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Abstract

In this paper, we extend the notion of tranjugate lattice matrices and
we show that a square lattice matrix can be expressed as meet (or greatest
lower bound or infimum) of symmetric and tranjugate lattice matrices and
we discuss their uniqueness.
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1. Introduction

The notion of lattice matrices appeared firstly in the work Lattice Matrices [4]
by Give’on in 1964. A matrix is called a lattice matrix if its entries belong to a
distributive lattice. All Boolean matrices and fuzzy matrices are lattice matrices.
Lattice matrices in various special cases become useful tools in various domains
like the theory of switching nets, automata theory, the theory of finite graphs [4]
and cryptography [6]. In the classical theory of matrices, any square matrix can
be written uniquely as a sum of symmetric and skew symmetric matrices [8]. As
an analogue to this result in the classical theory of matrices, Luce has shown in
[9], Theorem 2.1, that any square Boolean matrix can be uniquely decomposed
as a disjoint sum of a symmetric and a skew symmetric matrix. Joy and Thomas
[7] extended the notions of symmetric and skew-symmetric lattice matrices and
they have generalized the theorem of Luce [9] to lattice matrices. But they did
not discussed their uniqueness.

In the present work, we have discussed and given example of the uniqueness
of symmetric and skew-symmetric lattice matrices in the representation of G. Joy
and K.V. Thomas.
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In the theory of matrices over Boolean algebra, Chen has introduced the
tranjugate Boolean matrices ([3], Definition 1) and he has shown that any square
Boolean matrix can be uniquely decomposed as a join intersection of a symmetric
and a tranjugate matrix ([3], Theorem 3).

In the present work, we extend the notion of tranjugate Boolean matrices to
lattice matrices and we generalize the theorem of Chen [3] to lattice Matrices.
We discuss and give an example their uniqueness.

2. Preliminaries

Throughout this paper, N denotes the set of non zero natural numbers. We
denote vectors as u,v,w, etc. and scalars as a, b, c, etc. and also the zero vector
as 0 and the vector (1, 1, . . . , 1) as 1.

We recall some basic definitions and results on lattice theory, lattice matrices,
lattice vector spaces, pseudo-complements and their properties, that will be used
in the sequel. For details see [1, 4, 5, 10, 11] and [12].

A partially ordered set (L,≤) is a lattice if for all a, b ∈ L, the least upper
bound of a, b and the greatest lower bound of a, b exist in L. For any a, b ∈ L,
the least upper bound and the greatest lower bound are denoted by a ∨ b and
a ∧ b (or ab), respectively. An element a ∈ L is called the greatest element of
L if α ≤ a, for all α ∈ L. An element b ∈ L is called the least element of L if
b ≤ α, for all α ∈ L. We use 1 and 0 to denote the greatest element and the least
element of L, respectively.

If a, b ∈ L, the largest x ∈ L satisfying the inequality a ∧ x ≤ b is called the
relative pseudo-complement of a in b and is denoted by a → b. If for any pair
of elements a, b ∈ L, a → b exists, then L is said to be a Brouwerian lattice.
Dually for a, b ∈ L, the least x ∈ L satisfying a∨x ≥ b is called the relative lower
pseudo-complement of a in b and is denoted by b− a. If for any pair of elements
a, b ∈ L, b− a exists, then L is said to be a Dually Brouwerian lattice. We shall
denote if exists a → 0 by a∗.

A lattice L is a completely distributive lattice, if for any x ∈ L, and any set
of elements {yi | i ∈ I}, I being nonempty index set,

1. x ∧ (∨i∈Iyi) = ∧i∈I(x ∨ yi);

2. x ∨ (∧i∈Iyi) = ∨i∈I(x ∧ yi) and hold.

A complete lattice is a partially ordered set in which all subsets have both a
supremum (join) and an infimum (meet).

It is known [11] that a complete lattice L is dually Brouwerian if and only if
(2) is satisfied in L. Therefore, a complete and completely distributive lattice L

is dually Brouwerian.
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In this paper, L denotes a complete and completely distributive lattice with
the greatest element 1 and the least element 0. Unless otherwise specified all
matrices and vectors are of order n.

