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Let N be a near-ring and I(N) denote the set of all non-trivial (i.e.,16
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of G(N) such as being chordal, star etc. have been obtained.26
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1. Introduction29

One of the most important research areas of graph theory is algebraic graph30

theory where graphs are constructed depending on different algebraic structures.31

One of the main motivations to study such graphs is to find interplays between32

the graph theoretic properties and the properties of the algebraic structures under33

consideration.34

Let F = {Si : i ∈ I} be an arbitrary family of sets. The intersection graph35

G(F ) is the graph whose vertices are Si, i ∈ I and in which the vertices Si and Sj36

(i, j ∈ I) are adjacent if and only if Si ̸= Sj and Si ∩Sj ̸= ϕ. Due to Marczewski37

[16, 17], we have the result for intersection graph which states that “Every simple38

graph is an intersection graph, i.e., for any simple graph G there exists a family39

F of sets Si, i ∈ I, such that G is isomorphic to the intersection graph G(F )”.40

To make the study of the intersection graphs more interesting, Bosak [7] in 196441

defined intersection graph arising from a semigroup S. Then Csákány and Pollák42

[10] defined and studied the intersection graphs corresponding to finite groups.43

Zelinka [19] continued the work in the setting of finite Abelian groups. Later,44

Chakrabarty et al. [8] studied the intersection graph of ideals of a ring. For some45

other works of intersection graphs in the setting of groups and rings we may refer46

the readers to [1, 11, 14]. The theory of intersection graphs has a vast field of47

applications in different practical scenarios like secure sensor networks, wireless48

communication networks, epidemiology etc. (cf. [3, 5, 20]).49

To continue the study of intersection graphs on different algebraic structures,50

in our present paper, we define the intersection graph G(N) on a near-ring N in51

terms of the non-zero proper ideals of N . The study of the intersection graphs52

in the setting of near-rings enriches the study of intersection graphs on various53

algebraic structures as the notion of near-rings indeed generalizes the notion54

of rings. In Section 3, G(N) is defined and studied mainly in terms of direct55

product of its subnear-rings. Among the other results, here we obtain a necessary56

and sufficient condition on a near-ring N so that G(N) becomes complete (cf.57

Theorem 3.4) and also we obtain that if G(N) is disconnected then the near-58

ring N is a direct product of two simple near-rings (cf. Theorem 3.10). We also59

obtain the degree of a maximal ideal of a near-ring N in G(N) (cf. Theorem60

3.18). In Section 4, we obtain another necessary and sufficient condition for61

completeness of G(N) in terms of essential ideals of N (cf. Theorem 4.4). Here,62

we determine the domination number of G(N) corresponding to a near-ring N63

containing an essential ideal (cf. Theorem 4.7). We also discuss about the graph64

connectivity properties (viz. vertex connectivity, strong vertex connectivity, edge65

connectivity etc.) of G(N) (cf. Theorems 4.13, 4.29, respectively). Here, we66

find some conditions on N so that the corresponding graph G(N) becomes star,67

asteroidal triple-free, chordal or non-bipartite (cf. Theorems 4.14, 4.23, 4.27,68
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Corollary 4.16, respectively). Also, we obtain the degree of vertices (cf. Theorem69

4.17) and determine several graphical parameters such as chromatic number,70

independence number, geodetic number and hull number of a planar graph G(N)71

(cf. Theorems 4.22, 4.24, 4.25, 4.26, respectively).72

2. Preliminaries73

We first recall some definitions of the theory of near-rings (cf. [13]) for their use74

in the sequel.75

Definition 2.1. A near-ring is a set N together with two binary operations ‘+’76

and ‘·’ such that77

(a) (N,+) is a group (not necessarily Abelian),78

(b) (N, ·) is a semi-group and79

(c) for all n1, n2, n3 ∈ N : (n1 + n2)n3 = n1n3 + n2n3 (“right distributive law”).80

N is called zero-symmetric if for all n ∈ N,n0 = 0. N is called an integral if N81

has no non-zero divisors of zero. N has the DCCI if N satisfy DCC (descending82

chain condition) on ideals. If (N∗ = N−{0}, ·) is a group, N is called a near-field.83

