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1. Introduction29

The concept of semiring was introduced by H.S. Vandiver in 1935, as a general-30

ization of both rings and distributive lattices. Several authors have applied this31

concept in various disciplines in many ways. Semirings have wide applications32

in different branches of mathematics and computer science such as Optimization33

Theory, Automata Theory, Cryptography, Graph Theory, Topology, etc. A non-34

empty set S together with two binary operations addition ‘+’ and multiplication35

‘·’ is called semiring if:36

(1) (S,+) is a commutative monoid with identity element 0.37

(2) (S, ·) is a monoid with identity element 1 6= 0.38

(3) The multiplication both from left and right is distributes over addition.39

(4) 0 · a = a · 0 = 0 for every a ∈ S.40

A semiring S is commutative if ab = ba for all a, b ∈ S. In this paper, all semirings41

are assumed to be commutative and with non-zero identity.42

A non-empty subset I of a semiring S is called an ideal of S if for a, b ∈ I43

and r ∈ S, a + b ∈ I and ra ∈ I. An ideal I is proper if I 6= S. An ideal I of a44

semiring S is called subtractive ideal (or k-ideal) if a, a+b ∈ I and b ∈ S, implies45

b ∈ I. A semiring S is called subtractive if every ideal of S is a subtractive ideal.46

For an ideal I of S and a ∈ S define (I : a) = {x ∈ S : ax ∈ I}. It is easy to47

see that if I is a subtractive ideal of S, then (I : a) is a subtractive ideal of S. A48

semiring S is said to be a regular semiring if for every element r ∈ S there exists49

an element x ∈ S such that rxr = r. A proper ideal I of a semiring S is said to be50

a strong ideal if for each a ∈ I there exists b ∈ I such that a+ b = 0 [4]. Radical51

of an ideal I is defined as
√
I = {a ∈ S : an ∈ I for some positive integer n}. An52

ideal I is irreducible, if and only if A ∩B = I for two ideals A, B implies A = I53

or B = I. An element u ∈ S \ {0} is called a unit if there exists an element54

u′ such that uu′ = 1. We denote the set of all units of S by U(S). A non-zero55

element a ∈ S is said to be a semi-unit in S if there exists r, s ∈ S such that56

1 + ra = sa. Let (S1,+, ·) and (S2,+, ·) be two semirings with zero elements57

0S1
, 0S2

and identity elements 1S1
, 1S2

respectively, a mapping f : S1 −→ S2 is58

said to be a semiring homomorphism if f(a+ b) = f(a)+ f(b), f(ab) = f(a)f(b),59

f(0S1
) = 0S2

and f(1S1
) = 1S2

for all a, b ∈ S1. A one-one homomorphism is60

called monomorphism. Let U be a multiplicatively closed subset of a semiring61

S. The relation is defined on the set S × U by (s, a) ∼ (t, b) ⇐⇒ xsb = xat for62

some x ∈ U is an equivalence relation and the equivalence class of (s, a) ∈ S ×U63

denoted by s/a. The set of all equivalence classes of S ×A under “∼” is denoted64

by SU . SU forms a semiring, where addition and multiplication are defined by65

s/a+t/b = (sb+ta)/ab and (s/a)(t/b) = st/ab. Suppose that S is a commutative66

semiring, U is a multiplicatively closed subset and I is an ideal of S, then the set67
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IU = {a/b : a ∈ I, b ∈ U} is an ideal of SU . The set IU is called the localization68

of the ideal I at U [15].69

A semifield is a commutative semiring in which the non-zero elements form70

a group under multiplication. Semiring S is referred to as ”reduced semiring”71

if S contains no non-zero nilpotent elements. A semiring S is a semidomain if72

it is multiplicatively cancellative, i.e., if ab = ac and a 6= 0, then b = c for any73

a, b, c ∈ S. A semiring S is a valuation semiring if it is a semidomain and the74

set of ideals are totally ordered by inclusion [13]. A semiring S is said to be an75

entire semiring if ab = 0 implies either a = 0 or b = 0 for any a, b ∈ S [13].76

A proper ideal I of S is called a prime (resp., weakly prime) if for any a, b ∈ S,77

ab ∈ I (resp., 0 6= ab ∈ I) implies either a ∈ I or b ∈ I [8]. A proper ideal I of a78

semiring S is primary if for all x, y ∈ S, we have that xy ∈ I and x /∈ I implies79

yn ∈ I for some positive integer n. If I is primary, then
√
I = P is a prime ideal80

of S [[2], Theorem 38]. In this case, we also say that I is a P -primary ideal of S.81

A prime ideal P of a semiring S is called to be a minimal prime ideal of S, if for82

every prime ideal I, I ⊆ P implies either I = 〈0〉 or I = P . Let P ⊇ I be ideals83

of a semiring S, where P is prime, then P is a minimal prime ideal of I if and84

only if for each x ∈ P , there is some y ∈ S \ P and a nonnegative integer i such85

that yxi ∈ I [14].86

A proper ideal M is maximal (resp. k-maximal) if M ⊆ M ′ ⊆ S implies87

either M = M ′ or M ′ = S for any ideal (resp. k-ideal) M ′ of S. A semiring88

is said to be a local semiring if it has only one maximal ideal. A semiring S is89

a local semiring if and only if S \ U(S) is an ideal of S. The Jacobson radical90

Jac(S) of a semiring S is defined as the intersection of all maximal k-ideals of S.91

A prime ideal P of S is said to be a divided prime ideal of S if P ⊆ 〈x〉 for every92

x ∈ S \ P . If each prime ideal of S is divided, then S is called divided semiring93

