Discussiones Mathematicae General Algebra and Applications 42 (2022) 279–291 https://doi.org/10.7151/dmgaa.1390

EXTENDED ANNIHILATING-IDEAL GRAPH OF A COMMUTATIVE RING

S. Nithya^{1,3} and G. Elavarasi^{2,3}

¹Assistant Professor Department of Mathematics St. Xavier's College (Autonomous) Palayamkottai 627 002, Tamil Nadu, India

 ²Reg. No.18111282092014
PG and Research Department of Mathematics St. Xavier's College (Autonomous)
Palayamkottai 627 002, Tamil Nadu, India

³Affiliated to Manonmaniam Sundaranar University Abishekapatti, Tirunelveli 627 012, Tamil Nadu, India

> e-mail: nithyasxc@gmail.com gelavarasi94@gmail.com

Abstract

Let R be a commutative ring with identity. An ideal I of a ring R is called an annihilating-ideal if there exists a nonzero ideal J of R such that IJ = (0)and we use the notation $\mathbb{A}(R)$ for the set of all annihilating-ideals of R. In this paper, we introduce the extended annihilating-ideal graph of R, denoted by $\mathbb{EAG}(R)$. It is the simple graph with vertices $\mathbb{A}(R)^* = \mathbb{A}(R) \setminus \{(0)\}$, and two distinct vertices I and J are adjacent whenever there exist two positive integers n and m such that $I^n J^m = (0)$ with $I^n \neq (0)$ and $J^m \neq (0)$. Here we discuss in detail the diameter and girth of $\mathbb{EAG}(R)$ and investigate the coincidence of $\mathbb{EAG}(R)$ with the annihilating-ideal graph $\mathbb{AG}(R)$. Moreover we propose open questions in this paper.

Keywords: annihilating-ideal graph, extended annihilating-ideal graph.

2010 Mathematics Subject Classification: Primary: 05C75, 05C25, Secondary: 13A15, 13M05.

1. INTRODUCTION

The concept of zero-divisor graph of a commutative ring R was first introduced by Beck in [7]. He let all elements of the ring be vertices of the graph and was interested mainly in coloring. In [5], Anderson et al. associated a zero-divisor graph $\Gamma(R)$ to R with vertices $Z(R)^* = Z(R) \setminus \{0\}$, the set of all nonzero zerodivisors and two distinct vertices x and y are adjacent if and only if xy = 0. The zero-divisor graphs of commutative rings attracted the attention of several researchers and also this graph was assigned to other algebraic structures (see for instance [4, 13, 14]). In [10], Bennis et al. introduced and studied the extended zero-divisor graph of R which is the extension of the classical zero-divisor graph of R and it is denoted by $\Gamma(R)$ whose vertex set consists of all its nonzero zerodivisors and that two distinct vertices x and y are adjacent whenever there exist two non-negative integers n and m such that $x^n y^m = 0$ with $x^n \neq 0$ and $y^m \neq 0$. In [8], Behboodi et al. introduced and investigated the annihilating-ideal graph of R, denoted by $\mathbb{AG}(R)$. An ideal I of a ring R is called an annihilating-ideal if there exists a nonzero ideal J of R such that IJ = (0) and we use the notation $\mathbb{A}(R)$ for the set of all annihilating-ideals of R. It is the simple graph with vertices $\mathbb{A}(R)^* = \mathbb{A}(R) \setminus \{(0)\}$, the set of all nonzero annihilating-ideals of R and two distinct vertices I and J are adjacent if and only if IJ = (0). They obtained some finiteness conditions of $\mathbb{AG}(R)$ and found out the facts of the connectivity of annihilating-ideal graphs. In [9], they discussed the diameter and coloring of annihilating-ideal graphs.

Throughout this paper R denotes a commutative ring with identity $1 \neq 0$. In this paper we introduce an extension of the annihilating-ideal graph of a commutative ring R, denoted by $\mathbb{EAG}(R)$, which we call the extended annihilating-ideal graph of R, such that its vertex set is $\mathbb{A}(R)^*$ which is the set of all nonzero annihilating-ideals of R and that two distinct vertices I and J are adjacent if and only if there exist two positive integers n and m such that $I^n J^m = (0)$ with $I^n \neq (0)$ and $J^m \neq (0)$. Clearly, the annihilating-ideal graph $\mathbb{AG}(R)$ is a spanning subgraph of $\mathbb{EAG}(R)$. Note that $\mathbb{EAG}(R)$ is the empty graph if and only if R is an integral domain.

The main goal of this paper is to establish the relation between $\mathbb{EAG}(R)$ and $\mathbb{AG}(R)$ and the connection between the graph theoretic properties of $\mathbb{EAG}(R)$ and the ring theoretic properties of R. In Section 2, we discuss the basic properties of $\mathbb{EAG}(R)$ and the coincidence of $\mathbb{EAG}(R)$ and $\mathbb{AG}(R)$. Also we determine when $\mathbb{EAG}(R)$ forms a complete graph or a complete bipartite graph. In Sections 3 and 4, we obtain the diameter and girth of $\mathbb{EAG}(R)$ and that compare with $\mathbb{AG}(R)$. In this paper we propose open questions with regard to the diameter of $\mathbb{EAG}(R)$. As usual, \mathbb{Z} , \mathbb{Q} , \mathbb{Z}_n , \mathbb{F} denote the ring of integers, rational numbers, ring of integers modulo n and the field, respectively. For basic definitions on rings, one may refer [6].

