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Abstract
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“Aktion Österreich-Tschechische Republik” (grant No. 22p2 “Ordered algebraic structures
and applications”).



88 I. Chajda and H. Länger

1. Introduction

First we will briefly report on some results (obtained in [2] and [5]) concern-
ing ring-like operations in orthomodular lattices since ring-like operations
will be introduced in pseudocomplemented semilattices in a similar way and
we will obtain also similar results.

It is well-known that there is a natural bijection between Boolean
algebras and Boolean rings. This correspondence between certain lattice
structures and certain term-equivalent ring structures is very useful. For
instance, congruence permutability of Boolean algebras follows immediately
from that of rings (resp. groups). So it is natural to ask how a ring-like
structure can be introduced in generalizations of Boolean algebras. In [1]
and [3] a ring-like structure was introduced in orthomodular lattices and also
in more general structures. Since pseudocomplemented semilattices can also
be viewed as generalizations of Boolean algebras one may try to introduce a
ring-like structure in pseudocomplemented semilattices. This is the aim of
the present paper.

2. Ring-like operations in orthomodular lattices

An orthomodular lattice is an algebra (L,∨,∧,′ , 0, 1) of type (2, 2, 1, 0, 0)
such that (L,∨,∧, 0, 1) is a bounded lattice and additionally we have:

(i) (x′)′ = x,

(ii) (x ∨ y)′ = x′ ∧ y′,
(iii) x ∨ x′ = 1,

(iv) x ≤ y ⇒ y = x ∨ (y ∧ x′),
for all x, y ∈ L.

In the following let L be an arbitrary, fixed orthomodular lattice. On
every Boolean subalgebra of L one can define ring operations + and · by

x + y := (x ∧ y′) ∨ (x′ ∧ y) = (x ∨ y) ∧ (x′ ∨ y′),
xy := x ∧ y = (x ∨ y) ∧ (x ∨ y′) ∧ (x′ ∨ y).

We now extend these operations from the Boolean subalgebras of L to L by
defining

x +1 y := (x ∧ y′) ∨ (x′ ∧ y),
x +2 y := (x ∨ y) ∧ (x′ ∨ y′),
x ·1 y := x ∧ y,

x ·2 y := (x ∨ y) ∧ (x ∨ y′) ∧ (x′ ∨ y),
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for all x, y ∈ L. Then the following theorem holds:

Theorem 1. For arbitrary, fixed i, j ∈ {1, 2} the following properties are
equivalent:

(i) L is a Boolean algebra;
(ii) +1 = +2;
(iii) ·1 = ·2;
(iv) +i is associative;
(v) ·2 is associative;
(vi) ·j is distributive with respect to +i;
(vii) For every (a, b) ∈ L2 the equation a +i x = b has at most one

solution;
(viii) For every (a, b) ∈ L2 the equation a +i x = b has exactly one

solution;
(ix) For every (a, b) ∈ L2 the equation a +i x = b has at least one

solution.

Proof. See [2] and [5].

3. Ring-like operations in pseudocomplemented semilattices

A pseudocomplemented meet-semilattice (with zero) is an algebra S =
(S,∧,∗ , 0) of type (2, 1, 0), where (S,∧, 0) is a meet-semilattice with small-
est element 0 and where each x ∈ S has a so-called pseudocomplement x∗,
that is a greatest element y ∈ S with the property x ∧ y = 0, i. e. for
x, y ∈ S it holds x∧y = 0 iff y ≤ x∗. (The concept of a pseudocomplemented
join-semilattice (with one) can be defined dually.)

In this section let S denote an arbitrary, fixed pseudocomplemented
meet-semilattice and let a, b, c be arbitrary, fixed elements of S.