[17]. For general references on semiring theory, one may refer to [9, 12] and [15].94

A. Badawi introduced 2-absorbing (resp., weakly 2-absorbing) ideals in com-95

mutative rings as a generalization of prime ideals. The concept of 2-absorbing96

ideals in a commutative semiring was introduced by Darani [7]. A proper ideal97

I of a semiring S is called a 2-absorbing ideal if for any a, b, c ∈ S, abc ∈ I98

implies ab ∈ I or bc ∈ I or ca ∈ I. The concept of 2-prime ideals of a ring99

was introduced by Beddani and Messirdi [5]. A proper ideal I of a semiring S is100

called 2-prime if for any a, b ∈ S such that ab ∈ I, either a2 ∈ I or b2 ∈ I, which101

was introduced by Khanra et al. [10]. The concept of 1-absorbing prime ideals102

which is another extension of prime ideals was introduced in [18]. The notions103

of 1-absorbing primary and weakly 1-absorbing primary ideals were investigated104

in [16]. A proper ideal I of a ring R is called a 1-absorbing prime (resp. weakly105

1-absorbing prime) ideal if for all non-unit elements a, b, c ∈ R such that abc ∈ I106

(resp. 0 6= abc ∈ I), then either ab ∈ I or c ∈ I [11, 18]. In this paper, we general-107

ize this notion of 1-absorbing prime ideals in commutative semiring with non-zero108
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identity. Throughout the paper, unless otherwise stated, S stands for commu-109

tative semiring with non-zero identity and Z+
0 for the semiring of non-negative110

integers with usual binary addition and multiplication.111

We shortly summarize the content of the paper. In the first section, we recall112

some essential preliminaries. In Section 2, we introduce 1-absorbing prime ideals113

as a generalization of prime ideals of a semiring. Some properties of 1-absorbing114

prime ideals are studied. We give a characterization of 1-absorbing prime ideals115

(cf . Theorem 7). We show (cf. Theorem 12) that in a subtractive valuation116

semiring S, an ideal I is a 1-absorbing prime ideal of S if and only if either117

I = P or I = P 2, where P =
√
I is a prime ideal of S. In Section 3, we define118

weakly 1-absorbing prime ideal, as a generalization of weakly prime ideals. Some119

properties of 1-absorbing prime ideals are studied. We characterize a strong local120

semiring whose all proper ideals are 1-absorbing prime (cf. Theorem 24). At the121

end, we characterize 1-absorbing prime ideals in a decomposable semiring (cf.122

Theorem 26).123

2. 1-absorbing Prime Ideals124

Definition 1. A proper ideal I of a commutative semiring S is said to be a125

1-absorbing prime ideal if whenever abc ∈ I for some non-units a, b, c ∈ S, then126

either ab ∈ I or c ∈ I.127

It is clear that every prime ideal is 1-absorbing prime and every 1-absorbing128

prime ideal is 2-absorbing ideal, but the converse may not be true in general129

which can be seen from the following examples:.130

Example 1. In semiring S = Z+
0 , the ideal I = 3Z+

0 \{3} is a 1-absorbing prime131

ideal which is not a prime ideal.132

Example 2. Let S = Z+
0 × Z+

0 and I = 2Z+
0 × 3Z+

0 . Then I is a 2-absorbing133

ideal, however I is not a 1-absorbing prime ideal of S. Indeed, (2, 5)(4, 2)(7, 3) ∈ I134

but neither (2, 5)(4, 2) ∈ I nor (7, 3) ∈ I.135

Theorem 1. Every 1-absorbing prime ideal of a semiring S is a 2-prime ideal136

of S.137

Proof. Suppose that I is a 1-absorbing prime ideal of S and xy ∈ I for some138

elements x, y ∈ S. If either x or y is a unit, then I is a 2-prime ideal of S. So139

assume that x, y are non-unit elements of S. Then x2y ∈ I, this implies either140

x2 ∈ I or y ∈ I. Thus either x2 ∈ I or y2 ∈ I and hence I is a 2-prime ideal141

of S.142

The converse of Theorem 1 may not be true, as shown in the following ex-143

ample.144
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Example 3. In semiring S = Z+
0 , the ideal I = 4Z+

0 is a 2-prime ideal but I is145

not a 1-absorbing prime ideal, since 2 · 3 · 2 ∈ I but neither 2 · 3 ∈ I nor 2 ∈ I.146

So the class of all 1-absorbing prime ideals of a semiring S is an intermediate147

class between the class of all prime ideals and the classes of 2-prime ideals, 2-148

absorbing ideals of S.149

Theorem 2. Let I be a 1-absorbing prime ideal of a semiring S. Then x2 ∈ I150

for every x ∈
√
I and

√
I is a prime ideal of S.151

Proof. Suppose x ∈
√
I. Then there exists a smallest positive integer n such152

that xn ∈ I. For n = 1 or n = 2, it is clear. For n ≥ 3, xn = xxxn−2 ∈ I.153

That implies either x2 ∈ I or xn−2 ∈ I. Continuing this process, it is easy to154

conclude that x2 ∈ I. Now consider ab ∈
√
I for some a, b ∈ S. If one of a or b is155

a unit, then there is nothing to prove. Assume that both a and b are non-units156

and ab ∈
√
I. Then (ab)2 = aab2 ∈ I, which implies that either a2 ∈ I or b2 ∈ I.157

