NOTES ON PLANAR SEMIMODULAR LATTICES IX \mathcal{C}_{1}-DIAGRAMS

George Grätzer
Department of Mathematics
University of Manitoba
Winnipeg, MB R3T 2N2, Canada
e-mail: gratzer@mac.com

Abstract

A planar semimodular lattice L is slim if M_{3} is not a sublattice of L. In a recent paper, G. Czédli introduced a very powerful diagram type for slim, planar, semimodular lattices, the \mathcal{C}_{1}-diagrams. This short note proves the existence of such diagrams.

Keywords: \mathcal{C}_{1}-diagrams, slim planar semimodular lattice.
2020 Mathematics Subject Classification: 06C10.

Background

The basic concepts and notation not defined in this note are available in Part I of the book [10], see arXiv:2104.06539; it is freely available. We will reference it, for instance, as [CFL2, p. 4]. In particular, a planar semimodular lattice L is slim if M_{3} is not a sublattice of L and a grid G is a direct product of two nontrivial chains. For the lattice S_{7}, see Figure 1 and [10, pages xxi, 34]. Following my paper [15] with Knapp, a semimodular lattice L is rectangular if the left and right boundary chains have exactly one doubly-irreducible element each and these elements are complementary.

In my paper [16] with Lakser and Schmidt, we prove that every finite distributive lattice D can be represented as the congruence lattice of a (planar) semimodulare lattice L. Since M_{3} sublattices play a crucial role in the construction of L, it was natural to raise the question what can be said about congruence lattices of slim, planar, semimodular (SPS) lattices (see [CFL2, Problem 24.1], originally raised in my paper [11]). The papers in the References list some contributions to this topic. In particular, my presentation [13] gently reviews the background of this topic.

\mathcal{C}_{1}-diagrams

This research tool played an important role in some recent papers, see Czédli [3] and [4], Czédli and Grätzer [6] and Grätzer [13]; for the definition, see Czédli [3, Definition 5.3], Czédli [4, Definition 2.1], and Czédli and Grätzer [6, Definition 3.1].

In the diagram of an SPS lattice K, a normal edge (line) has a slope of 45° or 135°. If it is the first, we call the edge (line) normal-up, otherwise, normaldown. Any edge (line) of slope strictly between 45° and 135° is steep.

A cover-preserving S_{7} of a lattice L is a sublattice isomorphic to S_{7} such that the covers in the sublattice are covers in the lattice L.

Figure 1. The lattice S_{7}.

Definition 1. A diagram of an SPS lattice L is a \mathcal{C}_{1}-diagram if the middle edge of any cover-preserving S_{7} is steep and all other edges are normal.

Czédli [3, Definition 5.11] also defines the much smaller class of \mathcal{C}_{2}-diagrams.
This note presents a short and direct proof of the existence theorem of \mathcal{C}_{1-} diagrams, see Czédli [3, Theorem 5.5], utilizing only Theorem 3, the Structure Theorem of Slim Rectangular Lattices.

Theorem 2. Every slim, planar, semimodular lattice L has a \mathcal{C}_{1}-diagram.
For an SPS lattice K and 4-cell C in K, we denote the fork extension of K at C by $K[C]$, see Czédli and Schmidt [7] (see also [CFL2, Section 4.2]), illustrated by Figure 2.

Theorem 3 (Structure Theorem of Slim Rectangular Lattices). For every slim rectangular lattice K, there is a grid G and sequences

$$
\begin{equation*}
G=K_{1}, K_{2}, \ldots, K_{n-1}, K_{n}=K \tag{1}
\end{equation*}
$$

of slim rectangular lattices and

$$
\begin{equation*}
C_{1}=\left\{o_{1}, c_{1}, d_{1}, i_{1}\right\}, C_{2}=\left\{o_{2}, c_{2}, d_{2}, i_{2}\right\}, \ldots, C_{n-1}=\left\{o_{n-1}, c_{n-1}, d_{n-1}, i_{n-1}\right\} \tag{2}
\end{equation*}
$$

Figure 2. (i) The 4 -cell with $0_{C}=o$ and $1_{C}=i$. (ii) Adding the elements a and b for the fork. (iii) Adding the fork.
of 4-cells in the appropriate lattices such that

$$
\begin{equation*}
G=K_{1}, K_{1}\left[C_{1}\right]=K_{2}, \ldots, K_{n-1}\left[C_{n-1}\right]=K_{n}=K \tag{3}
\end{equation*}
$$

Moreover, the principal ideals $\downarrow c_{n-1}$ and $\downarrow d_{n-1}$ are distributive.

Proof of Theorem 2 for rectangular lattices. Let the rectangular lattice K be represented as in (3). We prove the Theorem by induction on n. For $n=1$, the statement is trivial. Let us assume that the statement holds for $n-1$ and so K_{n-1} has \mathcal{C}_{1}-diagrams; we fix one. By the induction hypothesis, the 4 -cell $C=C_{n-1}$ with $0_{C}=o$ and $1_{C}=i$ has (at least) two normal edges: $[o, c]$ and $[o, d]$, see Figure 2(i) and by the last clause of Theorem 3, the principal ideals $\downarrow c$ and $\downarrow d$ are distributive.

