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Abstract

Let R be a commutative ring with identity. An ideal I of a ring R is called
an annihilating-ideal if there exists a nonzero ideal J of R such that IJ = (0)
and we use the notation A(R) for the set of all annihilating-ideals of R. In
this paper, we introduce the extended annihilating-ideal graph of R, denoted
by EAG(R). It is the simple graph with vertices A(R)∗ = A(R)\ {(0)}, and
two distinct vertices I and J are adjacent whenever there exist two positive
integers n and m such that InJm = (0) with In 6= (0) and Jm 6= (0). Here
we discuss in detail the diameter and girth of EAG(R) and investigate the
coincidence of EAG(R) with the annihilating-ideal graph AG(R). Moreover
we propose open questions in this paper.
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1. Introduction

The concept of zero-divisor graph of a commutative ring R was first introduced
by Beck in [7]. He let all elements of the ring be vertices of the graph and was
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interested mainly in coloring. In [5], Anderson et al. associated a zero-divisor
graph Γ(R) to R with vertices Z(R)∗ = Z(R)\{0}, the set of all nonzero zero-
divisors and two distinct vertices x and y are adjacent if and only if xy = 0.
The zero-divisor graphs of commutative rings attracted the attention of several
researchers and also this graph was assigned to other algebraic structures (see for
instance [4, 13, 14]). In [10], Bennis et al. introduced and studied the extended
zero-divisor graph of R which is the extension of the classical zero-divisor graph
of R and it is denoted by Γ̄(R) whose vertex set consists of all its nonzero zero-
divisors and that two distinct vertices x and y are adjacent whenever there exist
two non-negative integers n and m such that xnym = 0 with xn 6= 0 and ym 6= 0.
In [8], Behboodi et al. introduced and investigated the annihilating-ideal graph
of R, denoted by AG(R). An ideal I of a ring R is called an annihilating-ideal if
there exists a nonzero ideal J of R such that IJ = (0) and we use the notation
A(R) for the set of all annihilating-ideals of R. It is the simple graph with
vertices A(R)∗ = A(R)\ {(0)}, the set of all nonzero annihilating-ideals of R and
two distinct vertices I and J are adjacent if and only if IJ = (0). They obtained
some finiteness conditions of AG(R) and found out the facts of the connectivity
of annihilating-ideal graphs. In [9], they discussed the diameter and coloring of
annihilating-ideal graphs.

Throughout this paper R denotes a commutative ring with identity 1 6= 0. In
this paper we introduce an extension of the annihilating-ideal graph of a commu-
tative ring R, denoted by EAG(R), which we call the extended annihilating-ideal
graph of R, such that its vertex set is A(R)∗ which is the set of all nonzero
annihilating-ideals of R and that two distinct vertices I and J are adjacent if
and only if there exist two positive integers n and m such that InJm = (0) with
In 6= (0) and Jm 6= (0). Clearly, the annihilating-ideal graph AG(R) is a span-
ning subgraph of EAG(R). Note that EAG(R) is the empty graph if and only if
R is an integral domain.

The main goal of this paper is to establish the relation between EAG(R) and
AG(R) and the connection between the graph theoretic properties of EAG(R) and
the ring theoretic properties of R. In Section 2, we discuss the basic properties of
EAG(R) and the coincidence of EAG(R) and AG(R). Also we determine when
EAG(R) forms a complete graph or a complete bipartite graph. In Sections 3 and
4, we obtain the diameter and girth of EAG(R) and that compare with AG(R).
In this paper we propose open questions with regard to the diameter of EAG(R).
As usual, Z, Q, Zn, F denote the ring of integers, rational numbers, ring of
integers modulo n and the field, respectively. For basic definitions on rings, one
may refer [6].