That is either a ∈
√
I or b ∈

√
I. Therefore,

√
I is a prime ideal of S.158

Theorem 3. Let I be a 2-prime ideal of S. If (P 2 : x) ⊆ I for any x ∈ P \ I,159

where
√
I = P . Then I is a 1-absorbing prime ideal of S.160

Proof. Suppose that xyz ∈ I and xy /∈ I for some non-units x, y, z ∈ S. Since I161

is a 2-prime ideal and (xy)z ∈ I, we obtain either (xy)2 ∈ I or z2 ∈ I. If (xy)2 ∈ I,162

then xy ∈ P \I. But then xy ∈ (P 2 : xy) ⊆ I, which is a contradiction. So z2 ∈ I,163

that is z ∈ P . If z ∈ I, then we are done. If z ∈ P \ I, then z ∈ (P 2 : z) ⊆ I, a164

contradiction. Therefore, I is a 1-absorbing prime ideal of S.165

Theorem 4. Suppose that a semiring S has a 1-absorbing prime ideal which is166

not a prime ideal. Then, S is a local semiring.167

Proof. Assume that I is a 1-absorbing prime ideal which is not a prime ideal168

of S. So there exist non-unit elements a, b ∈ S such that ab ∈ I but a /∈ I,169

b /∈ I. Now consider the set of all non-units S \U(S). Let x, y ∈ S \U(S). Then170

xab ∈ I and yab ∈ I. Since I is a 1-absorbing prime ideal of S and b /∈ I, we171

have xa ∈ I and ya ∈ I. Hence (x + y)a = xa + ya ∈ I. If (x + y) is a unit,172

then a ∈ I, which is a contradiction. Therefore, x+ y ∈ S \ U(S). Again for any173

s ∈ S and x ∈ S \ U(S), sxab ∈ I. Since I is a 1-absorbing prime ideal of S and174

a, b /∈ I, sx ∈ S \ U(S) and hence S \ U(S) is an ideal of S. Therefore, S is a175

local semiring.176

Corollary 1. In a commutative non-local semiring, a proper ideal is a 1-absorbing177

prime if and only if it is prime.178

Theorem 5. Let S be a local semiring with maximal ideal M . A proper ideal I179

of S is 1-absorbing prime ideal if and only if either I is a prime ideal or M2 ⊆ I.180
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Proof. Suppose that I is a 1-absorbing prime ideal of S. If I is not a prime181

ideal, then there exist non-units a, b ∈ S such that ab ∈ I but a /∈ I and b /∈ I.182

Let x, y ∈ M . Here xyab ∈ I. Since I is a 1-absorbing prime ideal and b /∈ I, we183

have xya ∈ I. Again xy ∈ I, since a /∈ I. Therefore xy ∈ I for any x, y ∈ M.184

Hence M2 ⊆ I.185

Conversely, if I is a prime ideal of S, then I is a 1-absorbing prime ideal of186

S. Consider M2 ⊆ I and abc ∈ I for some non-units a, b, c ∈ S. Since a, b, c are187

non-units, so a, b, c ∈ M . Thus ab ∈ M2 ⊆ I and hence I is a 1-absorbing prime188

ideal of S.189

Corollary 2. In a local semiring S with unique maximal ideal M , if M2 = 〈0〉,190

then every proper ideal of S is a 1-absorbing prime ideal.191

Theorem 6. Let S be a semiring. Then, 〈0〉 is a 1-absorbing ideal of S if and192

only if S is an entire semiring or (S,M) is a local semiring such that M2 = 〈0〉.193

Proof. Suppose that 〈0〉 is a 1-absorbing ideal of S and S is not an entire semir-194

ing. So 〈0〉 is a 1-absorbing prime ideal of S which is not a prime ideal. Thus,195

by Theorem 4 and Theorem 5, S is a local semiring with maximal ideal M such196

that M2 = 0.197

Conversely, if S is an entire semiring, then 〈0〉 is a prime ideal of S and so198

〈0〉 is 1-absorbing prime ideal of S. If S is a local semiring with maximal ideal M199

such that M2 = 0, then by Corollary 2, 〈0〉 is a 1-absorbing prime ideal of S.200

Theorem 7. Let I be a proper ideal of a semiring S, then the following are201

equivalent:202

(1) I is a 1-absorbing prime ideal of S.203

(2) If abJ ⊆ I for non-units a,b ∈ S, then either ab ∈ I or J ⊆ I.204

(3) For any proper ideals K, L and non-unit element a of S, if aKL ⊆ I, then205

either aK ⊆ I or L ⊆ I.206

(4) If for any ideals J , K, L of S, JKL ⊆ I, then either JK ⊆ I or L ⊆ I.207

Proof. (1) =⇒ (2) Suppose that abJ ⊆ I and ab /∈ I. Consider j ∈ J . Then208

abj ∈ abJ ⊆ I. Since I is a 1-absorbing prime ideal of S, we have j ∈ I. This209

implies that J ⊆ I.210

(2) =⇒ (3) Assume that aKL ⊆ I and aK * I. Then there exists k ∈ K211

such that ak /∈ I. As akL ⊆ I, by (2), L ⊆ I. Therefore either aK ⊆ I or L ⊆ I.212

(3) =⇒ (4) Suppose JKL ⊆ I and JK * I for some ideals J , K, L of S.213

Then there exists an element j ∈ J such that jK * I. By (3), we have L ⊆ I.214

Therefore either JK ⊆ I or L ⊆ I.215

(4) =⇒ (1) Assume that abc ∈ I for some non-units a, b, c ∈ S. Consider216

J = 〈a〉, K = 〈b〉, L = 〈c〉. Then JKL = abcS ⊆ I. By (4), either JK ⊆ I or217

L ⊆ I. So either ab ∈ I or c ∈ I. Hence I is a 1-absorbing prime ideal of S.218
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Proposition 1. Let I be a 1-absorbing prime ideal of a semiring S. Then for219

every non-unit c ∈ S \ I, (I : c) is a prime ideal of S.220

Proof. Suppose ab ∈ (I : c) for some a, b ∈ S and non-unit c ∈ S \ I. Without221

loss of generality, we may assume that a and b are non-units. Since I is a 1-222

absorbing prime ideal of S and acb ∈ I, we have either ac ∈ I or b ∈ I. This223

implies either a ∈ (I : c) or b ∈ I ⊆ (I : c). Therefore, (I : c) is a prime ideal of224