Definition 2.2. Let N be a near-ring. A normal subgroup I of (N,+) is called84

ideal of N if85

(i) IN ⊆ I and86

(ii) n(n′ + i)− nn′ ∈ I, for all n, n′ ∈ N and for all i ∈ I.87

An ideal I of a near-ring N is called a direct-summand of N if there exist an88

ideal J of N such that N = I
⊕

J . J is then called a direct complement of I in89

N . A near-ring N is called simple if its ideals are {0} and N only.90

Definition 2.3. A subdirect product N of near-rings Ni (i ∈ I) is called trivial if91

there exists i ∈ I such that the projection map πi : N → Ni is an isomorphism. A92

near-ring N is called subdirectly irreducible if N is not isomorphic to a non-trivial93

subdirect product of near-rings.94

Definition 2.4. Let N be a near-ring. Then N is called decomposable, if it is95

the direct sum of non-trivial ideals (or, equivalently, it has a non-trivial direct96

summand), otherwise indecomposable.97

Definition 2.5. Let N be a near-ring and (Γ,+) be a group. Let f : N × Γ → Γ
(n,γ)→nγ

.98

Then (Γ, f) is called a N -group (denoted by NΓ) if (n + n′)γ = nγ + n′γ and99

(nn′)γ = n(n′γ), for all n, n′ ∈ N and for all γ ∈ Γ. A subgroup ∆ of NΓ with100

N∆ ⊆ ∆ is said to be an N -subgroup of Γ. N is said to be local if N has a unique101

maximal N -subgroup.102
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Definition 2.6. Let N,N ′ be two near-rings. Then h : N → N ′ is called a103

near-ring homomorphism if h(m+n) = h(m)+h(n) and h(mn) = h(m)h(n), for104

all m,n ∈ N .105

Definition 2.7. [15] A non-zero proper ideal I of a near-ring N is called an106

essential ideal of N if for any non-zero ideal J of N , I ∩ J ̸= {0}.107

We recall the following notations of graph theory from [4, 6, 9, 12] and [18].108

Definition 2.8. Let G = (V (G), E(G)) be a graph. A shortest path between109

two vertices v1 and v2 in G is called a v1 − v2 geodesic. The distance d(x, y)110

between any two vertices x and y is the length of a shortest path from x to y.111

The diameter of G is diam(G) = max{d(x, y) : x, y ∈ V (G)} and the girth of G is112

the length of a smallest cycle in G. The eccentricity of a vertex x in G is defined113

as e(x) = max{d(x, z) : z ∈ V (G)}. The radius of G is the minimum eccentricity114

among the vertices ofG, which is denoted by rad(G). A vertex v ∈ V (G) is said to115

be central if e(v) = rad(G). The set of all vertices in G lying on a v1−v2 geodesic116

is denoted by I[v1, v2]. For any subset S of G, let I[S] =
⋃

v1,v2∈S I[v1, v2]. If117

I[S] = V (G), then S is called a geodetic set of G. The minimum cardinality118

of a geodetic set of G is called the geodetic number g(G) of G. A vertex v of a119

connected graph G is said to be a cut vertex if the deletion result of the vertex120

v is a disconnected graph. A vertex cut of G is a subset S ⊆ V (G) such that121

the graph G − S is disconnected. The vertex connectivity of G is defined by122

κ(G) = min{n ≥ 0 : there exists a vertex cut S ⊆ V (G) such that |S| = n}. A123

graph whose edge set is empty is called a null graph or a totally disconnected124

graph. The strong vertex connectivity of G is defined by K(G) = min{n ≥ 0 :125

there exists a vertex subset S ⊆ V (G) with |S| = n such that G − S is totally126

disconnected }. An edge cut of G is a subset T ⊆ E(G) such that the graph127

G− T , whose vertex set is V (G) and edge set is E(G)− T , is disconnected. The128

edge connectivity of G is defined by λ(G) = min{n ≥ 0 : there exists an edge cut129

T ⊆ E(G) such that |S| = n}.130

Definition 2.9. A vertex set S of a graph G is a dominating set if each vertex131

of G either belongs to S or is adjacent to a vertex in S. The domination number132