For the sake of completeness, we state some definitions and notations used throughout. Let G be a graph and V(G), E(G) be the vertex set and edge set of G respectively. A graph H is called a subgraph of G that is $H \subseteq G$ if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. A subgraph H of G with V(H) = V(G) is called a spanning subgraph of G. For $S \subseteq V(G)$, the induced subgraph H induced by S is the subgraph of G with vertex set S and two vertices are adjacent in H if and only if they are adjacent in G and it is denoted by $\langle S \rangle$. A closed path is called a cycle. A cycle on $n \geq 3$ vertices is denoted by C_n . We say that G is connected if there is a path between any two distinct vertices of G. For vertices x and y of G, let d(x, y)be the length of the shortest path from x to y ($d(x, x) = 0, d(x, y) = \infty$ if there is no such path). The diameter of G is $diam(G) = \sup \{d(x, y) : x, y \in V(G)\}$. The girth of G denoted by qr(G), is the length of a shortest cycle in $G(qr(G) = \infty)$ if G contains no cycles). A graph in which each pair of distinct vertices is joined by an edge is called a complete graph. We denote the complete graph on n vertices by K_n . A bipartite graph is a graph all of whose vertices can be partitioned into two parts V_1 and V_2 such that every edge joins a vertex in V_1 to one in V_2 . A complete bipartite graph is a bipartite graph in which every vertex of one part is joined to every vertex of the other part. The complete bipartite graph on mand n vertices is denoted by $K_{m,n}$ and $K_{1,n}$ a star graph. For undefined terms in graph theory we refer [11]. The following results are useful in the subsequent sections.

Theorem 1.1 [8, Theorem 1.1]. Let R be a non-domain ring. Then $\mathbb{AG}(R)$ has ACC (respectively, DCC) on vertices if and only if R is a Noetherian (respectively, an Artinian) ring.

Corollary 1.2 [8, Corollary 2.3]. Let R be a reduced ring. Then the following statements are equivalent.

- (i) There is a vertex of $\mathbb{AG}(R)$ which is adjacent to every other vertices.
- (ii) $\mathbb{AG}(R)$ is a star graph.
- (iii) $R \cong \mathbb{F} \times D$, where \mathbb{F} is a field and D is an integral domain.

2. Basic properties of $\mathbb{EAG}(R)$

In this Section we discuss the basic properties of $\mathbb{EAG}(R)$ and when $\mathbb{EAG}(R)$ and $\mathbb{AG}(R)$ coincide. A ring R is called a reduced ring if it has no nonzero nilpotent elements. The following theorem plays an important role in this paper.

Theorem 2.1. Let R be a reduced ring. Then $\mathbb{EAG}(R) = \mathbb{AG}(R)$.

Proof. Since R is reduced, it has no nonzero nilpotent ideals. Then for every nonzero ideal I in R, $I^n \neq (0)$ for all positive integers n. By definitions of $\mathbb{EAG}(R)$ and $\mathbb{AG}(R)$, $\mathbb{AG}(R)$ is a spanning subgraph of $\mathbb{EAG}(R)$. Suppose there exist two nonzero proper ideals I, J in R such that $I^n J^m = (0)$ with $I^n \neq (0)$

and $J^m \neq (0)$ for some positive integers n and m but $IJ \neq (0)$. Now $I^n J^m = (0)$ implies $I^{m+n} J^{m+n} = (0)$ that is $(IJ)^{m+n} = (0)$. Hence IJ is a nonzero nilpotent ideal of R which is a contradiction. Thus $\mathbb{EAG}(R) = \mathbb{AG}(R)$.

Remark 2.2. In Theorem 2.1, the converse is not true in general. For example, consider the ring $R \cong \mathbb{Z}_p[X]/(X^2)$ where p is a prime number. Here $\mathbb{A}(R)^*$ has only one nonzero proper nilpotent ideal, (X). Thus $\mathbb{EAG}(R) = \mathbb{AG}(R) \cong K_1$ but R is not reduced.

Theorem 2.3. Let $R \cong \prod_{i=1}^{n} R_i$ where R'_i s are rings for every *i* with $n \ge 2$. Then $\mathbb{EAG}(R) = \mathbb{AG}(R)$ if and only if R_i is reduced for every *i*.

