DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score: 0.4

SJR: 0.203

SNIP: 0.562

MCQ: 0.12

Index Copernicus: 121.02

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

R. Gudepu

Rajesh Gudepu

Department of Mathematics
IcfaiTech, FST IFHE Hyderabad-501203
Telangana, India

email: rajesh.g@ifheindia.org

Title:

Note on tranjugate lattice matrices

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 43(1) (2023) 41-52

Received: 2020-11-07 , Revised: 2020-12-24 , Accepted: 2021-06-17 , Available online: 2022-11-29 , https://doi.org/10.7151/dmgaa.1405

Abstract:

In this paper, we extend the notion of tranjugate lattice matrices and we show that a square lattice matrix can be expressed as meet (or greatest lower bound or infimum) of symmetric and tranju ate lattice matrices and we discuss their uniqueness.

Keywords:

complete and completely distributive lattice, lattice vector space, skew symmetric matix, tranjugate matrix

References:

  1. G. Birkhoff, Lattice Theory, American Mathematical Society $3^{rd}$ edition (Providence, RI, USA, 1967).
  2. T.S. Blyth, Pseudo-complementation, Stone and Heyting algebras, in: T.S. Blyth, Lattices and Ordered Algebraic Structures (Springer Science and Business Media, 2006), 103–118.
  3. W.-K. Chen, Boolean matrices and switching nets, Math. Magazine 39 (1) (1966) 1–8.
    https://doi.org/10.2307/2688986
  4. Y. Give'on, Lattice matrices, Information and Control 7 (4) (1964) 477–84.
    https://doi.org/10.1016/S0019-9958(64)90173-1
  5. G. Gratzer, General Lattice Theory (Academic Press, New York, San Francisco, 1978).
  6. R. Gudepu and D.P.R.V.S. Rao, A public key cryptosystem based on lattice matrices, J. Math. Comput. Sci. 10 (6) (2020) 2408–2421.
    https://doi.org/10.28919/jmcs/4882
  7. G. Joy, A Study on Lattice Matrices (Mahatma Gandhi University, India, 2018). http://hdl.handle.net/10603/273450.
  8. S. Lang, Introduction to Linear Algebra, $2^{nd}$ edition (Springer, United States of America, 1985).
  9. R.D. Luce, A note on Boolean matrix theory, Proc. Amer. Math. Soc. 3 (3) (1952) 382–388.
    https://doi.org/10.1090/S0002-9939-1952-0050559-1
  10. H. Rasiowa, An Algebraic Approch to Non-Clasical Logics (North-Holland Publishing Company, Amsterdam, London, 1974).
  11. Y.-J. Tan, Eigenvalues and eigenvectors for matrices over distributive lattices, Linear Algebra Appl. 283 (1998) 257–272.
    https://doi.org/10.1016/S0024-3795(98)10105-2
  12. Y.-J. Tan, On compositions of lattice matrices, Fuzzy Sets and Systems 129 (2002) 19–28.
    https://doi.org/10.1016/S0165-0114(01)00246-9

Close