S for every non-unit c ∈ S \ I.225

Theorem 8. If I is a P -primary ideal of S such that (P 2 : x) ⊆ I for all226

x ∈ P \ I, then I is a 1-absorbing prime ideal of S.227

Proof. Let abc ∈ I for some non-units a, b, c ∈ S and ab /∈ I. If possible, let228

c /∈ I. Since I is a P -primary ideal of S and ab /∈ I, we have c ∈ P . Also229

c /∈ I implies ab ∈ P . So abc ∈ P 2. By the given hypothesis, (P 2 : c) ⊆ I.230

Thus ab ∈ (P 2 : c) ⊆ I, which is a contradiction. Hence c ∈ I and thus I is a231

1-absorbing prime ideal of S.232

Theorem 9. Let P be a nonzero divided prime ideal of a semidomain S. Then,233

P 2 is a 1-absorbing prime ideal of S.234

Proof. First, we show that P 2 is a P -primary ideal of S. Let xy ∈ P 2 and y /∈ P .235

Suppose xy =
∑n

i=1 xiyi for some xi, yi ∈ P , i = 1, 2, . . . , n. Since P is a divided236

prime ideal and y /∈ P , we have P ⊆ Sy. Thus xi = siy, where si ∈ S, for237

i = 1, 2, . . . , n. Since P is a prime ideal and y /∈ P , we have si ∈ P. Also since238

S is a semidomain, xy =
∑n

i=1 siyyi = (
∑n

i=1 siyi)y implies x =
∑n

i=1 siyi, that239

is x ∈ P 2. Thus P 2 is a P -primary ideal of S. Also, (P 2 : x) ⊆ P 2 for every240

x ∈ P \ P 2. So by Theorem 8, P 2 is a 1-absorbing prime ideal of S.241

Theorem 10. In a semiring S, for any 1-absorbing prime ideal I of S, there242

exists exactly one minimal prime ideal containing I.243

Proof. If possible, let P1 and P2 be two minimal prime ideals containing I. Then244

there exist elements a, b ∈ S such that a ∈ P1 \ P2 and b ∈ P2 \ P1. So there245

exist p2 /∈ P2 and p1 /∈ P1 such that apn2 ∈ I, bpn1 ∈ I. Since p1, p2 /∈ I and I is246

a 1-absorbing prime ideal, apn2 ∈ I implies ap2 ∈ I and bpn1 ∈ I implies bp1 ∈ I.247

Thus a2 ∈ I and b2 ∈ I, whence a2 ∈ I ⊆ P2 implies a ∈ P2 and b2 ∈ I ⊆ P1248

implies b ∈ P1,which is a contradiction. Therefore there exists one minimal prime249

ideal of S containing I.250

Theorem 11. Let P be a non-zero divided prime ideal of a subtractive semiring251

S and I be an ideal of S such that
√
I = P . If I is a 1-absorbing prime ideal of252

S, then I is a P -primary ideal of S such that P 2 ⊆ I.253
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Proof. Let ab ∈ I for some a, b ∈ S and b /∈ P . Since P is a divided prime ideal254

of S, we have P ⊆ Sb. Thus a = sb for some s ∈ S. So, we get ab = b2s ∈ I.255

Since b2 /∈ I and I is a 1-absorbing prime ideal of S, we conclude that s ∈ I.256

Therefore a = sb ∈ I and so I is a P -primary ideal of S. Now, let x, y ∈ P .257

Then by Theorem 2, x2, y2 ∈ I. Thus x(x + y)y = x2y + xy2 ∈ I. Since I is a258

1-absorbing prime ideal of S, we have either x(x + y) = x2 + xy ∈ I or y ∈ I.259

Since S is a subtractive semiring, xy ∈ I and hence P 2 ⊆ I.260

Theorem 12. Suppose that S is a subtractive valuation semiring and I is an261

ideal of S. Then I is a 1-absorbing prime ideal of S if and only if either I = P262

or I = P 2, where P =
√
I is a prime ideal of S.263

Proof. Suppose I is a 1-absorbing prime ideal of S. Since every subtractive264

valuation semiring is a divided semidomain [ [6], Proposition 1.4], so I is a P -265

primary ideal of S such that P 2 ⊆ I, by Theorem 11. Therefore, by [[6], Theorem266

1.2], either I = P or I = P 2. Conversely, suppose that either I = P or I = P 2,267

where P =
√
I is a prime ideal of S. If I = P , then I is a 1-absorbing prime ideal268

of S. If I = P 2, then by Theorem 9, I is a 1-absorbing prime ideal of S.269

Theorem 13. Let I be an irreducible subtractive ideal of S and (I : x) = (I : x2)270

for every x ∈ S \ I, then I is a 1-absorbing prime ideal of S.271

Proof. Let abc ∈ I and c /∈ I for some non-units a, b, c ∈ S. By the assumption,272

(I : c) = (I : c2). If possible, let ab /∈ I. Consider r ∈ (I + (ab))∩ (I +(c)). Then273

r = i1+abs1 = i2+cs2 for some i1, i2 ∈ I and s1, s2 ∈ S. Thus rc = i1c+abcs1 =274

i2c + c2s2 ∈ I. Since I is a subtractive ideal of S, we get c2s2 ∈ I. So cs2 ∈ I.275