Lemma 1 ([12], Lemma 2.2). Let L be a complete and completely distributive

lattice. Then for any a, b, c ∈ L

1. a− b ≤ a;

2. b ≤ c ⇒ a− b ≥ a− c and b− a ≤ c− a;

3. a ≤ b ⇔ a− b = 0;

4. a− (b ∨ c) ≤ (a− b)(a− c);

5. a− (bc) = (a− b) ∨ (a− c);

6. (ab)− c ≤ (a− b)(b− c);

7. (a ∨ b)− c = (a− c) ∨ (b− c);

8. (a− b) ∨ (b− c) = (a ∨ b)− (bc).

Definition [1]. For any element a of a distributive lattice L, the pseudo-comple-
ment a∗ of a is an element satisfying the following property for all x ∈ L: a∧x =
0 ⇔ a∗ ∧ x = x ⇔ x ≤ a∗. A distributive lattice L in which every element has a
pseudo-complement is called a pseudo-complemented distributive lattice.

Lemma 2 [5]. For any two elements a, b of a pseudo-complemented distributive

lattice, then

1. a∗ = max{x ∈ L | a ∧ x = 0};

2. 0∗∗ = 0;

3. a ∧ a∗ = 0;

4. a ≤ b implies b∗ ≤ a∗;

5. a ≤ a∗∗;

6. a ∧ b = 0 if and only if a ≤ b∗ if and only if b ≤ a∗;

7. a ≤ b implies a ∧ b∗=0;

8. a∗∗∗ = a∗;

9. (a ∨ b)∗ = a∗ ∧ b∗;

10. (a ∧ b)∗∗ = a∗∗ ∧ b∗∗.

A pseudo-complemented distributive lattice with the greatest element 1 and
the least element 0 such that for all a ∈ L, a∗ ∨ a∗∗= 1 is known as Stone lattice.

Every Stone lattice can be defined as a pseudo-complemented distributive
lattice L in which any of the following equivalent conditions hold for all
x, y ∈ L [10].



44 R. Gudepu

1. S(L) is a sublattice of L, where the set S(L) = {x∗∗|x ∈ L};

2. (x ∧ y)∗ = x∗ ∨ y∗;

3. (x ∨ y)∗∗ = x∗∗ ∨ y∗∗;

4. x∗ ∨ x∗∗ = 1.

Let Mn(L) be the set of n × n matrices over L, the elements of Mn(L) denoted
by capital letters and suppose A ∈ Mn(L), then the (i, j)th entry of A is denoted
by aij. Giveon [4] calls them as lattice matrices.

The following definitions are due to Giveon for the lattice matrices A = [aij ],
B = [bij ], C = [cij ] ∈ Mn(L), where aij , bij , cij ∈ L, 1 ≤ i, j ≤ n.

A ≤ B if and only if aij ≤ bij ;

A+B(= A ∨B) = C if and only if cij = aij ∨ bij ;

A ∧B = C if and only if cij = aij ∧ bij = aijbij ;

A ·B = AB = C if and only if cij =
∨n

k=1
(aik ∧ bkj);

AT = C if and only if aji = cij ;

for α ∈ L,αA = α · A = C, if and only if cij = αaij ;

AK+1 = AKA, O = [0ij ], 0ij = 0, E = [eij ], eij = 1, 1 ≤ i, j ≤ n, where E is one
matrix;

A(BC) = (AB)C,AI = IA = A, where I is an identity matrix, AO = OA = O,
where O is zero matrix;

A(B + C) = AB + AC, (A + B)C = AC + BC, if A ≤ B and C ≤ D, then
AC ≤ BD;

(A+B)T = AT +BT , (A ∧B)T = AT ∧BT , (AB)T = BTAT , ((A)T )T = A;

Mn(L) is a distributive lattice with least element zero as O and greatest element
one as E with respect to ∧ and + (or ∨) ([4], Statement (15)).

Let L be a complete and completely distributive lattice and A = [aij ], B =
[bij ] ∈ Mm×n(L), then the following definition is due to Tan [12].

A − B= C if and only if cij = aij − bij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.
Ā(= [āij ]) = E − A = [1 − aij ], where E is a square matrix in which all entries
are 1.

3. Symmetric and skew-symmetric lattice matrices

In this section, we will discuss the uniqueness of symmetric and weakly skew-
symmetric matrices in the representation [7], A = C ∨D, where C is symmetric
and D is weakly skew-symmetric matrices.
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Definition [7]. A matrix A ∈ Mn(L) is said to be

1. symmetric if A = AT ,

2. skew-symmetric if A−AT = A,

3. weakly skew-symmetric if A ∧AT = O.