γ(G) of G is the minimum cardinality of S as S varies over all dominating sets133

of G.134

Definition 2.10. An independent vertex set of a graph G is a subset of the135

vertices such that no two vertices in the subset represent an edge in G. The136

independence number α(G) of G is the cardinality of the largest independent137

vertex set.138

Definition 2.11. A subset S of V (G) is convex if I[S] = S. If A is a subset of139

V (G), then the convex hull of A (denoted by [A]) is the smallest convex set in140
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G containing A. If [A] = V (G), then A is called a hull set of G. The smallest141

cardinality of a hull set of G is called the hull number of G and is denoted by142

h(G).143

Definition 2.12. Let G be a graph. Suppose C is a cycle G with more than144

three vertices. A chord of C is an edge of G, which is not an edge of C, but145

whose endpoints are vertices of C. G is called chordal if every n-cycle in G with146

n > 3 possesses a chord.147

Definition 2.13. An asteroidal triple of a graph (with at least six vertices) is148

an independent set of three vertices such that for any pair of distinct vertices of149

the set, there is a path between the two that contains no vertex adjacent to the150

third.151

Definition 2.14. Two graphs are edge-disjoint if they have no edge in common.152

A decomposition of a graph G is a family F of edge-disjoint subgraphs of G such153

that
⋃

F∈F E(F ) = E(G). A separation of a connected graph is a decomposition154

of the graph into two nonempty connected subgraphs which have just one vertex155

in common. This common vertex is called a separating vertex of the graph G.156

Definition 2.15. A circuit in a graph that includes all the edges of the graph is157

called an Euler circuit. A graph G is said to be Eulerian if either G is a trivial158

graph or G has an Euler circuit.159

3. Interplay between the intersection graph of ideals of a160

near-ring and direct product of its subnear-rings161

Definition 3.1. Let I(N) be the set of all non-zero proper ideals of a near-ring162

N . The intersection graph of ideals of N , denoted by G(N), is a undirected163

simple graph (without loops and multiple edges) with vertex set I(N) and two164

vertices I and J are adjacent if and only if I ̸= J and I ∩ J ̸= {0}.165

Example 3.2. Consider the near-ring N = {0, a, b, c} together with two binary166

operations ‘+’ and ‘·’ defined by167

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

and

· 0 a b c
0 0 0 0 0
a 0 a 0 a
b b b b b
c b c b c

The non-zero proper ideals ofN are I = {0, a} and J = {0, b}. So, the intersection168

graph G(N) consists of two vertices I and J . The graph G(N) is:169
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Figure 1.

Example 3.3. Mc(Zn), the set of all constant mappings from Zn to Zn, forms170

a near-ring with pointwise addition and composition. The intersection graphs171

corresponding to Mc(Zn) for n = p4, p2q, pqr, where p, q and r are distinct172

primes, are given below.173

(a)n = p4 (b)n = p2q (c)n = pqr

Figure 2.

Theorem 3.4. Let N be a near-ring. Then G(N) is complete if and only if N174

is subdirectly irreducible.175

Proof. Let N be a subdirectly irreducible near-ring. Then
⋂

I( ̸={0}) ideal in N

I ̸=176

{0} (cf. Theorem 1.60, pp. 25 [13]). This implies that I ∩ J ̸= {0}, for177

any two non-trivial ideals I and J . Hence, G(N) is complete. Conversely,178

let G(N) be complete. To prove N is subdirectly irreducible, it is enough to179

prove that
⋂

K (̸={0}) ideal in N

K ̸= {0} in view of Theorem 1.60[13]. If possible, let180 ⋂
K (̸={0}) ideal in N

K = {0}. Then there exist at least two non-zero proper ideals181

L, M such that L∩M = {0}, which contradicts the fact that G(N) is complete.182

This proves the result.183

Though the following results can be proved in a similar fashion to those in184

rings (cf. [2, 8]). We state them for their immediate use.185

Theorem 3.5. The graph G(N) of a near-ring N is disconnected if and only if N186

contains at least two minimal ideals which are maximal, too and every non-trivial187

ideal of N is minimal as well as maximal.188
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Corollary 3.6. For any G(N) of a near-ring N , whenever G(N) is disconnected,189