Therefore, r = i2 + cs2 ∈ I. This shows that (I + (ab)) ∩ (I + (c)) ⊆ I and hence276

(I + (ab)) ∩ (I + (c)) = I, a contradiction. Thus ab ∈ I and so I is a 1-absorbing277

prime ideal of S.278

Theorem 14. Let I be a 1-absorbing prime subtractive ideal of S with
√
I = P .279

If I 6= P , then Ω = {(I : x) : x ∈ P \ I} under set inclusion is a totally ordered280

set.281

Proof. If possible, let there exist a, b ∈ P \ I such that neither (I : a) ⊆ (I : b)282

nor (I : b) ⊆ (I : a). Then there exists x, y ∈ S \ I so that x ∈ (I : a) \ (I : b)283

and y ∈ (I : b) \ (I : a). Since P ⊆ (I : c) for any c ∈ S \ I, x ∈ (I : a) \ P284

and y ∈ (I : b) \ P. Thus xy /∈ P , since P is a prime ideal of S. Consider285

x(a + b)y = xay + xby ∈ I. This implies x(a + b) = xa + xb ∈ I. Since I is286

a subtractive ideal and xa ∈ I, we get xb ∈ I, that is x ∈ (I : b), which is a287

contradiction. Hence Ω = {(I : x) : x ∈ P \ I} under set inclusion is a totally288

ordered set.289
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Theorem 15. In a regular semiring S, every irreducible ideal of S is a 1-290

absorbing prime ideal of S.291

Proof. Let S be a regular semiring and I be an irreducible ideal of S. Let abc ∈ I292

and ab /∈ I for some non-units a, b, c ∈ S. If possible, let c /∈ I. Now consider293

the ideals J = (I + (ab)) and K = (I + (c)), properly containing I. Since I294

is an irreducible ideal of S, J ∩ K * I. Thus, there exists p ∈ S such that295

p ∈ (I + (ab)) ∩ (I + (c)) \ I. So p ∈ (I + (ab)(I + (c)) \ I, by regularity of296

S [[9], Proposition 6.35]. Then, there are p1, p2 ∈ I and s1, s2 ∈ S such that297

p = (p1 + s1ab)(p2 + s2c) = p1p2 + p1s2c + s1abp2 + s1s2abc. This implies that298

p ∈ I, which is a contradiction. Hence c ∈ I, and so I is a 1-absorbing prime299

ideal of S.300

Theorem 16. Let S be a commutative semiring and U be a multiplicative closed301

subset of S. If I is a 1-absorbing prime ideal of S with U ∩ I = φ, then IU is a302

1-absorbing prime ideal of SU .303

Proof. Let (a/s)(b/t)(c/r) ∈ IU for some non-units (a/s), (b/t), (c/r) ∈ SU ,304

where a, b, c ∈ S and s, t, r ∈ U. Then (ua)bc ∈ I for some u ∈ U. So either uab ∈ I305

or c ∈ I, as I is a 1-absorbing prime ideal of S. Thus either (a/s)(b/t) ∈ IU or306

(c/r) ∈ IU . Therefore, IU is a 1-absorbing prime ideal of SU .307

3. Weakly 1-absorbing prime ideals308

Definition 2. A proper ideal I of a commutative semiring S is said to be a weakly309

1-absorbing prime ideal if whenever 0 6= abc ∈ I for some non-units a, b, c ∈ S,310

either ab ∈ I or c ∈ I.311

Clearly, every 1-absorbing prime ideal is also a weakly 1-absorbing prime ideal312

but the converse may be true in general which can be seen from the following313

examples.314

Example 4. In the semiring Z15, the ideal I = {0} is clearly a weakly 1-absorbing315

prime ideal of S but not 1-absorbing prime, as 0 = 3̄.3̄.5̄ ∈ I but neither 3̄.3̄ ∈ I316

nor 5̄ ∈ I.317

Theorem 17. If I is a weakly 1-absorbing prime of a reduced semiring S, then318 √
I is a weakly prime ideal of S.319

Proof. Suppose that 0 6= ab ∈
√
I for some non-units a, b ∈ S. Then (ab)n ∈320

I for some positive integer n. Since S is a reduced semiring, so 0 6= (ab)n =321

aan−1bn ∈ I. Thus either aan−1 = an ∈ I or bn ∈ I which implies either a ∈
√
I322

or b ∈
√
I. So

√
I is a weakly prime ideal of S.323
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Theorem 18. If the zero ideal of a semiring S is a 1-absorbing prime, then every324

weakly 1-absorbing prime ideal is a 1-absorbing prime of S.325

Proof. Suppose that I is a weakly 1-absorbing prime ideal of S and abc ∈ I for326

some non-units a, b, c ∈ S. If 0 6= abc, then either ab ∈ I or c ∈ I, that is, I is327

a 1-absorbing prime ideal. If abc = 0 and since zero ideal is 1-absorbing prime,328

either ab = 0 ∈ I or c = 0 ∈ I. Therefore, I is a 1-absorbing prime ideal of S.329