Definition. The pseudo-complement of a matrix A ∈ Mn(L) is given by A∗ =
max{X ∈ Mn(L) | A ∧X = O}.

Lemma 3. Let A ∈ Mn(L) and A is symmetric matrix, then

1. A∗ ∧AT = 0;

2. Ā ∨AT = E.

We observe that if A is a matrix over Stone lattice, then the concept of
skew-symmetric and weakly skew-symmetric coincide.

Theorem 4 [Joy, (2018) Chapter 6, Theorem 6.3.8]. If a matrix in Mn(L) is

weakly skew-symmetric, then it is skew-symmetric.

Theorem 5 [Joy, (2018) Chapter 6, Theorem 6.3.14]. Any matrix in Mn(L)
can be written as join (or least upper bound or supremum) of symmetric and

skew-symmetric lattice matrices.

From Theorem 3.5, consider the representation of A, that is, A = C ∨ D,
where C = A ∧ AT is symmetric and D = A − AT is skew-symmetric, here the
symmetric and skew-symmetric may not be unique.

Now we will prove the uniqueness of the above representation if D is weakly
skew-symmetric matrix.

Theorem 6. Suppose A = C ∨D, where C is symmetric and D is weakly skew-

symmetric, then C has unique representation and D is the greatest lower bound

of set of weakly skew-symmetric matrices which satisfy the above representation

of A.

Proof. Let A ∈ Mn(L) and let A = C ∨ D, where C = A ∧ AT is symmetric
and D = A − AT is weakly skew-symmetric. Let A = H ∨ F be any other
representation where H is symmetric and F is weakly skew-symmetric. Then
consider C = A ∧AT = (H ∨ F ) ∧ (H ∨ F )T = (H ∨ F ) ∧ (H ∨ F T ) = H ∨ (F ∧
F T ) = H. Therefore C has unique representation and consider D = A − AT =
(H ∨ F )− (H ∨ F )T = (H − (H ∨ F T )) ∨ (F − (H ∨ F T )) = F − (H ∨ F T ) ≤ F .

Let {Fi, i ∈ I} be the set of weakly skew-symmetric matrices which satisfy
the above representation. Clearly D is the lower bound of {Fi, i ∈ I} which
implies D ≤ ∧

i∈IFi but always ∧
i∈IFi ≤ D. Therefore D = ∧

i∈IFi. So, D is
the greatest lower bound of {Fi, i ∈ I}. Since, a greatest lower bound of a set is
unique.

In this sense D = A−AT has unique representation.
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Example 7. Consider the lattice L = {0, a, b, c, d, e, f, 1} where the Hasse dia-
gram of L is shown below:

Figure 1.

Let A =





a c e

d b f

e a c



, then C = A ∧ AT =





a b e

b b 0
e 0 c



, D = A − AT =





0 a 0
d 0 f

0 a 0



. So, A = C ∨D. Clearly C is unique but we have other choices

for D which are F1 =





0 a a

d 0 f

b a 0



, F2 =





0 a a

d 0 f

d a 0



, F3 =





0 a b

d 0 f

a a 0



,

F4 =





0 a d

d 0 f

a a 0



 , . . ..

So, that each Fi is weakly skew-symmetric such that A = C ∨F1 = C ∨F2 =
C ∨ F3 = C ∨D = C ∨ F4 = . . .. So, we can obtain that D =

∧

i∈I Fi.

4. Symmetric and tranjugate lattice matrices

In this section, we give some properties of complete and completely distributive
lattice. We extend the concept of tranjugate Boolean matrices [3] to tranjugate
lattice matrices and we prove that any square lattice matrix can be written as
meet (or greatest lower bound or infimum) of symmetric and tranjugate lattice
matrices. This is the dual of decomposition theorem (G. Joy (2018), Chapter 6,
Theorem 6.3.14).
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Some properties of a complete and completely distributive lattice L.