Put a t b := (a∗ ∧ b∗)∗ and 1 := 0∗.
The following facts are well-known (cf. [4]):

(i) (∗,∗ ) is a Galois correspondence between (S,≤) and (S,≤),
(ii) a ≤ b ⇒ a∗ ≥ b∗,
(iii) a ≤ a∗∗,
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(iv) a∗∗∗ = a∗,
(v) 0∗∗ = 0,

(vi) ∗∗ ∈ End S;
(vii) θ0 := ker∗∗ ∈ ConS,

(viii) BA(S) := (S∗,t,∧,∗ , 0, 1) is the greatest Boolean subalgebra
of (S,t,∧,∗ , 0, 1).
We call BA(S) the Boolean algebra induced by S.

Remark. (i) θ0 ∈ Con(S,t,∧,∗ , 0, 1) and from the homomorphism theorem
it follows that (S,t,∧,∗ , 0, 1)/θ0

∼= BA(S).
(ii) One can show that the class of all pseudocomplemented meet-

semilattices forms a variety which can be defined by the following laws:

(1) (x ∧ y) ∧ z = x ∧ (y ∧ z),
(2) x ∧ y = y ∧ x,

(3) x ∧ x = x,

(4) x ∧ 0 = 0,
(5) (x ∧ y)∗ ∧ (x ∧ y∗)∗ = x∗,
(6) 0∗∗ = 0,

(7) x ∧ x∗∗ = x.

Let BR(S) := (S∗, +, 0, ·, 1) denote the Boolean ring corresponding to the
Boolean algebra BA(S). We call BR(S) the Boolean ring induced by S.
Then

a + b = (a ∧ b∗) t (a∗ ∧ b) = (a t b) ∧ (a∗ t b∗),
ab = a ∧ b = (a t b) ∧ (a t b∗) ∧ (a∗ t b),

if a, b ∈ S∗. We now extend these operations from S∗ to S in several
”natural” ways by defining

a + b := a∗∗ + b∗∗,
a +1 b := (a ∧ b∗) t (a∗ ∧ b),
a +2 b := (a t b) ∧ (a∗ t b∗),
ab := a∗∗b∗∗,
a ·1 b := a ∧ b,

a ·2 b := (a t b) ∧ (a t b∗) ∧ (a∗ t b).
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Since S∗ is a subalgebra of S and S t S ⊆ S∗, we have
S + S, S +1 S, S +2 S, SS, S ·2 S ⊆ S∗.

Lemma 2. + = +1 = +2 and · = ·2
Proof. For i ∈ {1, 2} it holds

a +i b = (a +i b)∗∗ = a∗∗ +i b∗∗ = a∗∗ + b∗∗ = a + b,

a ·2 b = (a ·2 b)∗∗ = a∗∗ ·2 b∗∗ = a∗∗b∗∗ = ab.

Obviously, +, · and ·1 are commutative and associative and · is distributive
with respect to +.

To S, we assign the following ring-like structures: R(S) := (S, +, 0, ·, 1)
and P (S) := (S, +, 0, ·1, 1).

From the homomorphism theorem, it follows that

θ0 ∈ ConR(S) ∩ ConP (S) and R(S)/θ0
∼= P (S)/θ0

∼= BR(S).

Lemma 3. The following identities hold:

a + 0 = a∗∗, a0 = 0, a ·1 0 = 0,
a + a = 0, aa = a∗∗, a ·1 a = a,

a + a∗ = 1, aa∗ = 0, a ·1 a∗ = 0,

a + a∗∗ = 0, aa∗∗ = a∗∗, a ·1 a∗∗ = a,

a + 1 = a∗, a1 = a∗∗, a ·1 1 = a.

Proof. Straightforward.

Lemma 4. (a + b)∗ = a∗ + b = a + b∗.

Proof. Indeed, we have

(a + b)∗ = (a + b) + 1 = (a + 1) + b = a∗ + b,

(a + b)∗ = (a + b) + 1 = a + (b + 1) = a + b∗.

Corollary. a + b = (a + b)∗∗ = (a∗ + b)∗ = a∗ + b∗.

