DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in press


Authors:

K.Z. Kenfack

Kenne Zachée Kenfack

Mathematics and Computer Sciences Department
Faculty of Sciences
University of Maroua, Cameroon

email: zkenfackkenne@gmail.com

F.L.É. Diékouam

Fotso Luc Éméry Diékouam

Mathematics Department
Higher Teachers' Training College
University of Maroua, Cameroon

email: lucdiekouam@yahoo.fr

L. Kwuida

Léonard Kwuida

Bern University of Applied Sciences
School of Business
Brückenstrasse 73, 3005 Bern, Switzerland

email: leonard.kwuida@bfh.ch

J. Dongho

Joseph Dongho

Mathematics and Computer Sciences Department
Faculty of Sciences
University of Maroua, Cameroon

email: josephdongho@yahoo.fr

Title:

On the poset of copreconcets of a formal context

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications

Received: 2024-11-11 , Revised: 2025-07-01 , Accepted: 2025-07-01 , Available online: 2025-09-30 , https://doi.org/10.7151/dmgaa.1490

Abstract:

Formal Concept Analysis is an applied theory of complete lattices, with many applications in data analysis, logic, computer sciences, and ordered structures. In Formal Concept Analysis, a context is a triple (G, M, I) with I ⊆ G × M . In this paper we introduce the notion of a copreconcept of a context (G, M, I) as a pair (A, B) with A ⊆ G, B ⊆ M , A′ ⊆ B and B′ ⊆ A, where A′ (resp. B′) is the set of elements of M (resp. G) in relation with all elements in A (resp. B). We investigate the order structure of copreconcepts and obtain that, when ordered by (A1, B1) ≤ (A2, B2) iff A1 ⊆ A2 and B2 ⊆ B1, the set of copreconcepts is a multi-lattice. We give a sufficient condition for it to be a lattice. Many examples are provided based on context constructions and subcontexts. On our way, we also prove that coherent posets are multilattices.

Keywords:

coherent poset, multi-lattice, formal context, formal concept, copreconcept, compatible subcontext, Formal Concept Analysis

References:

  1. A. Arnauld and P. Nicole, La Logique ou l'art de Penser (Gallimard, 1992).
  2. D.C. Awouafack, N.B.B. Koguep and C. Lele, The Prime Filter Theorem for multilattices, Internat. J. Math. and Math. Sci. 2022 (2022) 1–5.
  3. M. Benado, Les ensembles partiellements ordonnés et le théoreme de raffinement de Schreier. II. Théoreme des multistructures, Czechoslovak Math. J. 5(3) (1955) 308–344.
  4. J. Besson, C. Robardet and J.F. Boulicaut, Mining a New Fault-Tolerant Pattern Type as an Alternative to Formal Concept Discovery., in: International Conference on Conceptual Structures-ICCS 2006, H. Schärfe, P. Hitzler, P. Ohrstrom (Ed(s)), Lecture Notes in Computer Science 4068, (Springer, Berlin, Heidelberg, 2006) 144–157..
  5. C. Burgmann and R. Wille, The Basic Theorem on Preconcept Lattices, in: Formal Concept Analysis, R. Missaoui, J. Schmidt (Ed(s)), Lecture Notes in Computer Science 3874, (Springer, Berlin, Heidelberg, 2006) 80–88..
  6. I.P. Cabrera, P. Cordero, G. Gutiérrez, J. Martinez and M. Ojeda-Aciego, On residuation in multilattices: filters, congruences, and homomorphisms, Fuzzy Sets and Systems 234(1) (2014) 1–21.
  7. B. Ganter, S. Obiedkov, S. Rudolph and G. Stumme, Conceptual Exploration (Springer, Berlin, Heidelberg, 2016).
  8. B. Ganter and R. Wille, Formal Concept Analysis: Mathematical Foundations (Springer-Verlag, Berlin, Heidelberg, 1999).
  9. B.B. Koguep Njionou, L. Kwuida and C. Lele, Formal Concepts and Residuation on multilattices, Fundamenta Informaticae 188(4) (2022) 217–237.
  10. L. Kwuida, When Is a Concept Algebra Boolean?, in: Concept Lattices: International Conference on Formal Concept Analysis. ICFCA 2004, P. Eklund (Ed(s)), Lecture Notes in Computer Science 2961, (Springer, Berlin, Heidelberg, 2004) 142–155..
  11. L. Kwuida, On concept lattice approximation, in: Proceedings of the LA Symposium, Osamu Watanabe (Ed(s)), Foundations of Theoretical Computer Science: For New Computational View 1599, (RIMS Kyoto, Japan, 2008) 42–49..
  12. L. Kwuida and H. Machida, On the Isomorphism Problem of Concept Algebras, Annals of Mathematics and Artificial Intelligence 59 (2010) 223–239.
  13. L. Kwuida, A. Tepavčević and B. Šešelja, Negation in Contextual Logic, in: 12th International Conference on Conceptual Structures, ICCS 2004, K.E. Wolff, H.D. Pfeiffer, H.S. Delugach (Ed(s)), Conceptual Structures at Work 3127, (Springer Berlin Heidelberg, 2004) 227–241..
  14. J. Martinez, G. Gutierrez, I.P. De Guzman and P.Cordero, multilattices via multisemilattices, in: Topics in applied and theoretical mathematics and computer science, (WSEAS 2001) 238–248.
  15. J. Medina, M. Ojeda-Aciego, J. Pócs and E. Ramírez-Poussa, Concepts and multilattices and the distributivity of the Dedekind-MacNeille completion, in: 16th Conference of the Spanish Association for Artificial Intelligence, CAEPIA, J.M. Puerta, J.A. Gámez, B. Dorronsoro, E. Barrenechea, A. Troncoso, B. Baruque, M. Galar (Ed(s)), Lecture Notes in Computer Science 9422, (Springer, 2015) 591–601..
  16. J. Medina and J. Ruiz-Calvino, Fuzzy formal concept analysis via multilattices: first prospects and results, in: Concept Lattices and Their Applications, CLA, L. Szathmary, U. Priss (Ed(s)), (Universidad de Málaga (Dept. Matemática Aplicada), Spain 2012) 69–79.
  17. J. Medina, M. Ojeda-Aciego and J. Ruiz-Calvino, On the ideal semantics of multilattice-based logic programs, Information Processing and Management of Uncertainty in Knowledge-Based System 6 (2006) 463–470.
  18. J. Piaget, La Formation du Symbole Chez L'enfant-Imitation, Jeu et Reve-Image et Représentation (Delachaux et Niestlé S.A., Lausanne (Switzerland), Paris, 1978).
  19. U. Priss, Representing median networks with concept lattices, in: International Conference on Conceptual Structures, ICCS, Heather D. Pfeiffer, Dmitry I. Ignatov, Jonas Poelmans, Nagarjuna Gadiraju (Ed(s)), Lecture Notes in Artificial Intelligence \bf{7735}, (Springer Heidelberg Dordrecht London New York, 2013) 311–321..
  20. U. Priss, Concept lattices and median networks, in: Concept Lattices and Their Applications CLA, Laszlo Szathmary, Uta Priss (Ed(s)), (Universidad de Málaga (Dept. Matemática Aplicada), Spain 2012) 351–354.
  21. J. Stahl and R. Wille, Preconcepts and set representation of contexts, in: Classification as a tool of research, W. Gaul, M. Schader (Ed(s)), (North-Holland, Amsterdam 1986) 431–438.
  22. R. Wille, Restructuring lattice theory: an approach based on hierarchies of concepts, in: nternational Conference on Formal Concept Analysis ICFCA, Sébastien Ferré, Sebastian Rudolph (Ed(s)), Lecture Notes in Computer Science 5548, (Springer Berlin, Heidelberg, 2009) 314–339..
  23. R. Wille, Preconcept algebras and generalized double boolean algebras, in: Concept Lattices: Second International Conference on Formal Concept Analysis, ICFCA 2004, Peter Eklund (Ed(s)), Lecture Notes in Computer Science 2961, (Springer Berlin Heidelberg, 2004) 1–13..
  24. R. Wille, Boolean Concept Logic, in: Conceptual Structures: Logical, Linguistic, and Computational Issues, B. Ganter, G.W. Mineau (Ed(s)), Lecture Notes in Computer Science 1867, (Springer Berlin, Heidelberg, 2000) 317–331..
  25. R. Wille, Line diagrams of hierarchical concept systems, Knowledge Organization 11(2) (1984) 77-86.

Close