Proof. Assume that $\mathbb{EAG}(R) = \mathbb{AG}(R)$. Suppose that R_i is not reduced for some *i*. Then there exist a nonzero ideal *I* in R_i such that $I^n = (0)$ for some positive integer *n*. We have the following non-adjacency in $\mathbb{AG}(R)$, $[(0) \times (0) \times \cdots \times R_i \times (0) \times \cdots \times (0)][R_1 \times R_2 \times \cdots \times I \times R_{i+1} \times \cdots \times R_n] = (0) \times (0) \times \cdots \times I \times (0) \times \cdots \times (0) \neq (0) \times (0) \times \cdots \times (0)$ and the adjacency in $\mathbb{EAG}(R)$, $[(0) \times (0) \times \cdots \times R_i \times (0) \times \cdots \times (0)][R_1 \times R_2 \times \cdots \times I \times R_{i+1} \times \cdots \times R_n]^n = [(0) \times (0) \times \cdots \times R_i \times (0) \times \cdots \times (0)][R_1 \times R_2 \times \cdots \times (0) \times R_{i+1} \times \cdots \times R_n] = (0) \times (0) \times \cdots \times (0).$ Therefore a contradiction arises to $\mathbb{EAG}(R) = \mathbb{AG}(R)$. Conversely, assume that $R'_i s$ are reduced for every i = 1 to n. Since product of reduced ring is reduced and by Theorem 2.1, $\mathbb{EAG}(R) = \mathbb{AG}(R)$.

Recall that an ideal I of R is called a principal ideal if $I = (a) = \{ra : r \in R\}$ for some $a \in R$. If every ideal is a principal ideal in R, then R is called a principal ideal ring (PIR). An integral domain in which every ideal is principal is called a principal ideal domain (PID). A local artinian PIR is called a special principal ring (SPR) and has an extremely simple ideal structure: there are only finitely many ideals, each of which is a power of the maximal ideal.

In the next two theorems, we determine the situations when $\mathbb{EAG}(R)$ forms a complete graph and a complete bipartite graph.

Theorem 2.4. Let R be a SPR. Then $\mathbb{EAG}(R)$ is a complete graph.

Proof. Since R is a SPR, the only ideals of R are R, M, M^2, \ldots and $M^n = (0)$. Also all the nonzero proper ideals of R are in $\mathbb{A}(R)^*$. Let $M^i, M^j \in \mathbb{A}(R)^*$. If $i + j \ge n$, then M^i and M^j are adjacent in $\mathbb{E}\mathbb{A}\mathbb{G}(R)$. If i + j < n and i < j, then there exist k > 1 such that ik < n and $ik + j \ge n$. Therefore M^i and M^j are adjacent in $\mathbb{E}\mathbb{A}\mathbb{G}(R)$. If i = n and i < j, then M^j are adjacent in $\mathbb{E}\mathbb{A}\mathbb{G}(R)$. Hence $\mathbb{E}\mathbb{A}\mathbb{G}(R)$ is complete.

Theorem 2.5. Let $R \cong R_1 \times R_2$ where R_1 is an integral domain and R_2 is a ring with unique nonzero proper ideal. Then $\mathbb{EAG}(R)$ is a complete bipartite graph.

Proof. Since R_1 is an integral domain, $I_1^n I_2^m \neq (0)$, for all nonzero proper ideals I_1, I_2 in R_1 such that $I_1^n \neq (0), I_2^m \neq (0)$ for all $n, m \in \mathbb{Z}^+$. We know that the ideals in R_2 are $\{(0), J, R_2\}$. Here $(0) \times J$ and $(0) \times R_2$ are adjacent to $R_1 \times (0)$, $R_1 \times J, I \times (0)$ and $I \times J$ where I is any nonzero proper ideal of R_1 and there is no other adjacency. Thus it forms a complete bipartite graph.

Theorem 2.6. Let R be a ring. Then the following statements are equivalent.

- (1) $\mathbb{EAG}(R)$ is a finite graph.
- (2) R has only finitely many ideals.
- (3) Every vertex of $\mathbb{EAG}(R)$ has finite degree.

Moreover, $\mathbb{EAG}(R)$ has $n(n \ge 1)$ vertices if and only if R has only n nonzero proper ideals.

Proof. Since $\mathbb{AG}(R)$ is a spanning subgraph of $\mathbb{EAG}(R)$, the result follows from [8, Theorem 1.4].

3. DIAMETER OF $\mathbb{EAG}(R)$

In this Section we discuss the diameter of the extended annihilating-ideal graphs of rings. Also we determine some situations when $diam(\mathbb{EAG}(R)) = 0, 1, 2$ or 3.

Theorem 3.1. Let R be a ring. Then $\mathbb{EAG}(R)$ is connected with diam($\mathbb{EAG}(R)$) ≤ 3 and if $\mathbb{EAG}(R)$ contains a cycle, then $gr(\mathbb{EAG}(R)) \leq 4$.

Proof. Since $\mathbb{AG}(R)$ is a spanning subgraph of $\mathbb{EAG}(R)$, by [8, Theorem 2.1], the result follows.

Theorem 3.2. Let R be a ring. Then $diam(\mathbb{EAG}(R)) = 0$ if and only if it has only one nonzero proper ideal.