Theorem 19. Let S1 and S2 be two semirings and f : S1 −→ S2 be a monomor-330

phism such that f(a) is a non-unit in S2 for every non-unit element a in S1.331

Then the following statements hold:332

(1) If I is a weakly 1-absorbing prime ideal of S2, then f−1(I) is a weakly 1-333

absorbing prime ideal of S1.334

(2) If J is a weakly 1-absorbing prime k-ideal of S1 with Ker(f) ⊆ J and f is335

onto steady homomorphism, then f(J) is a weakly 1-absorbing prime k-ideal336

of S2.337

Proof. (1) Assume that 0 6= abc ∈ f−1(I) for some non-units a, b, c ∈ S1. Since338

f is monomorphism, we have 0 6= f(abc) = f(a)f(b)f(c) ∈ I for non-units339

f(a), f(b), f(c) ∈ S2. As I is a weakly 1-absorbing prime ideal of S2, so either340

f(a)f(b) = f(ab) ∈ I or f(c) ∈ I. That is either ab ∈ f−1(I) or c ∈ f−1(I).341

Therefore, f−1(I) is a weakly 1-absorbing prime ideal of S1.342

(2) Clearly, f(J) is a k-ideal of S2 as J is a k-ideal of S1. Now consider, 0 6=343

abc ∈ f(J) for some non-units a, b, c ∈ S2. There exist non-units x, y, z ∈ S1 such344

that f(x) = a, f(y) = b, f(z) = c. So 0 6= abc = f(x)f(y)f(z) = f(xyz) ∈ f(J).345

Thus f(xyz) = f(j) for some j ∈ J. Since f is steady, we have yxz + k1 = j + k2346

for some k1, k2 ∈ Ker(f). As J is a k-ideal of S1 and Ker(f) ⊆ J , we obtain347

0 6= xyz ∈ J . Since J is a weakly 1-absorbing prime ideal of S1, either xy ∈ J or348

z ∈ J . This implies either ab = f(xy) ∈ f(J) or c = f(z) ∈ f(J). Hence, f(J) is349

a weakly 1-absorbing prime k-ideal of S2.350

Definition 3. Let I be a weakly 1-absorbing prime ideal of S and a, b, c ∈ S are351

non-units of S. We call (a, b, c) is a 1-triple zero of I if abc = 0, ab /∈ I and c /∈ I.352

Theorem 20. Let I be a subtractive weakly 1-absorbing prime ideal of S and353

(a, b, c) be a 1-triple zero of I. Then, abI = 0 and if a, b /∈ (I : c), then I3 = 0.354

Proof. Suppose that I is a subtractive weakly prime ideal of S and (a, b, c) is a 1-355

triple zero of I. So abc = 0 and ab /∈ I, c /∈ I. If possible, let abI 6= 0. Then there356

exists i ∈ I such that 0 6= abi. This implies that 0 6= ab(c + i) = abc + abi ∈ I.357

Also c+ i is a non-unit, because (c+ i) is a unit implies ab ∈ I. Since I is weakly358

1-absorbing prime and ab /∈ I, so c + i ∈ I. As I is a subtractive ideal of S, we359

get c ∈ I, which is a contradiction. Therefore, abI = 0.360



On 1-absorbing prime and weakly 1-absorbing prime ideals ... 11

We first show that if a, b /∈ (I : c), then bcI = caI = aI2 = bI2 = cI2 = 0.361

Since a, b /∈ (I : c), ac /∈ I and bc /∈ I. Suppose bcI 6= 0. Then there exists362

i ∈ I such that bci 6= 0. Since abc = 0, we have 0 6= bci = (a + i)bc ∈ I.363

Here (a + i) is a non-unit, because if a + i is a unit, then bc ∈ I, which is a364

contradiction. Since I is weakly 1-absorbing prime, either (a + i)b ∈ I or c ∈ I,365

that is either ab ∈ I or c ∈ I, a contradiction, as I is a subtractive ideal of366

S. Therefore bcI = 0. Similarly, caI = 0. Now, we will show that aI2 = 0.367

Suppose that ai1i2 6= 0 for some ii, i2 ∈ I. Since abc = 0 and abI = acI = 0,368

we have a(b + i1)(c + i2) = abc + abi2 + aci1 + ai1i2 = ai1i2 6= 0. If c + i2 is369

a unit, then a(b + i1) ∈ I, and so ab ∈ I. Similarly, if b + i1 is a unit, then370

ac ∈ I, both contradict the hypothesis. Since I is a weakly 1-absorbing prime371

ideal, either a(b+ i1) ∈ I or c+ i2 ∈ I. Thus ab ∈ I or c ∈ I as I is a subtractive372

ideal of S, which is a contradiction. So aI2 = 0. Similarly, one can show that373

bI2 = 0 and cI2 = 0. Now, assume that I3 6= 0. So there exist i1, i2, i3 ∈ I such374

that 0 6= i1i2i3 ∈ I. Since abI = bcI = caI = aI2 = bI2 = cI2 = 0, we have375

0 6= i1i2i3 = (a+ i1)(b+ i2)(c+ i3) ∈ I and (a+ i1), (b+ i2), (c+ i3) are non-units.376

So either (a+ i1)(b+ i2) ∈ I or c+ i3 ∈ I. Since I is a subtractive ideal, we have377

either ab ∈ I or c ∈ I, which is a contradiction. Therefore, I3 = 0.378

Definition 4 ([1], Proposition 8.21). An ideal I of a semiring S is called a Q-379

ideal if there exists a subset Q of S such that: 1) S = ∪{q + I : q ∈ Q}, 2) If380

q1, q2 ∈ Q, then (q1 + I) ∩ (q2 + I) 6= φ ⇐⇒ q1 = q2. Let I be a Q-ideal of a381

semiring S. Then S/IQ = {q + I : q ∈ Q} forms a semiring under the following382

addition “⊕ ” and multiplication “⊙”, (q1 + I)⊙ (q2 + I) = q3 + I where q3 ∈ Q383

is unique such that q1 + q2 + I ⊆ q3 + I, and (q1 + I)⊙ (q2 + I) = q4 + I where384

q4 ∈ Q is unique such that q1q2 + I ⊆ q4 + I. This semiring S/IQ is called the385

quotient semiring of S by I and denoted by (S/IQ,⊕,⊙) or just S/IQ.386

Theorem 21. Let I be a Q-ideal and J be a k-ideal of a semiring S, so that387

I ⊆ J . If J is a weakly 1-absorbing prime ideal of S, then J/I(Q∩J) is a weakly388