Lemma 8 [1, 10]. For any elements a, b, c of a complete and completely distribu-

tive lattice L the following holds:

(i) a ≤ b → a;

(ii) a → b = 1 if and only if a ≤ b;

(iii) a → 1 = 1;

(iv) 1 → a = a;

(v) a ∧ (a → b) = a ∧ b;

(vi) (a → b) ∧ (a → c) = a → (b ∧ c);

(vii) (a → c) ∧ (b → c) = (a ∨ b) → c;

(viii) a ≤ (b → (a ∧ b));

(ix) If a ≤ b, then (c → a) ≤ (c → b) and (b → c) ≤ (a → c);

(x) a → (b → c) = (a ∧ b) → c = (a → b) → (a → c).

Lemma 9. Let L be a complete and completely distributive lattice. Then for any

a, b ∈ L, we have (a → b) → (b → a) = b → a.

Proof. Let a, b ∈ L. According to the Claim (i) of Lemma 4.1. the inequality
b → a ≤ (a → b) → (b → a) is valid. By Lemma 4.1 (x) and (i), we have

(a → b) → (b → a) = [(a → b) ∧ b] → a ≤ b → a.

This proves the required equality.

Definition. Let L be a complete and completely distributive lattice and A =
[aij ], B = [bij ] ∈ Mm×n(L), then A → B= C if and only if cij = aij → bij for
i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Lemma 10. Let L be a complete and completely distributive lattice with 1 and

0. Then for any A,B ∈ Mn(L), we have

(i) (A → B)T = AT → BT ;

(ii) B ∧ (A → B) = B;

(iii) E → A = A;

(iv) (A → C) ∧ (B → C) = (A ∨B) → C;

(v) B ∧ (B → A) = A ∧B = A ∧ (A → B);

(vi) (A → B) → (B → A) = B → A;

(vii) if (A ∨B) = E, then B → A = A.
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Proof. By Lemma 4.1, 4.2 and Definition 4.3, we can obtain (i), (ii), (iii), (iv),
(v) and (vi). For (vii), let (A∨B) = E. Consider A = E → A = (A∨B) → A =
(A → A) ∧ (B → A) = B → A.

Definition. A matrix A ∈ Mn(L) is said to be tranjugate if AT → A = A.

Example 11. Consider the lattice L = {0, a, b, c, 1} where the Hasse diagram of
L is shown below:

Figure 2.

Let A =

(

1 b

a 1

)

and AT =

(

1 a

b 1

)

, then AT → A =

(

1 → 1 a → b

b → a 1 → 1

)

=
(

1 b

a 1

)

= A which implies A is a tranjugate matrix over L.

Theorem 12. Let A = [aij ] ∈ Mn(L) is tranjugate. Then

(i) the diagonal elements must be 1,

(ii) aij and aji are incomparable.

Proof. Let A = [aij ] ∈ Mn(L) be a tranjugate matrix. This means that AT → A

= A.

(i) for i = j, aii → aii = aii. So, aii = 1.

(ii) Suppose aij ≤ aji.

By Lemma 4.1, aij → aji = 1. A contradiction. Therefore aij and aji are
incomparable.

Definition. A square lattice matrix A is said to be weakly tranjugate if A∨AT

= E.
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Example 13. Consider the lattice L = {0, a, b, c, d, 1} where the Hasse diagram
of L is shown below:

Figure 3.

Let A =

(

1 d

c 1

)

and AT =

(

1 c

d 1

)

, then A∨AT =

(

1 d

c 1

)

∨

(

1 c

d 1

)

= E

which implies A is a weakly tranjugate matrix over L.

We can observe that if A is a matrix over a Stone lattice, then the concept
of tranjugate and weakly tanjugate coincide. However, in the case of matrices
over L, we prove that every weakly tranjugate lattice matrices are tranjugate and
converse need not be true.

Theorem 14. Let A ∈ Mn(L) be a weakly tranjuagte matrix. Then A is tranju-

gate.

Proof. Suppose A ∈ Mn(L) is a weakly tranjuagte matrix, then A ∨ AT = E.
By Lemma 4.4(vii), we can obtain AT → A =A. Therefore A is a tranjugate
lattice matrix.

Example 15. Consider the lattice L = {0, a, b, c, 1} where the Hasse diagram of

L is shown in Figure 2. Let A =

(

1 b

a 1

)

Clearly A is tranjuagte. Consider

A ∨ AT =

(

1 b

a 1

)

∨

(

1 a

b 1

)

=

(

1 c

c 1

)

6= E. Therefore, A is not weakly

tranjugate matrix over L.