The following lemma characterizes vanishing of the symmetric difference
a + b:
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Lemma 5. The following properties are equivalent:

(i) a + b = 0;
(ii) aθ0b;
(iii) There exists a c ∈ S with a + c = b + c;
(iv) a + x = b + x for all x ∈ S.

Proof. (i) ⇒ (ii): a∗∗ = a + 0 = a + (a + b) = (a + a) + b = 0 + b = b∗∗.
(ii) ⇒ (iv): a + x = a∗∗ + x = b∗∗ + x = b + x for all x ∈ S.
(iv) ⇒ (iii): Straightforward.
(iii) ⇒ (i): a + b = (a + b) + 0 = (a + b) + (c + c) = (a + c) + (b + c) =
(a + c) + (a + c) = 0.

Lemma 6. The following properties are equivalent:
(i) a + b = 1;
(ii) a θ0 b∗;
(iii) a∗ θ0 b.

Proof. Indeed, we have

a + b = 1 ⇔ (a + b)∗ = 1∗ ⇔ a + b∗ = 0 ⇔ a θ0 b∗,
a + b = 1 ⇔ (a + b)∗ = 1∗ ⇔ a∗ + b = 0 ⇔ a∗ θ0 b,

according to Lemma 5.

Now we want to characterize Boolean pseudocomplemented semilattices.
For this purpose we first need two lemmas. The first of these describes the
set of all solutions of a linear equation:

Lemma 7. We have:

{x ∈ S | a + x = b} =

{
∅ if b 6∈ S∗,
[a + b]θ0 if b ∈ S∗.

Proof. The first part follows from S+S ⊆ S∗. In order to prove the second
part, assume b ∈ S∗ and let x ∈ S. Then

a + x = b ⇔ a∗∗ + x∗∗ = b ⇔ x∗∗ = a∗∗ + b ⇔ x∗∗ =
= (a + b)∗∗ ⇔ x θ0 a + b ⇔ x ∈ [a + b]θ0.
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Proposition 8. The following properties hold:
(i) ab = a ·1 b ⇔ a∗∗ ∧ b∗∗ ≤ a ∧ b;
(ii) (a + b) ·1 c = (a ·1 c) + (b ·1 c) ⇔ (a + b) ∧ c∗∗ ≤ c;
(iii) |{x ∈ S | a + x = b}| ≤ 1 ⇔ (b 6∈ S∗ or |[a + b]θ0| = 1);
(iv) |{x ∈ S | a + x = b}| = 1 ⇔ (b ∈ S∗ and |[a + b]θ0| = 1);
(v) |{x ∈ S | a + x = b}| ≥ 1 ⇔ b ∈ S∗.

Proof. (i) is evident.
Ad (ii): (a + b) ·1 c = (a + b) ∧ c and

(a ·1 c) + (b ·1 c) = (a ∧ c) + (b ∧ c) = ((a ∧ c) + (b ∧ c))∗∗ =
= (a∗∗ ∧ c∗∗) + (b∗∗ ∧ c∗∗) =
= (a∗∗ + b∗∗) ∧ c∗∗ = (a + b) ∧ c∗∗.

Hence,

(a + b) ·1 c = (a ·1 c) + (b ·1 c) ⇔ (a + b) ∧ c = (a + b) ∧ c∗∗ ⇔
⇔ (a + b) ∧ c∗∗ ≤ (a + b) ∧ c ⇔
⇔ ((a + b) ∧ c∗∗ ≤ a + b

and (a + b) ∧ c∗∗ ≤ c ⇔ (a + b) ∧ c∗∗ ≤ c.

The properties (iii) – (v) follow from Lemma 7.

Now we are ready to prove the result concerning the characterization of
Boolean pseudocomplemented semilattices in terms of ring-like operations.