Proof. Assume that $diam(\mathbb{EAG}(R)) = 0$. Since $\mathbb{EAG}(R)$ is always connected, $A(R)^*$ has only one nonzero proper ideal. Hence R has only one nonzero proper ideal. Converse is obviously true.

Note that for a nilpotent ideal I of R, the nilpotency index of I is denoted by n_I . The following theorem characterizes artinian rings for which $diam(\mathbb{EAG}(R)) = 1$.

Theorem 3.3. Let R be an artinian ring. Then $diam(\mathbb{EAG}(R)) = 1$ if and only if either $R \cong \mathbb{F}_1 \times \mathbb{F}_2$ or R is a local PIR with at least two nonzero proper ideals or R is local which is not a PIR with at least two nonzero proper ideals for every $I, J \in \mathbb{A}(R)^*, I^{n_I-1}J^{n_J-1} = (0).$ **Proof.** Since R is an artinian, so, by [6, Theorem 8.7], R is a finite direct product of artinian local rings. Assume that $diam(\mathbb{EAG}(R)) = 1$. Let $R \cong R_1 \times R_2 \times$ $\cdots \times R_n$ where $R'_i s$ are artinian local rings with unique maximal ideals M_i . For $n \ge 3$, $R_1 \times R_2 \times (0) \times \cdots \times (0)$ is not adjacent to $R_1 \times (0) \times \cdots \times (0)$ in $\mathbb{EAG}(R)$, a contradiction. Therefore $n \le 2$ and consider n = 2 with $R \ncong \mathbb{F}_1 \times \mathbb{F}_2$. Here $R_1 \times$ (0) is not adjacent to $R_1 \times M_2$, a contradiction. Hence $R \cong \mathbb{F}_1 \times \mathbb{F}_2$. If n = 1, then R is a local ring. Suppose that R has less than two nonzero proper ideals, then by Theorem 3.2, a contradiction. Thus R is a local ring with at least two nonzero proper ideals. If R is a PIR, then by Theorem 2.4, the result holds. Suppose that R is not a PIR, for some $I, J \in \mathbb{A}(R)^*, I^{n_I-1}J^{n_J-1} \neq (0)$, then $diam(\mathbb{EAG}(R) \neq$ 1. Thus R is not a PIR for every $I, J \in \mathbb{A}(R)^*, I^{n_I-1}J^{n_J-1} = (0)$. Conversely, assume that $R \cong \mathbb{F}_1 \times \mathbb{F}_2$, then $diam(\mathbb{EAG}(R)) = 1$. If R is a local PIR with at least two nonzero proper ideals, then by Theorem 2.4, $diam(\mathbb{EAG}(R)) = 1$. If R is local which is not a PIR with at least two nonzero proper ideals for every $I, J \in \mathbb{A}(R)^*, I^{n_I-1}J^{n_J-1} = (0)$, then the result is obviously true.

Example 3.4. Let $R \cong \mathbb{Z}[i]/(\pi^n)$ where π is an irreducible gaussian integer and $n \geq 3$. Here R is a SPR with more than one nonzero proper ideals. Thus $diam(\mathbb{EAG}(R)) = 1$.

The following three theorems show that when $\mathbb{EAG}(R)$ has diameter two.

Theorem 3.5. Let R be a PIR. Then $diam(\mathbb{EAG}(R)) = 2$ if and only if $R \cong R_1 \times R_2$ where R_1 and R_2 are either PID or SPR and any one of R_i is not a field.

Proof. Since R is a PIR, by [15, Theorem 33], $R \cong \prod_{i=1}^{n} R_i$ where $R'_i s$ are either PIDs or SPRs. Assume that $diam(\mathbb{EAG}(R)) = 2$. Consider $n \ge 3$. Then we have the following adjacency in $\mathbb{EAG}(R)$, $(0) \times R_2 \times \cdots \times R_n - R_1 \times (0) \times \cdots \times (0) - (0) \times R_2 \times (0) \times \cdots \times (0) - R_1 \times (0) \times R_3 \times \cdots \times R_n$. This shows that $diam(\mathbb{EAG}(R)) = 3$. Thus $R \cong R_1 \times R_2$. If R_1 and R_2 are fields, then by Theorem 3.3, $diam(\mathbb{EAG}(R)) = 1$. Therefore R_1 and R_2 are not fields. Thus R_1 and R_2 are either PID or SPR and not fields. Suppose that R_1 is a field, then clearly R_2 is not a field, it is either PID or SPR.

