ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

Discussiones Mathematicae - General Algebra and Applications

Cite Score: 0.4

SJR: 0.203

SNIP: 0.562

MCQ: 0.12

Index Copernicus: 120.64

Discussiones Mathematicae - General Algebra and Applications


Discussiones Mathematicae General Algebra and Applications 20(1) (2000) 87-95


Ivan Chajda

Department of Algebra and Geometry, Palacký University Olomouc
Tomkova 40, 779 00 Olomouc, Czech Republic


Helmut Länger

Technische Universität Wien, Institut für Algebra und Computermathematik
Abteilung für Mathematik in den Naturwissenschaften
Wiedner Hauptstraß e 8-10, A-1040 Wien



Ring-like operations are introduced in pseudocomplemented semilattices in such a way that in the case of Boolean pseudocomplemented semilattices one obtains the corresponding Boolean ring operations. Properties of these ring-like operations are derived and a characterization of Boolean pseudocomplemented semilattices in terms of these operations is given. Finally, ideals in the ring-like structures are defined and characterized.

Keywords: pseudocomplemented semilattice, Boolean algebra, Boolean ring, distributivity, linear equation, ideal, congruence kernel.

1991 Mathematics Subject Classification: 06A12, 08C10, 06E20, 16Y99.


[1] I. Chajda, Pseudosemirings induced by ortholattices, Czechoslovak Math. J. 46 (121) (1996), 405-411.
[2] G. Dorfer, A. Dvurecenskij and H. Länger, Symmetric difference in orthomodular lattices, Math. Slovaca 46 (1996), 435-444.
[3] D. Dorninger, H. Länger and M. Maczy\'nski, The logic induced by a system of homomorphisms and its various algebraic characterizations, Demonstratio Math. 30 (1997), 215-232.
[4] O. Frink, Pseudo-complements in semi-lattices, Duke Math. J. 29 (1962), 505-514.
[5] H. Länger, Generalizations of the correspondence between Boolean algebras and Boolean rings to orthomodular lattices, Tatra Mt. Math. Publ. 15 (1998), 97-105.
[6] A.I. Mal'cev, On the general theory of algebraic systems (Russian), Mat. Sb. 35 (1954), 3-20.

Received 21 September 1998
Revised 7 June 1999