Theorem 9. The following are equivalent:
(i) S is a Boolean algebra;
(ii) · = ·1;
(iii) ·1 is distributive with respect to +;
(iv) The equation a + x = b has at most one solution;
(v) The equation a + x = b has exactly one solution;
(vi) The equation a + x = b has at least one solution.

Proof. Obviously, (i) ⇒ (ii) – (vi) and (v) ⇒ (iv), (vi).
(ii) ⇒ (i): According to (i) of Proposition 8, a∗∗ ∧ b∗∗ ≤ a ∧ b. Hence
a ≤ a∗∗ = a∗∗ ∧ 1∗∗ ≤ a ∧ 1 = a which implies a = a∗∗.
(iii) ⇒ (i): According to (ii) of Proposition 8, (a + b) ∧ c∗∗ ≤ c. Hence,
c ≤ c∗∗ = (0 + 1) ∧ c∗∗ ≤ c and, therefore, c = c∗∗.
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(iv) ⇒ (i): According to (iii) of Proposition 8, |[a+b]θ0| = 1 if b ∈ S∗. Since
c, c∗∗ ∈ [0 + c∗∗]θ0, we have c = c∗∗.
(vi) ⇒ (i) follows from (v) of Proposition 8.

4. Ideals in generalizations of pseudocomplemented
semilattices

In the following let A be an algebra such that there exists a binary operation
· on A, a unary operation ∗ on A as well as an element 0 of A such that
0x = xx∗ = 0 and x0∗ = x for all x ∈ A.

Every pseudocomplemented meet-semilattice S = (S,∧,∗ , 0) can be con-
sidered as such an algebra. (Take A := S and · := ∧.)

We now define the notions of an ideal of A and of a congruence kernel
of A, respectively. But first let us recall the notion of a unary polynomial
function on A: A function p from A to A is called a unary polynomial
function on A if there exists a positive integer n, an n-ary term function t
on A and a2, . . . , an ∈ A with p(x) = t(x, a2, . . . , an) for all x ∈ A.

Definition 10. Let B be a non-empty subset of the algebra A. B is called
an ideal of A – in signs B < A – if for all a, b, c ∈ B and for every unary
polynomial function p on A, p(a)(p(b)c∗)∗ ∈ B. B is called a congruence
kernel of A if B = [0]θ for some θ ∈ ConA.

The following theorem holds for arbitrary universal algebras:

Theorem 11. A non-empty subset B of A is a class of some congruence
on A iff for every unary polynomial function p on A, a, b, p(a) ∈ B implies
p(b) ∈ B.

Proof. See [6].

Now, we are able to prove our final result concerning the fact that both
notions defined in Definition 10 coincide:

Theorem 12. The ideals of A coincide with the congruence kernels of A.

Proof. Let I ⊆ A. First assume I<A. Let a, b ∈ I, let p be a unary polyno-
mial function on A and assume p(a)∈I. Then p(b)=p(b)(p(a)(p(a))∗)∗∈I.
Hence, by Theorem 11, there exists some c ∈ A and some θ ∈ Con(A) such
that I = [c]θ. Let q denote the unary zero polynomial function on A. Then
0 = q(c)(q(c)c∗)∗ ∈ I. Hence I = [0]θ which shows that I is a congruence
kernel of A.



Ring-like operations in pseudocomplemented semilattices 95

Conversely, assume I to be a congruence kernel of A. Then there exists
some α ∈ Con(A) with I = [0]α. Let d, e, f ∈ I and let r be a unary
polynomial function on A. Then r(d)(r(e)f∗)∗ α r(0)(r(0)0∗)∗ = 0 which
shows r(d)(r(e)f∗)∗ ∈ [0]α = I. Hence I < A.

Remark. The ring-like structures P (S) (where S is a pseudocomplemented
meet-semilattice), Boolean quasirings (introduced in [3]) and orthopseudor-
ings (introduced in [1]) are also special cases of the algebras considered in
this section.
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