Utilizing that $\downarrow c$ is distributive, we place the element a inside the edge $[o, c]$ so that the area bounded by the (dotted) normal-up line through a and the normal-up line through o contains no element below a; we place the element b symmetrically on the other side, as in Figure 2(ii). The two dotted lines meet inside C since the two lower edges of C are normal and the upper edges are normal or steep. We place the third element of the fork at their intersection and connect it with a steep edge to the element i. We add more elements to the lower left and lower right of C as part of the fork construction, see Figure 2(iii). We can use normal edges for this because of the way a and b were placed. The diagram we obtain is a \mathcal{C}_{1}-diagram of K.

Now let K be an SPS lattice. Czédli and Schmidt define in [7] a corner element a of K as a doubly irreducible element on the boundary of K such that a_{*} is meet-reducible, a^{*} is join-reducible, and a^{*} has exactly two lower covers.

By Czédli and Schmidt [7], K is obtained from a slim rectangular lattice \hat{K} with a fixed \mathcal{C}_{1}-diagram by removing corners. In a cover-preserving sublattice S_{7} of K, there are only two doubly irreducible elements but neither is a corner (since the upper cover of a corner has at most two lower covers). Hence, when
S_{7} is a cover-preserving sublattice (of \hat{K} or any other SPS lattice), then this S_{7} contains no corner of K. So the S_{7}-s remain S_{7}-S, the steep edges remain the "legitimately" steep edges of these remaining S_{7}-s. All other edges that are left after removing corners remain of normal slopes. Thus, K is a \mathfrak{C}_{1}-diagram, as required.

References

[1] G. Czédli, Patch extensions and trajectory colorings of slim rectangular lattices, Algebra Universalis 72 (2014) 125-154. https://doi.org/10.1007/s00012-014-0294-z
[2] G. Czédli, A note on congruence lattices of slim semimodular lattices, Algebra Universalis $\mathbf{7 2}$ (2014) 225-230.
https://doi.org/10.1007/s00012-014-0286-z
[3] G. Czédli, Diagrams and rectangular extensions of planar semimodular lattices, Algebra Universalis 77 (2017) 443-498.
https://doi.org/10.1007/s00012-017-0437-0
[4] G. Czédli, Lamps in slim rectangular planar semimodular lattices, Acta Sci. Math. (Szeged).
https://doi.org/10.14232/actasm-021-865-y0
[5] G. Czédli, Non-finite axiomatizability of some finite structures. arXiv:2102.00526
[6] G. Czédli and G. Grätzer, A new property of congruence lattices of slim, planar, semimodular lattices.
arXiv:2103.04458
[7] G. Czédli and E.T. Schmidt, Slim semimodular lattices I. A visual approach, ORDER 29 (2012) 481-497. https://doi.org/10.1007/s11083-011-9215-3
[8] G. Grätzer, Congruences in slim, planar, semimodular lattices: The Swing Lemma, Acta Sci. Math. (Szeged) 81 (2015) 381-397. https://doi.org/10.1007/978-3-319-38798-_25
[9] G. Grätzer, On a result of Gábor Czédli concerning congruence lattices of planar semimodular lattices, Acta Sci. Math. (Szeged) 81 (2015) 25-32. https://doi.org/10.14232/actasm-014-024-1
[10] G. Grätzer, The Congruences of a Finite Lattice, A Proof-by-Picture Approach, Second Edition (Birkhäuser, 2016). Part I is accessible at arXiv:2104.06539.
https://doi.org/10.1007/978-3-319-38798-7
[11] G. Grätzer, Congruences of fork extensions of slim, planar, semimodular lattices, Algebra Universalis 76 (2016) 139-154.
https://doi.org/10.1007/s00012-016-0394-z
[12] G. Grätzer, Notes on planar semimodular lattices VIII. Congruence lattices of SPS lattices, Algebra Universalis 81 (2020). https://doi.org/10.1007/s00012-020-0641-1
[13] G. Grätzer, Applying the Swing Lemma and Czédli diagrams to congruences of planar semimodular lattices. arXiv:214.13444
[14] G. Grätzer, A gentle introduction to congruences of planar semimodular lattices, Presentation at the meeting AAA 101 (Novi Sad, 2021).
[15] G. Grätzer and E. Knapp, Notes on planar semimodular lattices III. Rectangular lattices, Acta Sci. Math. (Szeged) 75 (2009) 29-48.
[16] G. Grätzer, H. Lakser and E.T. Schmidt, Congruence lattices of finite semimodular lattices, Canad. Math. Bull. 41 (1998) 290-297.
https://doi.org/10.4153/cmb-1998-041-7
Received 5 May 2021
Revised 30 May 2021
Accepted 30 May 2021