Conversely, assume that $R \cong R_1 \times R_2$, where R'_is are either PID or SPR and any one of R_i is not a field, i = 1, 2. Consider R_1 and R_2 are SPRs and are not fields. Clearly $(0) \times R_2$ and $M_1 \times R_2$ are not adjacent in $\mathbb{EAG}(R)$ where M_1 is a nonzero proper ideal in R_1 , so $diam(\mathbb{EAG}(R)) \ge 2$. By Theorem 3.1, $diam(\mathbb{EAG}(R)) = 2$ or 3. Consider R_1 has a unique nonzero proper ideal, say M_1 . Let $V_1 = \{(0) \times M_2{}^j : j = 1 \text{ to } m - 1\}, V_2 = \{M_1 \times M_2{}^j : j = 1 \text{ to } m - 1\}$ and $V_3 = \{R_1 \times M_2{}^j : j = 1 \text{ to } m - 1\}$ where M_2 is a nonzero proper ideal in R_2 and $M_2{}^m = (0)$. Then the induced subgraphs $\langle V_1 \rangle$ and $\langle V_2 \rangle$ are complete and $\langle V_3 \rangle$ is totally disconnected. In Figure 2.1, any one edge ends at V_i means that edge adjacent to all the vertices in V_i and also it is the spanning subgraph of $\mathbb{EAG}(R)$ and its diameter is 2. Hence $diam(\mathbb{EAG}(R)) = 2$.

Suppose that R_1 and R_2 have more than one nonzero proper ideals. Let $V_1 = \{M_1^i \times (0) : i = 1 \text{ to } n-1\}, V_2 = \{M_1^i \times M_2^j : i = 1 \text{ to } n-1 \text{ and } j = 1 \text{ to } m-1\}, V_3 = \{(0) \times M_2^j : j = 1 \text{ to } m-1\}, V_4 = \{M_1^i \times R_2 : i = 1 \text{ to } n-1\}$ and $V_5 = \{R_1 \times M_2^j : j = 1 \text{ to } m-1\}$ where M_1 and M_2 are nonzero proper ideals in R_1 and R_2 respectively, $M_1^n = (0)$ and $M_2^m = (0)$. Then the induced subgraphs $\langle V_1 \rangle, \langle V_2 \rangle, \langle V_3 \rangle$ are complete graphs and $\langle V_4 \rangle, \langle V_5 \rangle$ are totally disconnected. Figure 2.2 is the spanning subgraph of $\mathbb{EAG}(R)$ and its diameter is 2. Hence $diam(\mathbb{EAG}(R)) = 2$.

Now consider R_1 and R_2 are PIDs which are not fields. Since R_1 and R_2 are reduced and there exist nonzero prime ideals $P = R_1 \times (0)$ and $Q = (0) \times R_2$ of R which are not minimal ideals such that $P \cap Q = (0)$, by Theorem 2.3 and [3, Theorem 2.4], $\mathbb{EAG}(R)$ is a complete bipartite graph. Thus $diam(\mathbb{EAG}(R)) = 2$.

Suppose that R_1 is a PID and R_2 is a SPR and R_1, R_2 are not fields. Since R_1 is a PID, $I_1^{k_1}I_2^{k_2} \neq (0)$ for all nonzero proper ideals I_1, I_2 in R_1 such that $I_1^{k_1} \neq (0), I_2^{k_2} \neq (0)$ for all $k_1, k_2 \in \mathbb{Z}^+$. Let $V_1 = \{R_1 \times M_2^j : j = 1 \text{ to } m - 1\},$

 $V_2 = \{I \times M_2{}^j : j = 1 \text{ to } m - 1\}, V_3 = \{I \times (0)\} \text{ and } V_4 = \{(0) \times M_2{}^j : j = 1 \text{ to } m - 1\}$ where I is a nonzero proper ideal in R_1 and M_2 is a nonzero proper ideal in R_2 and $M_2{}^m = (0)$. Then the induced subgraphs $\langle V_1 \rangle, \langle V_2 \rangle$ and $\langle V_3 \rangle$ are totally disconnected and $\langle V_4 \rangle$ is complete. Figure 2.3 is the extended annihilating-ideal graph of R and it shows that $diam(\mathbb{EAG}(R)) = 2$.

Now consider R_1 is a field and R_2 is a PID which is not a field. Since R_1 and R_2 are reduced, by Theorem 2.3 and Corollary 1.2, $\mathbb{EAG}(R)$ is a star graph. Thus $diam(\mathbb{EAG}(R)) = 2$.

Suppose that R_1 is a field and R_2 is a SPR which is not a field. Let $V_1 = \{(0) \times M_2{}^j : j = 1 \text{ to } m - 1\}$ and $V_2 = \{R_1 \times M_2{}^j : j = 1 \text{ to } m - 1\}$ where M_2 is a nonzero proper ideal in R_2 and $M_2{}^m = (0)$. Then the induced subgraphs $\langle V_1 \rangle$ is complete and $\langle V_2 \rangle$ is totally disconnected. Figure 2.4 is the extended annihilating-ideal graph of R and it shows that $diam(\mathbb{EAG}(R)) = 2$.

Example 3.6. If $R \cong R_1 \times R_2$ where $R_1 = \mathbb{Z}_2[X]/(X^2 + X + 1)$ and $R_2 = \mathbb{Z}_2[X]/(X^3)$, then $diam(\mathbb{EAG}(R)) = 2$.

