R → R is an additive mapping satisfying F (x2n) =
F (xn)α(xn) for all x ∈ R, where α is an automorphisms on R. Then, F is an

α-centralizer on R, where k ∈ {2, n, 2n − 1}.

Proof. Taking d = 0 in Theorem 2.1, we get the required result.

Corollary 2.2. Let n ≥ 1 be any fixed integer and R be a k-torsion free semiprime

ring. Suppose that d : R → R is an additive mapping which satisfies the algebraic

identity d(x2n) = d(xn)α(xn) + β(xn)d(xn) for all x ∈ R, where α and β are

automorphisms on R. Then d is an (α, β)-derivation on R, where k ∈ {2, n,
2n − 1}.

Proof. Considering d as F and using same steps as we did in Theorem 2.1, we
get the required result.

Corollary 2.3. Let n ≥ 1 be any fixed integer and R be any k-torsion free

semiprime ring. If F : R → R is an additive mapping satisfying F (x2n) =
F (xn)xn for all x ∈ R. Then, F is a centralizer on R, where k ∈ {2, n, 2n − 1}.

Proof. Taking α = Iidentity in Corollary 2.1, we get the required result.
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Corollary 2.4. Let n ≥ 1 be any fixed integer and R be a k-torsion free semiprime

ring. Suppose that d : R → R is an additive mapping which satisfies the identity

d(x2n) = d(xn)xn + xnd(xn) for all x ∈ R. Then d is a derivation on R, where

k ∈ {2, n, 2n − 1}.

Proof. Considering α = β = Iidentity in Corollary 2.2, we get the required result.

Come to the next main theorem of the paper.

Theorem 2.2. Let n ≥ 1 be any fixed integer and R be k-torsion free ring. If f, δ :
R −→ R are two additive mappings which satisfy the algebraic identity f(x2n) =
α(xn)f(xn) + β(xn)δ(xn) for all x ∈ R, where α and β are automorphisms on

R, then f is generalized Jordan left (α, β)-derivation associated with Jordan left

(α, β)-derivation δ on R, where k ∈ {2, n, 2n − 1}.

Proof. We have given that

(2.3) f(x2n) = α(xn)f(xn) + β(xn)δ(xn) for all x ∈ R.

Replacing x by x+ qy, we get

q
[

(2n
1

)

F (x2n−1y)−
(

n
1

)

α(xn−1y)F (xn)−
(

n
1

)

α(xn)F (xn−1y)−
(

n
1

)

β(xn)δ(xn−1y)

−
(

n
1

)

β(xn−1y)δ(xn)
]

+ q2
[

(

2n
2

)

F (x2n−2y2)−
(

n
2

)

α(xn−2y2)F (xn)

−
(

n
1

)(

n
1

)

α(xn−1y)F (xn−1y)−
(

n
2

)

α(y2xn)F (xn−2)−
(

n
2

)

δ(xn−2y2)

−
(

n
1

)(

n
1

)

β(xn−1y)δ(xn−1y)−
(

n
2

)

β(xn−2y2)δ(xn)
]

+ · · ·

+ q2n
[

F (x2n)− α(xn)F (xn)− β(xn)δ(xn)
]

= 0 for all x, y ∈ R.

Rewrite the above expression by using (2.3) as qP1(x, y) + q2P2(x, y) + · · · +
q2n−1P2n−1(x, y) = 0, where Pi(x, y) stand for the coefficients of qi’s for all i =
1, 2, . . . , 2n−1. If we replace q by 1, 2, . . . , 2n−1, then we find a system of 2n−1
homogeneous equations. It gives us a Vander Monde matrix













1 1 · · · 1
2 22 · · · 22n−1

· · ·
· · ·

2n− 1 (2n− 1)2 · · · (2n− 1)2n−1













.

Which yields that Pi(x, y) = 0 for all x, y ∈ R and for all i = 1, 2, .., 2n − 1.
In particular, We have

P1(x, y) =
(2n
1

)

F (x2n−1y)−
(

n
1

)

α(xn−1y)F (xn)−
(

n
1

)

α(xn)F (xn−1y)

−
(

n
1

)

β(xn)δ(xn−1y)−
(

n
1

)

β(xn−1y)δ(xn) = 0 for all x, y ∈ R.
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Putting x = e and making use of d(e) = 0 and n-torsion freeness of R, we
have

(2.4) f(y) = α(y)f(e) + δ(y) for all y ∈ R.

