DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score: 0.4

SJR: 0.203

SNIP: 0.562

MCQ: 0.12

Index Copernicus: 121.02

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

G. Grätzer

George Grätzer

Department of Mathematics
University of Manitoba
Winnipeg, MB R3T 2N2, Canada

email: gratzer@me.com

Title:

Notes on planar semimodular lattices IX $\boldsymbol{\mathcal{C}_1}$-diagrams

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 43(1) (2023) 25-29

Received: 2021-05-05 , Revised: 2021-05-30 , Accepted: 2021-05-30 , Available online: 2023-01-11 , https://doi.org/10.7151/dmgaa.1409

Abstract:

A planar semimodular lattice $L$ is slim if $\mathsf M_3$ is not a sublattice of $L$. In a recent paper, G. Czédli introduced a very powerful diagram type for slim, planar, semimodular lattices, the $\mathcal{C}_1$-diagrams. This short note proves the existence of such diagrams.

Keywords:

$\mathcal{C}_1$-diagrams, slim planar semimodular lattice

References:

  1. G. Czédli, Patch extensions and trajectory colorings of slim rectangular lattices, Algebra Universalis 72 (2014) 125–154.
    https://doi.org/10.1007/s00012-014-0294-z
  2. G. Czédli, A note on congruence lattices of slim semimodular lattices, Algebra Universalis 72 (2014) 225–230.
    https://doi.org/10.1007/s00012-014-0286-z
  3. G. Czédli, Diagrams and rectangular extensions of planar semimodular lattices, Algebra Universalis 77 (2017) 443–498.
    https://doi.org/10.1007/s00012-017-0437-0
  4. G. Czédli, Lamps in slim rectangular planar semimodular lattices, Acta Sci. Math. (Szeged).
    https://doi.org/10.14232/actasm-021-865-y0
  5. G. Czédli, Non-finite axiomatizability of some finite structures. arXiv:2102.00526
  6. G. Czédli and G. Grätzer, A new property of congruence lattices of slim, planar, semimodular lattices. arXiv:2103.04458
  7. G. Czédli and E.T. Schmidt, Slim semimodular lattices I. A visual approach, ORDER 29 (2012) 481-497.
    https://doi.org/10.1007/s11083-011-9215-3
  8. G. Grätzer, Congruences in slim, planar, semimodular lattices: The Swing Lemma, Acta Sci. Math. (Szeged) 81 (2015) 381–397.
    https://doi.org/10.1007/978-3-319-38798-\_25
  9. G. Grätzer, On a result of Gábor Czédli concerning congruence lattices of planar semimodular lattices, Acta Sci. Math. (Szeged) 81 (2015) 25–32.
    https://doi.org/10.14232/actasm-014-024-1
  10. G. Grätzer, The Congruences of a Finite Lattice, A Proof-by-Picture Approach, Second Edition (Birkhäuser, 2016). Part I is accessible at arXiv:2104.06539.
    https://doi.org/10.1007/978-3-319-38798-7
  11. G. Grätzer, Congruences of fork extensions of slim, planar, semimodular lattices, Algebra Universalis 76 (2016) 139–154.
    https://doi.org/10.1007/s00012-016-0394-z
  12. G. Grätzer, Notes on planar semimodular lattices VIII. Congruence lattices of SPS lattices, Algebra Universalis 81 (2020).
    https://doi.org/10.1007/s00012-020-0641-1
  13. G. Grätzer, Applying the Swing Lemma and Czédli diagrams to congruences of planar semimodular lattices. arXiv:214.13444
  14. G. Grätzer, A gentle introduction to congruences of planar semimodular lattices, Presentation at the meeting AAA 101 (Novi Sad, 2021).
  15. G. Grätzer and E. Knapp, Notes on planar semimodular lattices III. Rectangular lattices, Acta Sci. Math. (Szeged) 75 (2009) 29–48.
  16. G. Grätzer, H. Lakser and E.T. Schmidt, Congruence lattices of finite semimodular lattices, Canad. Math. Bull. 41 (1998) 290–297.
    https://doi.org/10.4153/cmb-1998-041-7

Close