it is a null-graph.190

Theorem 3.7. Let N be a near-ring and G(N) be a connected graph. Then191

diam(G(N)) ≤ 2.192

Theorem 3.8. The graph G(N) of a zero-symmetric integral near-ring N (but193

not a near-field) is complete.194

Theorem 3.9. Let N be a near-ring which has the DCCI. Then G(N) is complete195

if and only if N has a unique minimal ideal.196

Theorem 3.10. Let N be a near-ring. If G(N) is disconnected, then N is a197

direct product of two simple near-rings.198

Proof. Since G(N) is disconnected, Theorem 3.5 shows that there exist at least199

two maximal ideals I and J of N such that I ∩ J = {0} and I + J = J + I = N .200

Now, we are going to show that N is isomorphic to the direct product N/I×N/J .201

Define ϕ : N → N/I×N/J by ϕ(n) = (n+I, n+J). Let n1, n2 ∈ N . Then ϕ(n1)+202

ϕ(n2) = (n1+I, n1+J)+(n2+I, n2+J) = (n1+n2+I, n1+n2+J) = ϕ(n1+n2) and203

ϕ(n1)ϕ(n2) = (n1 + I, n1 + J)(n2 + I, n2 + J) = (n1n2 + I, n1n2 + J) = ϕ(n1n2).204

Therefore, ϕ is a near-ring homomorphism. Now, Kerϕ = {n ∈ N |ϕ(n) =205

(0 + I, 0+ J)} = {n ∈ N |(n+ I, n+ J) = (0+ I, 0+ J)} = {n ∈ N |n+ I = 0+ I206

and n+J = 0+J} = {n ∈ N |n ∈ I and n ∈ J} = {n ∈ N |n ∈ I∩J = {0}} = {0}.207

So, ϕ is one-one. Now, suppose that (n1+I, n2+J) ∈ N/I×N/J . SinceN = I+J ,208

there exist i1, i2 ∈ I and j1, j2 ∈ J such that n1 = i1 + j1, n2 = i2 + j2. Now,209

since I is normal in (N,+),−j1 + i1 + j1 ∈ I ⇒ −j1 + i1 + j1 = i′1, for some210

i′1 ∈ I ⇒ i1 + j1 = j1 + i′1. Also, −j1 + i2 + j1 ∈ I ⇒ −j1 + i2 + j1 = i′2, for211

some i′2 ∈ I ⇒ i2 = j1 + i′2 − j1 ⇒ i2 + j1 = j1 + i′2. We have, ϕ(j1 + i′2) =212

(j1 + i′2 + I, j1 + i′2 + J) = (j1 + I, i2 + j1 + J) = (j1 + i′1 + I, i2 + J) = (i1 +213

j1 + I, i2 + j2 + J) = (n1 + I, n2 + J). So, ϕ is onto. Hence, ϕ is an isomorphism.214

Also, since I and J are maximal in N , N/I and N/J are simple.215

Theorem 3.11. Let N be a near-ring containing a non-zero proper direct sum-216

mand. Then G(N) is never a complete graph.217

Proof. Let I be a non-zero proper direct summand of N . By Definition 4.7,218

there exists a non-zero proper ideal J of N such that I
⊕

J = N . This implies219

that I ∩ J = {0}. So, the vertices I and J are not adjacent. Hence, G(N) is not220

complete.221

Lemma 3.12. Let I be a non-zero proper direct summand of a near-ring N . If222

deg(I) is finite, then N has the DCCI.223



8 P. Pal and J. Jana

Proof. Suppose that I1 ⊇ I2 ⊇ I3 ⊇ · · · is a chain of ideals of I. Then each Ii224

is an ideal of N (cf. Theorem 2.12, pp. 46 [13]). So, each Ii (̸= {0}) is a vertex225

in G(N) and is adjacent with I. If I does not have the DCCI, then deg(I) is not226

finite, a contradiction. Thus, I has the DCCI. In a similar way, we can show that227