For the sake of completeness, we state some definitions and notations used
throughout. Let G be a graph and V (G), E(G) be the vertex set and edge set of G
respectively. A graph H is called a subgraph of G that is H ⊆ G if V (H) ⊆ V (G)
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and E(H) ⊆ E(G). A subgraph H of G with V (H) = V (G) is called a spanning
subgraph of G. For S ⊆ V (G), the induced subgraph H induced by S is the
subgraph of G with vertex set S and two vertices are adjacent in H if and only if
they are adjacent in G and it is denoted by 〈S〉. A closed path is called a cycle. A
cycle on n ≥ 3 vertices is denoted by Cn. We say that G is connected if there is a
path between any two distinct vertices of G. For vertices x and y of G, let d(x, y)
be the length of the shortest path from x to y (d(x, x) = 0, d(x, y) = ∞ if there is
no such path). The diameter of G is diam(G) = sup {d(x, y) : x, y ∈ V (G)}. The
girth of G denoted by gr(G), is the length of a shortest cycle in G (gr(G) = ∞ if
G contains no cycles). A graph in which each pair of distinct vertices is joined by
an edge is called a complete graph. We denote the complete graph on n vertices
by Kn. A bipartite graph is a graph all of whose vertices can be partitioned into
two parts V1 and V2 such that every edge joins a vertex in V1 to one in V2. A
complete bipartite graph is a bipartite graph in which every vertex of one part
is joined to every vertex of the other part. The complete bipartite graph on m
and n vertices is denoted by Km,n and K1,n a star graph. For undefined terms
in graph theory we refer [11]. The following results are useful in the subsequent
sections.

Theorem 1.1 [8, Theorem 1.1]. Let R be a non-domain ring. Then AG(R) has
ACC (respectively, DCC) on vertices if and only if R is a Noetherian (respectively,
an Artinian) ring.

Corollary 1.2 [8, Corollary 2.3]. Let R be a reduced ring. Then the following
statements are equivalent.

(i) There is a vertex of AG(R) which is adjacent to every other vertices.

(ii) AG(R) is a star graph.

(iii) R ∼= F×D, where F is a field and D is an integral domain.

2. Basic properties of EAG(R)

In this Section we discuss the basic properties of EAG(R) and when EAG(R) and
AG(R) coincide. A ring R is called a reduced ring if it has no nonzero nilpotent
elements. The following theorem plays an important role in this paper.

Theorem 2.1. Let R be a reduced ring. Then EAG(R) = AG(R).

Proof. Since R is reduced, it has no nonzero nilpotent ideals. Then for every
nonzero ideal I in R, In 6= (0) for all positive integers n. By definitions of
EAG(R) and AG(R), AG(R) is a spanning subgraph of EAG(R). Suppose there
exist two nonzero proper ideals I, J in R such that InJm = (0) with In 6= (0)
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and Jm 6= (0) for some positive integers n and m but IJ 6= (0). Now InJm = (0)
implies Im+nJm+n = (0) that is (IJ)m+n = (0). Hence IJ is a nonzero nilpotent
ideal of R which is a contradiction. Thus EAG(R) = AG(R).

Remark 2.2. In Theorem 2.1, the converse is not true in general. For example,
consider the ring R ∼= Zp[X]/(X2) where p is a prime number. Here A(R)∗ has
only one nonzero proper nilpotent ideal, (X). Thus EAG(R) = AG(R) ∼= K1 but
R is not reduced.

Theorem 2.3. Let R ∼=
∏n

i=1
Ri where R′

is are rings for every i with n ≥ 2.
Then EAG(R) = AG(R) if and only if Ri is reduced for every i.

Proof. Assume that EAG(R) = AG(R). Suppose that Ri is not reduced for
some i. Then there exist a nonzero ideal I in Ri such that In = (0) for some
positive integer n. We have the following non-adjacency in AG(R), [(0) × (0) ×
· · · × Ri × (0) × · · · × (0)][R1 × R2 × · · · × I × Ri+1 × · · · × Rn] = (0) × (0) ×
· · · × I × (0) × · · · × (0) 6= (0) × (0) × · · · × (0) and the adjacency in EAG(R),
[(0)×(0)×· · ·×Ri×(0)×· · ·×(0)][R1×R2×· · ·×I×Ri+1×· · ·×Rn]

n = [(0)×(0)×
· · ·×Ri×(0)×· · ·×(0)][R1×R2×· · ·×(0)×Ri+1×· · ·×Rn] = (0)×(0)×· · ·×(0).
Therefore a contradiction arises to EAG(R) = AG(R). Conversely, assume that
R′

is are reduced for every i = 1 to n. Since product of reduced ring is reduced
and by Theorem 2.1, EAG(R) = AG(R).

