DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score: 0.4

SJR: 0.203

SNIP: 0.562

MCQ: 0.12

Index Copernicus: 121.02

Discussiones Mathematicae - General Algebra and Applications

PDF

Discussiones Mathematicae General Algebra and Applications 25(1) (2005) 89-101
DOI: https://doi.org/10.7151/dmgaa.1093

T-VARIETIES AND CLONES OF T-TERMS

Klaus Denecke

University of Potsdam, Institute of Mathematics
Am Neuen Palais, 14415 Potsdam, Germany

e-mail: kdenecke@rz.uni-potsdam.de

Prakit Jampachon

KhonKaen University, Department of Mathematics
KhonKaen, 40002 Thailand

e-mail: prajam@.kku.ac.th

Abstract

The aim of this paper is to describe how varieties of algebras of type t can be classified by using the form of the terms which build the (defining) identities of the variety. There are several possibilities to do so. In [3], [19], [15] normal identities were considered, i.e. identities which have the form x » x or s » t, where s and t contain at least one operation symbol. This was generalized in [14] to k-normal identities and in [4] to P-compatible identities. More generally, we select a subset T of Wt(X), the set of all terms of type t, and consider identities from T×T. Since any variety can be described by one heterogenous algebra, its clone, we are also interested in the corresponding clone-like structure. Identities of the clone of a variety V correspond to M-hyperidentities for certain monoids M of hypersubstitutions. Therefore we will also investigate these monoids and the corresponding M-hyperidentities.

Keywords: T-quasi constant algebra, T-identity, j-ideal, T-hyperidentity, clone of T-terms.

2000 Mathematics Subject Classification: 08A40, 08A62, 08B05.

References

[1] G. Birkhoff and J. D. Lipson, Heterogeneous algebra, J. Combin. Theory 8 (1970), 115-133.
[2]S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York 1981.
[3]I. Chajda, Normally presented varieties, Algebra Universalis 34 (1995), 327-335.
[4]I. Chajda, K. Denecke and S. L. Wismath, A characterization of P-compatible varieties, Preprint 2004.
[5]W. Chromik, Externally compatible identities of algebras, Demonstratio Math. 23 (1990), 345-355.
[6]K. Denecke and L. Freiberg, The algebra of full terms, preprint 2003.
[7]K. Denecke and K. Ha kowska, P-compatible hypersubstitutions and MP-solid varieties, Studia Logica 64 (2000), 355-363.
[8]K. Denecke, P. Jampachon, Clones of N-full terms, Algebra and Discrete Math. (2004), no. 4, 1-11.
[9] K. Denecke, P. Jampachon, N-Full varieties and clones of n-full terms, Southeast Asian Bull. Math. 25 (2005), 1-14.
[10] K. Denecke, P. Jampachon and S. L. Wismath, Clones of n-ary algebras, J. Appl. Algebra Discrete Struct. 1 (2003), 141-158.
[11]K. Denecke, M. Reichel, Monoids of hypersubstitutions and M-solid varieties, Contributions to General Algebra 9 (1995), 117-126.
[12]K. Denecke and S. L. Wismath, Universal Algebra and Applications in Theoretical Computer Science, Chapman & Hall/CRC, Boca Raton, London, New York, Washington D.C. 2002.
[13]K. Denecke and S. L. Wismath, Galois connections and complete sublattices, p. 211-230 in: ``Galois Connections and Applications", Kluwer Academic Publ., Dordrecht 2004.
[14] K. Denecke and S. L. Wismath, A characterization of k-normal varieties,Algebra Universalis 51 (2004), 395-409.
[15] E. Graczyńska, On Normal and regular identities and hyperidentities, p. 107-135 in: `` Universal and Applied Algebra", World Scientific Publ. Co., Singapore 1989.
[16] P.J. Higgins, Algebras with a scheme of operators, Math. Nachr. 27 (1963), 115-132.
[17] A. Hiller, P-Compatible Hypersubstitutionen und Hyperidentitäten, Diplomarbeit, Potsdam 1996.
[18] H.-J. Hoehnke and J. Schreckenberger, Partial Algebras and their Theories, Manuscript 2005.
[19] I.I. Melnik, Nilpotent shifts of varieties, (Russian), Mat. Zametki 14 (1973), 703-712, (English translation in: Math. Notes 14 (1973), 962-966).
[20] J. Płonka, On varieties of algebras defined by identities of special forms, Houston Math. J. 14 (1988), 253-263.
[21] J. Płonka, P-compatible identities and their applications to classical algebras, Math. Slovaca 40 (1990), 21-30.
[22] B. Schein and V. S. Trochimenko, Algebras of multiplace functions, Semigroup Forum 17 (1979), 1-64.
[23] W. Taylor, Hyperidentities and Hypervarieties, Aequat. Math. 23 (1981), 111-127.

Received 2 May 2005
Revised 20 June 2005


Close