Figure 2.5 $\mathbb{EAG}(R)$

Theorem 3.7. Let R be a reduced ring such that Z(R) is not an ideal of R. Then $diam(\mathbb{EAG}(R)) = 2$ if and only if R has exactly two minimal prime ideals and at least three nonzero annihilating-ideals.

Proof. The result is obviously true from the Theorem 2.1 and [9, Theorem 1.2].

Theorem 3.8. Let $R \cong R_1 \times R_2$ where R_1 is an integral domain and R_2 is a ring with unique nonzero proper ideal. Then $diam(\mathbb{EAG}(R)) = 2$.

Proof. By Theorem 2.5, $diam(\mathbb{EAG}(R)) = 2$.

Open question 3.9. Determine $diam(\mathbb{EAG}(R))$ for $R \cong R_1 \times R_2$ where R_1 is an integral domain and R_2 is a ring with more than one nonzero proper ideals and not a PIR.

In the next theorem, we state necessary and sufficient conditions to have $diam(\mathbb{EAG}(R)) = 3$ for artinian PIR.

Theorem 3.10. Let R be an artinian PIR such that Z(R) is not an ideal of R. Then diam $(\mathbb{EAG}(R)) = 3$ if and only if R is a ring with more than two minimal prime ideals.

Proof. Since R is an artinian PIR and Z(R) is not an ideal of $R, R \cong \prod_{i=1}^{n} R_i$ where $R'_i s$ are SPRs for all i = 1 to n and $n \ge 2$. Assume that $diam(\mathbb{EAG}(R)) =$ 3. Since $\mathbb{AG}(R)$ is a spanning subgraph of $\mathbb{EAG}(R)$, $diam(\mathbb{AG}(R)) = 3$. Then by [9, Theorem 1.4], R is a reduced ring with more than two minimal prime ideals or R is a non-reduced ring. Consider the case R is non-reduced. For n = 2 and $R \cong R_1 \times R_2$, where R_1 is not a field, then as noted in the proof of Theorem 3.5, $diam(\mathbb{EAG}(R)) = 2$. Thus $n \ge 3$. Also note that in a commutative artinian ring, every maximal ideal is a minimal prime ideal. From this, R is a non-reduced ring with more than two minimal prime ideals.

Conversely, assume that R is a ring with more than two minimal prime ideals. Consider R is a reduced ring with more than two minimal prime ideals. Then by Theorem 2.1 and [9, Theorem 1.4], $diam(\mathbb{EAG}(R)) = 3$. Suppose that R is a nonreduced ring with more than two minimal prime ideals and $diam(\mathbb{EAG}(R)) \neq 3$. If $diam(\mathbb{EAG}(R)) = 1$, then by Theorem 3.3, R is a SPR with at least two nonzero proper ideals. Here Z(R) is an ideal of R, a contradiction. If $diam(\mathbb{EAG}(R)) = 2$, then by Theorem 3.5, R does not have more than two minimal prime ideals. Hence $diam(\mathbb{EAG}(R)) = 3$.

Open question 3.11. Classify the diameter of $\mathbb{EAG}(R)$ for all artinian rings which are not PIRs.

4. GIRTH OF $\mathbb{EAG}(R)$

In this Section we discuss the girth of $\mathbb{EAG}(R)$ and also compare the girth of $\mathbb{AG}(R)$ with $\mathbb{EAG}(R)$. As Theorem 3.1, $gr(\mathbb{EAG}(R)) \leq 4$. Here we characterize the rings for which $gr(\mathbb{EAG}(R)) = 3, 4$ or ∞ .

Theorem 4.1. Let $R \cong R_1 \times R_2$ be a ring. If any one of R_i is a ring with more than one nonzero proper ideals for i = 1, 2, then $gr(\mathbb{EAG}(R)) = 3$.

Proof. Suppose that R_1 is a ring with more than one nonzero proper ideals. Since $\mathbb{EAG}(R_1)$ is connected, there exist two nonzero proper ideals I_1 and I_2 in R_1 such that $I_1^n I_2^m = (0)$ with $I_1^n \neq (0), I_2^m \neq (0)$ for some positive integers n, m. Then we have the following cycle of length 3 in $\mathbb{EAG}(R), I_1 \times (0) - I_2 \times (0) - (0) \times R_2 - I_1 \times (0)$. Thus $gr(\mathbb{EAG}(R)) = 3$.

Theorem 4.2. Let $R \cong \prod_{i=1}^{n} R_i$ where R'_i s are rings for every *i* with $n \ge 2$. Then the following hold.

- (i) For n = 2, $gr(\mathbb{EAG}(R)) = \infty$ if and only if $R \cong R_1 \times R_2$, where R_1 is a field and R_2 is an integral domain.
- (ii) $gr(\mathbb{EAG}(R)) = 3$ if and only if one of the following statements hold.
 - (a) When $n \geq 3$
 - (b) For n = 2, both R'_i s are not integral domains.
 - (c) For n = 2, R_1 is an integral domain and R_2 is a ring with more than one nonzero proper ideals.
- (iii) For n = 2, $gr(\mathbb{EAG}(R)) = 4$ if and only if either R_1 and R_2 are integral domains which are not fields or R_1 is an integral domain and R_2 is a ring with unique nonzero proper ideal.