Recall that an ideal I of R is called a principal ideal if I = (a) = {ra : r ∈ R}
for some a ∈ R. If every ideal is a principal ideal in R, then R is called a principal
ideal ring (PIR). An integral domain in which every ideal is principal is called a
principal ideal domain (PID). A local artinian PIR is called a special principal
ring (SPR) and has an extremely simple ideal structure: there are only finitely
many ideals, each of which is a power of the maximal ideal.

In the next two theorems, we determine the situations when EAG(R) forms
a complete graph and a complete bipartite graph.

Theorem 2.4. Let R be a SPR. Then EAG(R) is a complete graph.

Proof. Since R is a SPR, the only ideals of R are R,M,M2, . . . and Mn = (0).
Also all the nonzero proper ideals of R are in A(R)∗. Let M i,M j ∈ A(R)∗. If
i+ j ≥ n, then M i and M j are adjacent in EAG(R). If i+ j < n and i < j, then
there exist k > 1 such that ik < n and ik + j ≥ n. Therefore M i and M j are
adjacent in EAG(R). Hence EAG(R) is complete.

Theorem 2.5. Let R ∼= R1×R2 where R1 is an integral domain and R2 is a ring
with unique nonzero proper ideal. Then EAG(R) is a complete bipartite graph.
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Proof. Since R1 is an integral domain, In1 I
m
2 6= (0), for all nonzero proper ideals

I1, I2 in R1 such that In1 6= (0), Im2 6= (0) for all n,m ∈ Z+. We know that the
ideals in R2 are {(0), J,R2}. Here (0)× J and (0)×R2 are adjacent to R1 × (0),
R1 × J , I × (0) and I × J where I is any nonzero proper ideal of R1 and there is
no other adjacency. Thus it forms a complete bipartite graph.

Theorem 2.6. Let R be a ring. Then the following statements are equivalent.

(1) EAG(R) is a finite graph.

(2) R has only finitely many ideals.

(3) Every vertex of EAG(R) has finite degree.

Moreover, EAG(R) has n(n ≥ 1) vertices if and only if R has only n nonzero
proper ideals.

Proof. Since AG(R) is a spanning subgraph of EAG(R), the result follows from
[8, Theorem 1.4].

3. Diameter of EAG(R)

In this Section we discuss the diameter of the extended annihilating-ideal graphs
of rings. Also we determine some situations when diam( EAG(R)) = 0, 1, 2 or 3.

Theorem 3.1. Let R be a ring. Then EAG(R) is connected with diam(EAG(R))
≤ 3 and if EAG(R) contains a cycle, then gr(EAG(R)) ≤ 4.

Proof. Since AG(R) is a spanning subgraph of EAG(R), by [8, Theorem 2.1],
the result follows.

Theorem 3.2. Let R be a ring. Then diam(EAG(R)) = 0 if and only if it has
only one nonzero proper ideal.

Proof. Assume that diam(EAG(R)) = 0. Since EAG(R) is always connected,
A(R)∗ has only one nonzero proper ideal. Hence R has only one nonzero proper
ideal. Converse is obviously true.

Note that for a nilpotent ideal I of R, the nilpotency index of I is denoted by
nI . The following theorem characterizes artinian rings for which diam(EAG(R))
= 1.

Theorem 3.3. Let R be an artinian ring. Then diam(EAG(R)) = 1 if and only
if either R ∼= F1 × F2 or R is a local PIR with at least two nonzero proper ideals
or R is local which is not a PIR with at least two nonzero proper ideals for every
I, J ∈ A(R)∗, InI−1JnJ−1 = (0).
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Proof. Since R is an artinian, so, by [6, Theorem 8.7], R is a finite direct product
of artinian local rings. Assume that diam(EAG(R)) = 1. Let R ∼= R1 × R2 ×
· · · × Rn where R′