1-absorbing prime ideal of S/IQ.389

Let I be a weakly 1-absorbing prime ideal of S such that u(S/I) = {x + I :390

x ∈ u(S) ∩Q}. If J/I(Q∩J) is a weakly 1-absorbing prime ideal of S/IQ, then J391

is a weakly 1-absorbing prime ideal of S.392

Proof. Suppose that J is a weakly 1-absorbing prime ideal of S and 0 6= (q1 +393

I)⊙ (q2+ I)⊙ (q3+ I) ∈ J/I(Q∩J) for some non-units q1+ I, q2+ I, q3+ I ∈ S/IQ394

where q1, q2, q3 ∈ Q. So there exists a unique element q4 ∈ J ∩ Q such that395

q1q2q3 + I ⊆ q4 + I ∈ J/I(Q∩J). It follows that q1, q2, q3 are non-units in S and396

0 6= q1q2q3 ∈ J . Since J is a weakly 1-absorbing prime ideal of S, we get q1q2 ∈ J397

or q3 ∈ J . Therefore if q3 ∈ J , then q3+I ∈ J/I(Q∩J). Otherwise if q1q2 ∈ J, then398

(q1+I)⊙(q2+I) = q5+I where q5 is the unique element in Q and q1q2+r = q5+s399
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for some r, s ∈ I. Since J is a k-ideal, q5 ∈ J . So (q1 + I)⊙ (q2 + I) ∈ J/I(Q∩J).400

Hence J/I(Q∩J) is a weakly 1-absorbing prime ideal of S/IQ.401

Let 0 6= abc ∈ J for some non-units a, b, c ∈ S. If abc ∈ I, then either402

ab ∈ I ⊆ J or c ∈ I ⊆ J . Assume that abc /∈ I. Since I is a Q-ideal, there exist403

q1, q2, q3 ∈ Q such that a ∈ q1 + I, b ∈ q2 + I and c ∈ q3 + I. Thus a = q1 + i1,404

b = q2 + i2, c = q3 + i3 for some i1, i2, i3 ∈ I. So abc = (q1 + i1)(q2 + i2)(q3 + i3)405

= q1q2q3+i1q2q3+i2q1q3+i3q1q2+i1i3q2+i1i2q3+i2i3q1+i1i2i3. Since J is a k-ideal406

of S, we have q1q2q3 ∈ J . Also (q1+I)⊙(q2+I)⊙(q3+I) = q4+I for some unique407

element q4 ∈ Q, where q1q2q3+I ⊆ q4+I. Thus q1q2q3+i4 = q4+i5 ∈ J . Since J408

is a k-ideal, q4 ∈ J ∩Q and q4+ I ∈ J/I(Q∩J). By hypothesis, q1+ I, q2+ I, q3+ I409

are non-units elements of S/IQ and (q1 + I)⊙ (q2 + I)⊙ (q3 + I) ∈ J/I(Q∩J). If410

there exists a unique element q ∈ Q such that q + I is a zero element of S/IQ411

and (q1 + I) ⊙ (q2 + I) ⊙ (q3 + I) = q + I. Thus q1q2q3 + r = q + s for some412

r, s ∈ I, as J is a k-ideal, q1q2q3 ∈ I. So abc ∈ I, which is a contradiction. Hence413

0 6= (q1+I)⊙(q2+I)⊙(q3+I) ∈ J/I(Q∩J). Since J/I(Q∩J) is a weakly 1-absorbing414

prime ideal, we conclude that either q1q2 + I ∈ J/I(Q∩J) or q3 + I ∈ J/I(Q∩J).415

(q1 + I) ⊙ (q2 + I) ∈ J/I(Q∩J) implies ab ∈ J or q3 + I ∈ J/I implies c ∈ J .416

Therefore, J is a weakly 1-absorbing prime ideal of S.417

Theorem 22. Let S be a local semiring and I be a subtractive ideal of S. If I is418

a weakly 1-absorbing prime ideal of S, then either I is a 1-absorbing prime ideal419

of S or I3 = 0.420

Proof. Suppose that I3 6= 0. Then there exists x, y, z ∈ I such that xyz 6= 0.421

If possible, let I is not a weakly 1-absorbing prime ideal of S. So there exist422

non-units a, b, c ∈ S such that abc = 0 and ab /∈ I, c /∈ I.423

Since S is a local semiring, set of non-units forms an ideal. So (a+x), (b+y),424

(c + z) are non-units. Consider (a + x)(b + y)(c + z) = abc + bcx + acy + abz +425

ayz + bxz + cxy + xyz ∈ I.426

We claim that abz = bcx = acy = 0. If abz 6= 0, then 0 6= abz = ab(c+z) ∈ I.427

Since I is a weakly 1-absorbing prime ideal, either ab ∈ I or c + z ∈ I. As I is428

a subtractive ideal of S, either ab ∈ I or c ∈ I, which is a contradiction. Hence429

we may assume that abz = 0. In a similar way, one can show bcx = acy = 0.430

Also ayz = bxz = cxy = 0. If suppose ayz 6= 0, then we have 0 6= ayz =431

ayz + abz + acy + abc = a(y + b)(z + c). Hence either a(b+ y) ∈ I or c+ z ∈ I.432