N/I has the DCCI. Hence, N has the DCCI (cf. Theorem 2.35, pp. 51 [13]).228

Theorem 3.13. Let N be a near-ring containing a non-zero proper direct sum-229

mand and G(N) be regular. Then G(N) is a null graph.230

Proof. Let N be a near-ring containing a non-zero proper direct summand I231

and G(N) be regular. If possible, suppose that G(N) is not null. By Corollary232

3.6, G(N) is connected. Then G(N) is either complete or not. But Theorem 3.11233

shows that G(N) is not complete. Clearly, deg(I) is finite as G(N) is regular. So,234

from Lemma 3.12, N has the DCCI, which confirms the existence of a minimal235

ideal of N . Now, from Theorem 3.9, N has at least two minimal ideals I1 and236

I2 (say). Clearly, I1 and I2 are not adjacent and diam(G(N)) ≤ 2 (by Theorem237

3.7). Therefore, there exists a non-trivial ideal J of N such that I1-J-I2 is a238

path. So, I1, I2 ⊊ J . Thus, each vertex adjacent to I1 is adjacent to J , too.239

Again, J is adjacent to I2 but I1 is not adjacent to I2. This argument shows that240

deg(J) > deg(I1), which contradicts the fact that G(N) is regular. Hence, G(N)241

is a null graph.242

Theorem 3.14. Let N be a finite near-ring such that (N,+) is cyclic and let M243

be a maximal ideal of N . Then M is a non-zero proper direct summand of N if244

and only if deg(M) = n− 2, where |V (G(N)| = n.245

Proof. Suppose that M is a non-zero proper direct summand of N . Then there246

exists a non-zero proper ideal I such that M + I = N and M ∩ I = {0}. This247

implies that deg(M) ≤ n− 2. If possible, let deg(M) ⪇ n− 2. Then there exists248

a non-zero proper ideal J (̸= I) such that M ∩ J = {0}. Since M is maximal,249

M + J = N . Clearly, |N | = |M + I| = |M ||I| and |N | = |M + J | = |M ||J | as250

M + I = M + J = N and M ∩ I = M ∩ J = {0}. So, |I| = |J | = |N |/|M |.251

Since (N,+) is a finite cyclic group, I = J which is a contradiction. Therefore,252

deg(M) = n − 2. Conversely, let deg(M) = n − 2, where |V (G(N)| = n. Then253

there exists a non-zero proper ideal K of N such that M ∩ K = {0}. Hence,254

M + K = N as M is maximal. This implies that M
⊕

K = N . Thus, M is a255

non-zero proper direct summand of N .256

Note 3.15. It is clear from the proof that N need not be finite and (N,+) need257

not be cyclic for the converse part of the above theorem.258

The following corollary comes directly from the above theorem.259

Corollary 3.16. Let N be a near-ring. If M is a maximal ideal of N such that260

deg(M) = n− 2, where |V (G(N)| = n, then M is not essential.261
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Theorem 3.17. Let N be a near-ring and M be a maximal ideal of N . If M is262

not a direct summand of N , then G(N) is connected. Moreover, deg(M) = n−1,263

where |V (G(N))| = n.264

Proof. Suppose that M ∩ J = {0}, where J is any ideal of N . If possible, let265

J ̸= {0}. Then M ⊊ M + J . We have, M + J ⊊ N . Otherwise, if M + J = N ,266

then M is a direct summand, a contradiction. Therefore, M ⊊ M+J ⊊ N , which267

contradicts the fact that M is maximal. Thus, M ∩ J = {0} implies J = {0}.268

So, we can conclude that M is adjacent to all other non-trivial ideals of N and269

hence, G(N) is connected and deg(M) = n− 1.270

Theorem 3.18. Let N be a finite near-ring such that (N,+) is a cyclic group.271

If M is a maximal ideal of N , then deg(M) is either (n − 1) or (n − 2), where272

|V (G(N))| = n.273

Proof. Suppose that M is a non-zero proper direct summand of N . Then, from274

Theorem 3.14, we have deg(M) = (n − 2). If M is not a direct summand of275

N , then, from Theorem 3.17, we have deg(M) = (n − 1). This completes the276

proof.277

Note that the above result is not true for a near-ring N such that (N,+) is278

not cyclic, which is clear from the following example.279

Example 3.19. Consider the near-ring N = {0, a, b, c} together with two binary280

operations ‘+’ and ‘·’ defined by281

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

and

· 0 a b c
0 0 0 0 0
a a a a a
b b b b b
c c c c c

282

Here, (N,+) is not cyclic and the non-zero proper ideals of the near-ring N are283