is are artinian local rings with unique maximal ideals Mi. For
n ≥ 3, R1×R2×(0)×· · ·×(0) is not adjacent to R1×(0)×· · ·×(0) in EAG(R), a
contradiction. Therefore n ≤ 2 and consider n = 2 with R ≇ F1 × F2. Here R1 ×
(0) is not adjacent to R1×M2, a contradiction. Hence R ∼= F1×F2. If n = 1, then
R is a local ring. Suppose that R has less than two nonzero proper ideals, then
by Theorem 3.2, a contradiction. Thus R is a local ring with at least two nonzero
proper ideals. If R is a PIR, then by Theorem 2.4, the result holds. Suppose that
R is not a PIR, for some I, J ∈ A(R)∗, InI−1JnJ−1 6= (0), then diam(EAG(R) 6=
1. Thus R is not a PIR for every I, J ∈ A(R)∗, InI−1JnJ−1 = (0). Conversely,
assume that R ∼= F1 × F2, then diam(EAG(R)) = 1. If R is a local PIR with at
least two nonzero proper ideals, then by Theorem 2.4, diam(EAG(R)) = 1. If
R is local which is not a PIR with at least two nonzero proper ideals for every
I, J ∈ A(R)∗, InI−1JnJ−1 = (0), then the result is obviously true.

Example 3.4. Let R ∼= Z[i]/(πn) where π is an irreducible gaussian integer
and n ≥ 3. Here R is a SPR with more than one nonzero proper ideals. Thus
diam(EAG(R)) = 1.

The following three theorems show that when EAG(R) has diameter two.

Theorem 3.5. Let R be a PIR. Then diam(EAG(R)) = 2 if and only if R ∼=
R1 × R2 where R1 and R2 are either PID or SPR and any one of Ri is not a
field.

Proof. Since R is a PIR, by [15, Theorem 33], R ∼=
∏n

i=1
Ri where R′

is are
either PIDs or SPRs. Assume that diam(EAG(R)) = 2. Consider n ≥ 3. Then
we have the following adjacency in EAG(R), (0) × R2 × · · · × Rn − R1 × (0) ×
· · · × (0) − (0) × R2 × (0) × · · · × (0) − R1 × (0) × R3 × · · · × Rn. This shows
that diam(EAG(R)) = 3. Thus R ∼= R1 × R2. If R1 and R2 are fields, then by
Theorem 3.3, diam(EAG(R)) = 1. Therefore R1 and R2 are not fields. Thus R1

and R2 are either PID or SPR and not fields. Suppose that R1 is a field, then
clearly R2 is not a field, it is either PID or SPR.

Conversely, assume that R ∼= R1 × R2, where R′

is are either PID or SPR
and any one of Ri is not a field, i = 1, 2. Consider R1 and R2 are SPRs and
are not fields. Clearly (0)×R2 and M1 ×R2 are not adjacent in EAG(R) where
M1 is a nonzero proper ideal in R1, so diam(EAG(R)) ≥ 2. By Theorem 3.1,
diam(EAG(R)) = 2 or 3. Consider R1 has a unique nonzero proper ideal, say
M1. Let V1 = {(0)×M2

j : j = 1 to m−1}, V2 = {M1×M2
j : j = 1 to m−1} and

V3 = {R1 ×M2
j : j = 1 to m− 1} where M2 is a nonzero proper ideal in R2 and

M2
m = (0). Then the induced subgraphs 〈V1〉 and 〈V2〉 are complete and 〈V3〉

is totally disconnected. In Figure 2.1, any one edge ends at Vi means that edge
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adjacent to all the vertices in Vi and also it is the spanning subgraph of EAG(R)
and its diameter is 2. Hence diam(EAG(R)) = 2.

b

V1

V2

V3

R1 × (0) M1 × (0)

(0)×R2
M1 ×R2

Figure 2.1

b b b b b

b

b

b b bb b b b b

b
b b bb b b b

b

Suppose that R1 and R2 have more than one nonzero proper ideals. Let
V1 = {M1

i × (0) : i = 1 to n − 1}, V2 = {M1
i ×M2

j : i = 1 to n − 1 and j = 1
to m − 1}, V3 = {(0) × M2

j : j = 1 to m − 1}, V4 = {M1
i × R2 : i = 1 to

n − 1} and V5 = {R1 × M2
j : j = 1 to m − 1} where M1 and M2 are nonzero

proper ideals in R1 and R2 respectively, M1
n = (0) and M2

m = (0). Then the
induced subgraphs 〈V1〉 , 〈V2〉 , 〈V3〉 are complete graphs and 〈V4〉, 〈V5〉 are totally
disconnected. Figure 2.2 is the spanning subgraph of EAG(R) and its diameter
is 2. Hence diam(EAG(R)) = 2. From the above cases, diam(EAG(R)) = 2.