Since I is a subtractive ideal, so in both cases we arrive at a contradiction. Thus433

ayz = 0. In a similar way, bxz = cxy = 0.434

Therefore, 0 6= xyz = (a + x)(b + y)(c + z) ∈ I but ab /∈ I, c /∈ I and I435

is a subtractive ideal of S, implies neither (a + x)(b + y) ∈ I nor c + z ∈ I,436

which contradicts our hypothesis that I is a weakly 1-absorbing prime ideal of S.437

Therefore, I is a 1-absorbing prime ideal of S.438
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Theorem 23. Let S be a semiring and Jac(S) be the Jacobson radical of S. If439

Jac(S) is a strong ideal of S, then for any a, b, c ∈ Jac(S), the ideal I = 〈abc〉 is440

a weakly 1-absorbing prime ideal of S if and only if abc = 0.441

Proof. If abc = 0 for some a, b, c ∈ Jac(S), then clearly I = 〈abc〉 is a weakly442

1-absorbing prime ideal of S. Conversely, assume that I is a weakly 1-absorbing443

prime ideal of S. If possible, let abc 6= 0. Since abc ∈ I, we have either ab ∈ I or444

c ∈ I, that is, either ab = abcx or c = abcy for some x, y ∈ S. Suppose ab = abcx.445

As c ∈ Jac(S) and Jac(S) is a strong ideal, so there exists c′ ∈ Jac(S) such that446

c + c′ = 0. This implies ab(1 + c′x) = 0 and by [[3], Lemma 3.4], (1 + c′x) is a447

semiunit of S. So there exist s, t ∈ S such that 1 + s(1 + c′x) = t(1 + c′x). Thus448

ab = 0 and so abc = 0, which is a contradiction. Also by similar arguments, if449

c ∈ I, we get c = 0, a contradiction. Therefore abc = 0.450

Theorem 24. Let S be a strong local semiring with maximal ideal M. Then every451

proper ideal of S is a weakly 1-absorbing prime ideal if and only if M3 = {0}.452

Proof. Suppose that every proper ideal of S is weakly 1-absorbing prime and453

a, b, c ∈ M . Then the ideal I = 〈abc〉 is a weakly 1-absorbing prime. By Theorem454

23, abc = 0 and so M3 = {0.} Conversely, suppose that M3 = {0} and I is a455

nonzero proper ideal of S. So there do not exist any non-units a, b, c ∈ S such456

that 0 6= abc ∈ I. Hence, I is a weakly 1-absorbing prime ideal of S.457

Theorem 25. Let S = S1 × S2, where S1 and S2 be commutative semirings. If458

I1 is a proper ideal of S1. Then the following are equivalent:459

(1) I1 is a 1-absorbing prime ideal of S1.460

(2) I1 × S2 is a 1-absorbing prime ideal of S.461

(3) I1 × S2 is a weakly 1-absorbing prime ideal of S.462

Proof. (1) =⇒ (2) and (2) =⇒ (3) are trivial.463

(3) =⇒ (1) Suppose that I1×S2 is a weakly 1-absorbing prime ideal of S and464

abc ∈ I1 for some non-units a, b, c ∈ S1. Then 0 6= (abc, 1) = (a, 1)(b, 1)(c, 1) ∈ I1.465

and (a, 1), (b, 1), (c, 1) are non-units of S. Thus either (a, 1)(b, 1) = (ab, 1) ∈466

I1 × S2 or (c, 1) ∈ I1 × S2, that is either ab ∈ I1 or c ∈ I1. Therefore, I1 is a467

1-absorbing prime ideal of S1.468

Theorem 26. Let S = S1 × S2, where S1 and S2 be commutative semirings but469

not semifields. If I1 and I2 are nonzero ideals of S1 and S2 respectively, then the470

following are equivalent:471

(1) I1 × I2 is a weakly 1-absorbing prime ideal of S.472

(2) Either I1 is a prime ideal of S1 and I2 = S2 or I2 is a prime ideal of S2 and473

I1 = S1.474
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(3) I1 × I2 is a 1-absorbing prime ideal of S.475

(4) I1 × I2 is a prime ideal of S.476

Proof. (1) =⇒ (2) Suppose that I1 × I2 is a weakly 1-absorbing prime ideal477

of S and 0 6= (a, 0) ∈ I1 × I2 for some non zero a ∈ I1. Then 0 6= (a, 0) =478

(1, 0)(1, 0)(a, 1) ∈ I1 × I2. Therefore, either (1, 0)(1, 0) = (1, 0) ∈ I1 × I2 or479

(a, 1) ∈ I1 × I2. So either 1 ∈ I1 or 1 ∈ I2, that is, either I1 = S1 or I2 = S2.480

Consider I2 = S2 and ab ∈ I1 for some non-units a, b ∈ S1. Since S2 is481

not a semifield, there exists a non-unit 0 6= z ∈ S2. Consider 0 6= (ab, z) =482

(a, 1)(1, z)(b, 1) ∈ I1 × I2, then either (a, z) = (a, 1)(1, z) ∈ I1 × I2 or (b, 1) ∈483

I1×I2. Thus either a ∈ I1 or b ∈ I2. Therefore, I1 is a prime ideal of S1. Similarly,484

I2 is a prime ideal of S2 when I1 = S1.485

(2) =⇒ (3) follows from Theorem 25.486

(3) =⇒ (4) is clear from the Corollary 1.487

(4) =⇒ (1) is trivial.488
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