288

Proof. (i) For n = 2 and assume that $gr(\mathbb{EAG}(R)) = \infty$. Since $\mathbb{AG}(R)$ is a spanning subgraph of $\mathbb{EAG}(R)$, $\mathbb{EAG}(R) \cong \mathbb{AG}(R)$. Then by Theorem 2.3, $R'_i s$ are reduced for all i = 1, 2. Also by [3, Theorem 3.1], $R \cong R_1 \times R_2$ where R_1 is a field and R_2 is an integral domain. Conversely, assume that $R \cong R_1 \times R_2$ where R_1 is a field and R_2 is an integral domain, then R_1 and R_2 are reduced. By Theorem 2.3 and Corollary 1.2, $\mathbb{EAG}(R)$ is a star graph. Therefore $gr(\mathbb{EAG}(R)) = \infty$.

(ii) (a) Assume that $gr(\mathbb{EAG}(R)) = 3$. Then from the following cycle $R_1 \times (0) \times \cdots \times (0) - (0) \times R_2 \times (0) \times \cdots \times (0) - (0) \times (0) \times R_3 \times (0) \times \cdots \times (0) - R_1 \times (0) \times \cdots \times (0), n \ge 3$ is true. Conversely, when $n \ge 3$, the result is obviously true.

(b) Now consider n = 2 and assume that $gr(\mathbb{EAG}(R)) = 3$. Suppose that R_1 and R_2 are integral domains. Since R_1 and R_2 are reduced, by Theorem 2.3, Corollary 1.2 and [3, Corollary 2.5], $gr(\mathbb{EAG}(R)) = 4$ or ∞ , a contradiction. From this case $R'_i s$ are not integral domains. Conversely, assume that R_1 and R_2 are not integral domains. Consider R_1 and R_2 are rings with unique nonzero proper ideals I and J in R_1 and R_2 respectively such that $I^2 = (0)$ and $J^2 = (0)$. Then in $\mathbb{EAG}(R)$, $I \times (0) - I \times J - (0) \times J - I \times (0)$ is a cycle of length 3 so that $gr(\mathbb{EAG}(R)) = 3$. Also consider R_1 is a ring with more than one nonzero proper ideals. Then by Theorem 4.1, $gr(\mathbb{EAG}(R)) = 3$. From these cases, $gr(\mathbb{EAG}(R)) = 3$.

(c) For n = 2, assume that $gr(\mathbb{EAG}(R)) = 3$. If R_1 is an integral domain and R_2 is a ring with unique nonzero proper ideal, then by Theorem 2.5, $gr(\mathbb{EAG}(R)) = 4$, a contradiction. Thus R_1 is an integral domain and R_2 is a ring with more than one nonzero proper ideals. Converse part follows from Theorem 4.1.

(iii) Proof follows from (i) and (ii).

We next characterize when $gr(\mathbb{EAG}(\mathbb{Z}_n))$ is 3,4 or ∞ .

Theorem 4.3. For $n \in \mathbb{N}$, let $n = \prod_{i=1}^{k} p_i^{\alpha_i}$ be the distinct prime factorization of n. Then the following assertions are true.

- (i) $gr(\mathbb{EAG}(\mathbb{Z}_n)) = 3$ if and only if one of the following assertions must occur.
 - (a) When $k \geq 3$.
 - (b) When k = 1 and $\alpha_1 \ge 4$.

(c) When k = 2, either $\alpha_1 = 1$, $\alpha_2 > 2$ or $\alpha_1, \alpha_2 \ge 2$.

- (ii) $gr(\mathbb{EAG}(\mathbb{Z}_n)) = 4$ if and only if k = 2 with $\alpha_1 = 1, \alpha_2 = 2$.
- (iii) $gr(\mathbb{EAG}(\mathbb{Z}_n)) = \infty$ if and only if either k = 1 with $\alpha_1 = 2$ or 3 or k = 2with $\alpha_1 = 1, \alpha_2 = 1$.

Proof. When $k \ge 2$, the result holds by Theorem 4.2. It remains to consider the case k = 1. Assume that $gr(\mathbb{E}A\mathbb{G}(\mathbb{Z}_n)) = 3$ and $\alpha_1 < 4$. Then $|\mathbb{A}(R)^*| = 0, 1$ or 2

and hence $gr(\mathbb{EAG}(\mathbb{Z}_n)) = \infty$. This shows that $\alpha_1 \ge 4$. Conversely, assume that $\alpha_1 \ge 4$, then \mathbb{Z}_n is a local ring with maximal ideal (p_1) and $|\mathbb{A}(R)^*| = \alpha_1 - 1$. Since \mathbb{Z}_n is a SPR, by Theorem 2.4, $gr(\mathbb{EAG}(\mathbb{Z}_n)) = 3$. By above, (iii) holds for the case k = 1.

We conclude this paper with the following theorem to have a better comparison of the girth between $\mathbb{EAG}(R)$ and $\mathbb{AG}(R)$.