bV2

V5

R1 × (0)

(0)×R2

Figure 2.2
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Now consider R1 and R2 are PIDs which are not fields. Since R1 and R2 are
reduced and there exist nonzero prime ideals P = R1 × (0) and Q = (0) ×R2 of
R which are not minimal ideals such that P ∩ Q = (0), by Theorem 2.3 and [3,
Theorem 2.4], EAG(R) is a complete bipartite graph. Thus diam(EAG(R)) = 2.

Suppose that R1 is a PID and R2 is a SPR and R1, R2 are not fields. Since
R1 is a PID, Ik1

1
Ik2
2

6= (0) for all nonzero proper ideals I1, I2 in R1 such that
Ik1
1

6= (0), Ik2
2

6= (0) for all k1, k2 ∈ Z+. Let V1 = {R1 ×M2
j : j = 1 to m − 1},
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V2 = {I ×M2
j : j = 1 to m− 1}, V3 = {I × (0)} and V4 = {(0) ×M2

j : j = 1 to
m−1} where I is a nonzero proper ideal in R1 and M2 is a nonzero proper ideal in
R2 and M2

m = (0). Then the induced subgraphs 〈V1〉 , 〈V2〉 and 〈V3〉 are totally
disconnected and 〈V4〉 is complete. Figure 2.3 is the extended annihilating-ideal
graph of R and it shows that diam(EAG(R)) = 2.

b

b
(0)×R2

R1 × (0)

b b bb b b

b b bb b b
b b bb b b b b bb b b

V1
V2 V3

V4

Figure 2.3

Now consider R1 is a field and R2 is a PID which is not a field. Since R1

and R2 are reduced, by Theorem 2.3 and Corollary 1.2, EAG(R) is a star graph.
Thus diam(EAG(R)) = 2.

b

b b bb b b

(0)×R2

R1 × (0)

V1

V2

Figure 2.4

b

bb b bb b b

Suppose that R1 is a field and R2 is a SPR which is not a field. Let V1 =
{(0) ×M2

j : j = 1 to m − 1} and V2 = {R1 ×M2
j : j = 1 to m− 1} where M2

is a nonzero proper ideal in R2 and M2
m = (0). Then the induced subgraphs

〈V1〉 is complete and 〈V2〉 is totally disconnected. Figure 2.4 is the extended
annihilating-ideal graph of R and it shows that diam(EAG(R)) = 2. Hence in all
the cases diam(EAG(R)) = 2.

Example 3.6. If R ∼= R1 × R2 where R1 = Z2[X]/(X2 + X + 1) and R2 =
Z2[X]/(X3), then diam(EAG(R)) = 2.
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b

b

(0) × (X)

(0)× (X2)

(0)×R2

R1 × (X2)

R1 × (X)

R1 × (0)

Figure 2.5 EAG(R)

Theorem 3.7. Let R be a reduced ring such that Z(R) is not an ideal of R.
Then diam(EAG(R)) = 2 if and only if R has exactly two minimal prime ideals
and at least three nonzero annihilating-ideals.

Proof. The result is obviously true from the Theorem 2.1 and [9, Theorem
1.2].

Theorem 3.8. Let R ∼= R1 × R2 where R1 is an integral domain and R2 is a
ring with unique nonzero proper ideal. Then diam(EAG(R)) = 2.

Proof. By Theorem 2.5, diam(EAG(R)) = 2.

Open question 3.9. Determine diam(EAG(R)) for R ∼= R1 × R2 where R1 is
an integral domain and R2 is a ring with more than one nonzero proper ideals
and not a PIR.

In the next theorem, we state necessary and sufficient conditions to have
diam(EAG(R)) = 3 for artinian PIR.

Theorem 3.10. Let R be an artinian PIR such that Z(R) is not an ideal of R.
Then diam(EAG(R)) = 3 if and only if R is a ring with more than two minimal
prime ideals.