Next,

P2(x, y) =
(2n
2

)

F (x2n−2y2)−
(

n
2

)

α(xn−2y2)F (xn)−
(

n
1

)(

n
1

)

α(xn−1y)F (xn−1y)

−
(

n
2

)

α(y2xn)F (xn−2)−
(

n
2

)

δ(xn−2y2)−
(

n
1

)(

n
1

)

β(xn−1y)δ(xn−1y)

−
(

n
2

)

β(xn−2y2)δ(xn) = 0 for all x, y ∈ R.

Rewrite the above expression by substituting e for x to obtain
(2n
2

)

F (y2) =
(

n
2

)

α(y2)F (e) +
(

n
1

)(

n
1

)

α(y)F (y) +
(

n
2

)

F (y2)

+
(

n
2

)

δ(y2) +
(

n
1

)(

n
1

)

β(y)δ(y).

That is,

2n(2n−1)
2 F (y2) = n(n−1)

2 α(y2)F (e) + n2α(y)F (y) + n(n−1)
2 F (y2)

+ n(n−1)
2 d(y2) + n2β(y)d(y).

After simple manipulation, we arrive at

(3n2 − n)f(y2) = n(n− 1)α(y2)f(e) + 2n2α(y)f(y) + n(n− 1)δ(y2) + 2n2δd(y).

Since R is n torsion free, we get

(3n − 1)f(y2) = (n− 1)α(y2)f(e) + 2nα(y)f(y) + (n− 1)δ(y2) + 2nβ(y)δ(y).

Use (2.4) to get the following

(3n − 1)
[

α(y2)f(e) + δ(y2)
]

= (n− 1)α(y2)f(e)

+ 2n
[

α(y)f(e) + δ(y)
]

α(y) + (n− 1)δ(y2) + 2nβ(y)δ(y).

Simplify the above expression and making use of 2n-torsion freeness of R, we
have

δ(y2) = α(y)δ(y) + β(y)δ(y) for all y ∈ R.

Hence δ is a Jordan left (α, β)-derivation on R. Now, from (2.4), we get

f(y2) = α(y2)f(e) + δ(y2)

= α(y)
[

α(y)f(e) + δ(y)
]

+ β(y)δ(y)

= α(y)f(y) + β(y)δ(y)

Hence F is generalized Jordan left (α, β)-derivation on R associated with Jordan
left (α, β)-derivation δ on R.
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The following corollary is a consequence of the above theorem by assuming
α = β = Iidentity.

Corollary 2.5 ([7], Theorem 2.4). Let n ≥ 1 be any fixed integer and R be

k-torsion free semiprime ring. If f, δ : R −→ R are two additive mappings

which satisfy the algebraic identity f(x2n) = xnf(xn) + xnδ(xn) for all x ∈ R,

then f is generalized left derivation associated with left derivation δ on R, where

k ∈ {2, n, 2n − 1}.

Corollary 2.6 ([7], Theorem 2.5). Let n ≥ 1 be any fixed integer and R be a

k-torsion free semiprime ring. If f, δ : R → R are additive mappings satisfying

f(x2n) = xnf(xn) + xnδ(xn) for all x ∈ R, where k ∈ {2, n, 2n − 1}. Then

(1) [δ(x), y] = 0 for all x, y ∈ R, where δ is a derivation on R,

(2) δ maps R into Z(R),

(3) δ is zero or R is commutative,

(4) For some q ∈ Ql(RC), f(x) = xq for all x ∈ R,

(5) f is a generalized derivation on R.

The following example is in the favour of our theorems.

Example 2.1. Define a ring R =
{

(

m1 0
0 m2

)

| m1,m2 ∈ 2Z8

}

, Z8 has its

usual meaning. Define mappings F, d, f, δ, α, β : R → R by F

(

m1 0
0 m2

)

=
(

0 0
0 m2

)

, d

(

m1 0
0 m2

)

=

(

m1 0
0 0

)

, f

(

m1 0
0 m2

)

=

(

0 0
0 m2

)

,

δ

(

m1 0
0 m2

)

=

(

m1 0
0 0

)

, α

(

m1 0
0 m2

)

=

(

0 0
0 m2

)

and β

(

m1 0
0 m2

)

=

(

m1 0
0 0

)

. It is clear that F is not a generalized (α, β)-derivation and f is

not a generalized Jordan left (α, β)-derivation on R but F, d, f, δ satisfy the al-
gebraic conditions F (x6) = α(x2)F (x4) + β(x2)D(x4) and f(x6) = f(x2)α(x4) +
β(x4)δ(x2) for all x ∈ R. Which shows that semiprimess and torsion restriction
on R are essential conditions in Theorem 2.1 and Theorem 2.2.
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