DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score: 0.4

SJR: 0.203

SNIP: 0.562

MCQ: 0.12

Index Copernicus: 121.02

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

S. Nithya

S. Nithya

Assistant Professor
Department of Mathematics
St. Xavier's College (Autonomous)
Palayamkottai 627 002, Tamil Nadu, India

Manonmaniam Sundaranar University
Abishekapatti, Tirunelveli 627 012, Tamil Nadu, India

email: nithyasxc@gmail.com

G. Elavarasi

G. Elavarasi

PG and Research Department of Mathematics
St. Xavier's College (Autonomous)
Palayamkottai 627 002, Tamil Nadu, India

Affiliated to Manonmaniam Sundaranar University
Abishekapatti, Tirunelveli 627 012, Tamil Nadu, India

email: gelavarasi94@gmail.com

Title:

Extended annihilating-ideal graph of a commutative ring

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 42(2) (2022) 279-291

Received: 2020-06-27 , Revised: 2021-02-04 , Accepted: 2022-03-22 , Available online: 2022-10-05 , https://doi.org/10.7151/dmgaa.1390

Abstract:

Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$ is called an annihilating-ideal if there exists a nonzero ideal $J$ of $R$ such that $IJ = (0)$ and we use the notation $\mathbb A(R)$ for the set of all annihilating-ideals of $R$. In this paper, we introduce the extended annihilating-ideal graph of $R$, denoted by $\mathbb E\mathbb A\mathbb G(R)$. It is the simple graph with vertices $\mathbb A(R)^* =\mathbb A(R)\backslash \left\{(0)\right\}$, and two distinct vertices $I$ and $J$ are adjacent whenever there exist two positive integers $n$ and $m$ such that $I^nJ^m = (0)$ with $I^n \neq (0)$ and $J^m \neq (0)$. Here we discuss in detail the diameter and girth of $\mathbb E\mathbb A\mathbb G(R)$ and investigate the coincidence of $\mathbb E\mathbb A\mathbb G(R)$ with the annihilating-ideal graph $\mathbb A\mathbb G(R)$. Moreover we propose open questions in this paper.

Keywords:

annihilating-ideal graph, extended annihilating-ideal graph

References:

  1. G. Aalipour, S. Akbari, M. Behboodi, R. Nikandish, M.J. Nikmehr and F. Shaveisi, The classification of the annihilating-ideal graph of commutative rings, Algebra Colloq. 21 (2014) 249–256.
    https://doi.org/10.1142/S1005386714000200
  2. G. Aalipour, S. Akbari, R. Nikandish, M.J. Nikmehr and F. shaveisi, Minimal prime ideals and cycles in annihilating-ideal graphs, Rocky Mountain J. Math. 43 (2013) 1415–1425.
    https://doi.org/10.1216/RMJ-2013-43-5-1415
  3. M. Ahrari, Sh. A. Safari Sabet and B. Amini, On the girth of the annihilating-ideal graph of a commutative ring, J. Linear and Topological Algebra 4 (2015) 209–216.
  4. G. Alan Cannon, K. M. Neuerburg and S.P. Redmond, Zero-divisor graphs of near-rings and semigroups, Near-rings and Near-fields: Proc. Conf. Near-rings and Near-fields II, (2005) 189–200.
    https://doi.org/10.1007/1-4020-3391-5\_8
  5. D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434–447.
    https://doi.org/10.1006/jabr.1998.7840
  6. M.F. Atiyah and I.G. MacDonald, Introduction to Commutative Algebra (Addison-Wesley Publishing Company, London, 1969).
  7. I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208–226.
    https://doi.org/10.1016/0021-8693(88)90202-5
  8. M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 (2011) 727–739.
    https://doi.org/10.1142/S0219498811004896
  9. M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (2011) 741–753.
    https://doi.org/10.1142/S0219498811004902
  10. D. Bennis, J. Mikram and F. Taraza, On the extended zero-divisor graph of a commutative rings, Turk. J. Math. 40 (2016) 376–388.
    https://doi.org/10.3906/mat-1504-61
  11. G. Chartrand and Ping Zhang, Introduction to Graph Theory (Tata McGraw Hill, India, 2006).
  12. K.R. McLean, Commutative Artinian principal ideal rings, Proc. London Math. Soc. 26 (1973) 249–272.
    https://doi.org/10.1112/plms/s3-26.2.249
  13. T. Tamizh Chelvam and S. Nithya, Zero-divisor graph of an ideal of a near-ring, Discrete Math. Alg. Appl. 5 (2013) 1350007 (1–11).
    https://doi.org/10.1142/S1793830913500079
  14. T. Tamizh Chelvam and S. Nithya, Domination in the zero-divisor graph of an ideal of a near-ring, Taiwanese J. Math. 17 (2013) 1613–1625.
    https://doi.org/10.11650/tjm.17.2013.2739
  15. O. Zariski and P. Samuel, Commutative Algebra, I (Van Nostrand, Princeton, 1958).

Close