Proof. Since R is an artinian PIR and Z(R) is not an ideal of R, R ∼=
∏n

i=1
Ri

where R′

is are SPRs for all i = 1 to n and n ≥ 2. Assume that diam(EAG(R)) =
3. Since AG(R) is a spanning subgraph of EAG(R), diam(AG(R)) = 3. Then by
[9, Theorem 1.4], R is a reduced ring with more than two minimal prime ideals
or R is a non-reduced ring. Consider the case R is non-reduced. For n = 2 and
R ∼= R1 ×R2, where R1 is not a field, then as noted in the proof of Theorem 3.5,
diam(EAG(R)) = 2. Thus n ≥ 3. Also note that in a commutative artinian ring,
every maximal ideal is a minimal prime ideal. From this, R is a non-reduced ring
with more than two minimal prime ideals.
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Conversely, assume that R is a ring with more than two minimal prime ideals.
Consider R is a reduced ring with more than two minimal prime ideals. Then by
Theorem 2.1 and [9, Theorem 1.4], diam(EAG(R)) = 3. Suppose that R is a non-
reduced ring with more than two minimal prime ideals and diam(EAG(R)) 6= 3.
If diam(EAG(R)) = 1, then by Theorem 3.3, R is a SPR with at least two nonzero
proper ideals. Here Z(R) is an ideal of R, a contradiction. If diam(EAG(R)) = 2,
then by Theorem 3.5, R does not have more than two minimal prime ideals. Hence
diam(EAG(R)) = 3.

Open question 3.11. Classify the diameter of EAG(R) for all artinian rings
which are not PIRs.

4. Girth of EAG(R)

In this Section we discuss the girth of EAG(R) and also compare the girth of
AG(R) with EAG(R). As Theorem 3.1, gr(EAG(R)) ≤ 4. Here we characterize
the rings for which gr(EAG(R)) = 3, 4 or ∞.

Theorem 4.1. Let R ∼= R1 ×R2 be a ring. If any one of Ri is a ring with more
than one nonzero proper ideals for i = 1, 2, then gr(EAG(R)) = 3.

Proof. Suppose that R1 is a ring with more than one nonzero proper ideals.
Since EAG(R1) is connected, there exist two nonzero proper ideals I1 and I2 in
R1 such that I1

nI2
m = (0) with I1

n 6= (0), I2
m 6= (0) for some positive integers

n,m. Then we have the following cycle of length 3 in EAG(R), I1 × (0) − I2 ×
(0) − (0)×R2 − I1 × (0). Thus gr(EAG(R)) = 3.

Theorem 4.2. Let R ∼=
∏n

i=1
Ri where R′

is are rings for every i with n ≥ 2.
Then the following hold.

(i) For n = 2, gr(EAG(R)) = ∞ if and only if R ∼= R1 × R2, where R1 is a
field and R2 is an integral domain.

(ii) gr(EAG(R)) = 3 if and only if one of the following statements hold.

(a) When n ≥ 3

(b) For n = 2, both R′

is are not integral domains.

(c) For n = 2, R1 is an integral domain and R2 is a ring with more than
one nonzero proper ideals.

(iii) For n = 2, gr(EAG(R)) = 4 if and only if either R1 and R2 are integral
domains which are not fields or R1 is an integral domain and R2 is a ring
with unique nonzero proper ideal.
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Proof. (i) For n = 2 and assume that gr(EAG(R)) = ∞. Since AG(R) is a
spanning subgraph of EAG(R), EAG(R) ∼= AG(R). Then by Theorem 2.3, R′

is
are reduced for all i = 1, 2. Also by [3, Theorem 3.1], R ∼= R1×R2 where R1 is a
field and R2 is an integral domain. Conversely, assume that R ∼= R1×R2 whereR1

is a field and R2 is an integral domain, then R1 and R2 are reduced. By Theorem
2.3 and Corollary 1.2, EAG(R) is a star graph. Therefore gr(EAG(R)) = ∞.

(ii) (a) Assume that gr(EAG(R)) = 3. Then from the following cycle R1 ×
(0) × · · · × (0) − (0) × R2 × (0) × · · · × (0) − (0) × (0) × R3 × (0) × · · · × (0) −
R1× (0)×· · ·× (0), n ≥ 3 is true. Conversely, when n ≥ 3, the result is obviously
true.