Lemma 16. For any A,B ∈ Mn(L), then A ∨B = E if and only if Ā ≤ B.

Corollary 17. A lattice matrix A is tranjugate whenever ĀT ≤ A.

Now we prove that any square matrix over L can be represented as meet (or
greatest lower bound or infimum) of symmetric and tranjugate lattice matrices.
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Theorem 18. Any lattice matrix in Mn(L) can be expressed as meet (or greatest
lower bound or infimum) of symmetric and tranjugate lattice matrices.

Proof. Suppose A ∈ Mn(L) and let S = A ∨ AT , T = AT → A. Consider,
ST = (A ∨ AT )T = (A ∨ AT ) = S. Consider, T T → T = (AT → A)T → (AT →
A) = (A → AT ) → (AT → A) = AT → A = T . Which shows that S is symmetric
and T is tranjugate. Consider S ∧ T = (A ∨ AT ) ∧ (AT → A) = [A ∧ (AT →
A)] ∨ [AT ∧ (AT → A)] = A ∨ [AT ∧A] = A.

Remark 19. In the Theorem 4.14, S ∨ T need not be equal to E.

Example 20. Consider the lattice L = {0, a, b, c, 1} where the Hasse diagram of L

is shown in Figure 2. Let A =

(

1 b

a 1

)

, then AT =

(

1 a

b 1

)

. Consider S = A∨

AT =

(

1 b

a 1

)

∨

(

1 a

b 1

)

=

(

1 c

c 1

)

. T = AT → A =

(

1 → 1 a → b

b → a 1 → 1

)

=

(

1 b

a 1

)

. So, we have S ∧ T =

(

1 b

a 1

)

= A and S ∨ T =

(

1 c

c 1

)

6= E.

Suppose in the representation of A as A = S ∧ T , S is symmetric and T is
weakly tranjugate, we can observe the uniqueness of the representation A = S∧T
in the following theorem.

Theorem 21. Suppose S is symmetric and T is weakly tranjugate such that

A = S ∧ T , then S has a unique representation and T is the least upper bound of

all such weakly tranjugate matrices which satisfy above representation.

Proof. Let S = A ∨ AT be symmetric and T = AT → A be weakly tranjugate.
Then clearly, A = S ∧ T . Now consider any other representation of A as A =
X ∧ Y , where X is symmetric and Y is weakly tranjugate. Then S = A ∨AT =
(X ∧ Y ) ∨ (XT ∧ Y T ) = X ∧ (Y ∨ Y T ) = X.

Therefore S = A ∨ AT has unique representation. And consider T = AT →
A = (XT∧Y T ) → (X∧Y ) = (X∧Y T ) → (X∧Y ) = [(X∧Y T ) → X]∧[(X∧Y T ) →
Y ] = (X ∧ Y T ) → Y = X → (Y T → Y ) = X → Y ≥ Y .

Clearly T is upper bound of set of weakly tranjugate matrices {Yi, i ∈ I}
which satisfy the above representation.

Then T ≥
∨

i∈I Yi but always
∨

i∈I Yi ≥ T . Therefore T =
∨

i∈I Yi. T

is the least upper bound of Yi, i ∈ I. In this sense T = AT → A has unique
representation.

Example 22. Consider the lattice L = {0, a, b, c, d, e, f, g, h, i, j, 1} where the
Hasse diagram of L is shown below:
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Figure 4.

Let A =





c d e

a h j

i d f



. Let S = A ∨ AT=





c d i

d h 1
i 1 f



 and T = AT → A =





1 1 h

i 1 j

1 d 1



. So, clearly S∧T = A and S is symmetric and T is weakly tranju-

gate. But we have other representations Y1 =





1 h h

i 1 j

1 d 1



, Y2 =





1 h h

e 1 j

1 d 1



,

· · · such that S ∧ Y1 = S ∧ Y2 = · · · = A.

We can obtain that T =
∨

i∈I Yi.

Conclusion

In this paper, we extended the concept of tranjugate lattice matrices. Some
properties of elements of a complete and completely distributive lattice were
studied. We have proven that a square lattice matrix can be written as meet (or
greatest lower bound or infimum) of symmetric and tranjugate lattice matrices
is given and we have discussed their uniqueness.
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