Theorem 4.4. Let R be a ring. Then the following hold.

- (i) If $gr(\mathbb{AG}(R)) = 3$, then $gr(\mathbb{EAG}(R)) = 3$.
- (ii) If $gr(\mathbb{AG}(R)) = 4$, then $gr(\mathbb{EAG}(R)) = 4$.
- (iii) If $gr(\mathbb{A}\mathbb{G}(R)) = \infty$, then $gr(\mathbb{E}\mathbb{A}\mathbb{G}(R)) = 3, 4$ or ∞ .
- (iv) If $gr(\mathbb{E}A\mathbb{G}(R)) = 3$, then $gr(\mathbb{A}\mathbb{G}(R)) = 3$ or ∞ .
- (v) If $gr(\mathbb{E}A\mathbb{G}(R)) = 4$, then $gr(\mathbb{A}\mathbb{G}(R)) = 4$ or ∞ .
- (vi) If $gr(\mathbb{E}A\mathbb{G}(R)) = \infty$, then $gr(\mathbb{A}\mathbb{G}(R)) = \infty$.

Proof. Since $\mathbb{AG}(R)$ is a spanning subgraph of $\mathbb{EAG}(R)$, (i), (iii), (v), (vi) are obviously true.

(ii) Assume that $gr(\mathbb{AG}(R)) = 4$. This shows that $\mathbb{AG}(R)$ is a trianglefree graph. Then by [2, Lemma 1], $R \cong R_1 \times R_2$ where either R_1 and R_2 are integral domains which are not fields or R_1 is an integral domain which is not a field and R_2 is a ring with unique nonzero proper ideal. By Theorem 4.2(iii), $gr(\mathbb{EAG}(R)) = 4$.

(iv) Assume that $gr(\mathbb{EAG}(R)) = 3$. Since $\mathbb{AG}(R)$ is a spanning subgraph of $\mathbb{EAG}(R)$, $gr(\mathbb{AG}(R)) = 3, 4$ or ∞ . By part (ii), $gr(\mathbb{AG}(R)) \neq 4$ and so $gr(\mathbb{AG}(R)) = 3$ or ∞ .

References

- G. Aalipour, S. Akbari, M. Behboodi, R. Nikandish, M.J. Nikmehr and F. Shaveisi, *The classification of the annihilating-ideal graph of commutative rings*, Algebra Colloq. **21** (2014) 249–256. https://doi.org/10.1142/S1005386714000200
- G. Aalipour, S. Akbari, R. Nikandish, M.J. Nikmehr and F. shaveisi, *Minimal prime ideals and cycles in annihilating-ideal graphs*, Rocky Mountain J. Math. 43 (2013) 1415–1425. https://doi.org/10.1216/RMJ-2013-43-5-1415
- [3] M. Ahrari, Sh. A. Safari Sabet and B. Amini, On the girth of the annihilating-ideal graph of a commutative ring, J. Linear and Topological Algebra 4 (2015) 209–216.
- [4] G. Alan Cannon, K. M. Neuerburg and S.P. Redmond, Zero-divisor graphs of nearrings and semigroups, Near-rings and Near-fields: Proc. Conf. Near-rings and Nearfields II, (2005) 189–200. https://doi.org/10.1007/1-4020-3391-5_8

- [5] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434–447. https://doi.org/10.1006/jabr.1998.7840
- [6] M.F. Atiyah and I.G. MacDonald, Introduction to Commutative Algebra (Addison-Wesley Publishing Company, London, 1969).
- [7] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208–226. https://doi.org/10.1016/0021-8693(88)90202-5
- [8] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 (2011) 727–739. https://doi.org/10.1142/S0219498811004896
- M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (2011) 741–753. https://doi.org/10.1142/S0219498811004902
- [10] D. Bennis, J. Mikram and F. Taraza, On the extended zero-divisor graph of a commutative rings, Turk. J. Math. 40 (2016) 376–388. https://doi.org/10.3906/mat-1504-61
- [11] G. Chartrand and Ping Zhang, Introduction to Graph Theory (Tata McGraw Hill, India, 2006).
- K.R. McLean, Commutative Artinian principal ideal rings, Proc. London Math. Soc. 26 (1973) 249–272. https://doi.org/10.1112/plms/s3-26.2.249
- T. Tamizh Chelvam and S. Nithya, Zero-divisor graph of an ideal of a near-ring, Discrete Math. Alg. Appl. 5 (2013) 1350007 (1–11). https://doi.org/10.1142/S1793830913500079
- [14] T. Tamizh Chelvam and S. Nithya, Domination in the zero-divisor graph of an ideal of a near-ring, Taiwanese J. Math. 17 (2013) 1613–1625. https://doi.org/10.11650/tjm.17.2013.2739
- [15] O. Zariski and P. Samuel, Commutative Algebra, I (Van Nostrand, Princeton, 1958).

Received 27 June 2020 Revised 4 February 2021 Accepted 22 March 2022