(b) Now consider n = 2 and assume that gr(EAG(R)) = 3. Suppose that
R1 and R2 are integral domains. Since R1 and R2 are reduced, by Theorem
2.3, Corollary 1.2 and [3, Corollary 2.5], gr(EAG(R)) = 4 or ∞, a contradiction.
From this case R′

is are not integral domains. Conversely, assume that R1 and
R2 are not integral domains. Consider R1 and R2 are rings with unique nonzero
proper ideals I and J in R1 and R2 respectively such that I2 = (0) and J2 =
(0). Then in EAG(R), I × (0) − I × J − (0) × J − I × (0) is a cycle of length
3 so that gr(EAG(R)) = 3. Also consider R1 is a ring with more than one
nonzero proper ideals. Then by Theorem 4.1, gr(EAG(R)) = 3. From these
cases, gr(EAG(R)) = 3.

(c) For n = 2, assume that gr(EAG(R)) = 3. If R1 is an integral do-
main and R2 is a ring with unique nonzero proper ideal, then by Theorem 2.5,
gr(EAG(R)) = 4, a contradiction. Thus R1 is an integral domain and R2 is
a ring with more than one nonzero proper ideals. Converse part follows from
Theorem 4.1.

(iii) Proof follows from (i) and (ii).

We next characterize when gr(EAG(Zn)) is 3, 4 or ∞.

Theorem 4.3. For n ∈ N, let n =
∏k

i=1
pαi

i be the distinct prime factorization
of n. Then the following assertions are true.

(i) gr(EAG(Zn)) = 3 if and only if one of the following assertions must occur.

(a) When k ≥ 3.

(b) When k = 1 and α1 ≥ 4.

(c) When k = 2, either α1 = 1, α2 > 2 or α1, α2 ≥ 2.

(ii) gr(EAG(Zn)) = 4 if and only if k = 2 with α1 = 1, α2 = 2.

(iii) gr(EAG(Zn)) = ∞ if and only if either k = 1 with α1 = 2 or 3 or k = 2
with α1 = 1, α2 = 1.

Proof. When k ≥ 2, the result holds by Theorem 4.2. It remains to consider the
case k = 1. Assume that gr(EAG(Zn)) = 3 and α1 < 4. Then |A(R)∗| = 0, 1 or 2
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and hence gr(EAG(Zn)) = ∞. This shows that α1 ≥ 4. Conversely, assume that
α1 ≥ 4, then Zn is a local ring with maximal ideal (p1) and |A(R)∗| = α1 − 1.
Since Zn is a SPR, by Theorem 2.4, gr(EAG(Zn)) = 3. By above, (iii) holds for
the case k = 1.

We conclude this paper with the following theorem to have a better compar-
ison of the girth between EAG(R) and AG(R).

Theorem 4.4. Let R be a ring. Then the following hold.

(i) If gr(AG(R)) = 3, then gr(EAG(R)) = 3.

(ii) If gr(AG(R)) = 4, then gr(EAG(R)) = 4.

(iii) If gr(AG(R)) = ∞, then gr(EAG(R)) = 3, 4 or ∞.

(iv) If gr(EAG(R)) = 3, then gr(AG(R)) = 3 or ∞.

(v) If gr(EAG(R)) = 4, then gr(AG(R)) = 4 or ∞.

(vi) If gr(EAG(R)) = ∞, then gr(AG(R)) = ∞.

Proof. Since AG(R) is a spanning subgraph of EAG(R), (i), (iii), (v), (vi) are
obviously true.

(ii) Assume that gr(AG(R)) = 4. This shows that AG(R) is a triangle-
free graph. Then by [2, Lemma 1], R ∼= R1 × R2 where either R1 and R2 are
integral domains which are not fields or R1 is an integral domain which is not
a field and R2 is a ring with unique nonzero proper ideal. By Theorem 4.2(iii),
gr(EAG(R)) = 4.

(iv) Assume that gr(EAG(R)) = 3. Since AG(R) is a spanning subgraph
of EAG(R), gr(AG(R)) = 3, 4 or ∞. By part (ii), gr(AG(R)) 6= 4 and so
gr(AG(R)) = 3 or ∞.
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