I = {0, a}, J = {0, b} and K = {0, c}. Clearly, I, J and K are non-zero maximal284

ideals of N . But deg(I) = deg(J) = deg(K) = 0 = |V (G(N))| − 3.285

Theorem 3.20. If N is an indecomposable near-ring, then G(N) is connected.286

Proof. Let N be an indecomposable near-ring and let I, J be any two distinct287

non-zero proper ideals of N .288

Case I. If I ∩ J ̸= {0}, then G(N) becomes complete and hence, connected.289
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Case II. Suppose that I∩J = 0. We have, I+J ̸= N . Otherwise, if I+J = N ,290

then N becomes decomposable, a contradiction. So, I + J ∈ V (G(N)) and I-291

(I+J)-J is path between I and J . Thus, in any case, there exists a path between292

any two distinct vertices. Hence, G(N) is connected.293

Remark 3.21. Note that the converse of the above result is not true in general.294

For example, if we consider the near-ring Mc(Z30) with pointwise addition and295

composition, where Mc(Z30) denotes the set of all constant mappings from Z30296

to Z30, then G(Mc(Z30)) is connected, but Mc(Z30) is decomposable.297

Corollary 3.22. For a local near-ring N , G(N) is connected. Moreover,298

diam(G(N)) ≤ 2.299

Proof. Let N be a local near-ring. Then N is indecomposable (cf. pp. 400 [13]).300

Thus, G(N) is connected. Hence, by Theorem 3.7, diam(G(N)) ≤ 2.301

Theorem 3.23. Let N be a near-ring. If I is a non-zero proper direct summand302

of N , then G(I) is an induced subgraph of G(N).303

Proof. Let I be a non-zero proper direct summand of N . Then each ideal of I304

is an ideal of N (cf. Theorem 2.12, pp. 46 [13]). So, V (G(I)) ⊆ V (G(N)). By305

Definition 3.1, it is clear that two vertices in G(I) are adjacent if and only if they306

are adjacent in G(N). Hence, G(I) is an induced subgraph of G(N).307

Note that the converse is not true. As example: consider the near-ring308

(Z8,+, ·). Here, G((2̄)) is an induced subgraph of G(Z8). But (2̄) is not a direct309

summand of Z8.310

4. Interplay between intersection graph and essential ideals of a311

near-ring312

Theorem 4.1. An ideal I of a near-ring N is essential if and only if deg(I) =313

n− 1, where |V (G(N)| = n. Hence, the maximum degree of G(N), ∆(G(N)) =314

deg(I).315

Proof. Let I be an essential ideal of a near-ring N with |V (G(N))| = n. Then316

I ∩ J ̸= {0} for any non-trivial ideal J , which implies that I is adjacent with317

all other vertices in G(N). Thus, deg(I) = |V (G(N))| − 1. Conversely, let318

deg(I) = |V (G(N))| − 1. Then I is adjacent with all other vertices in G(N).319

Therefore, I ∩ J ̸= {0}, for any non-trivial ideal J ( ̸= I) of N . Hence, I is an320

essential ideal of N .321

Theorem 4.2. Let N be a near-ring. If N contains an essential ideal, then322

G(N) is connected.323
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Proof. LetN be a near-ring containing an essential ideal I. Since I is an essential324

ideal of N , I ∩ J ̸= {0} for any non-trivial ideal J (̸= I) of N which implies that325

I is adjacent to all other vertices in G(N). Thus, for any two distinct vertices M326

and K, there exists a path M -I-K from M to K. Hence, G(N) is connected.327

Note that the converse of this result is not true. For example: consider328

the near-ring Mc(Z30) with pointwise addition and composition, where Mc(Z30)329

denotes the set of all constant mappings from Z30 to Z30. Here, G(Mc(Z30)) is330

connected (cf. Figure 2), but Mc(Z30) does not contain any essential ideal.331

Theorem 4.3. Let N be a near-ring. If G(N) is complete, then N contains an332

essential ideal.333

Proof. Let G(N) be complete. Suppose that I is a vertex in G(N). Since G(N)334

is complete, deg(I) = |V (G(N))| − 1. Hence, from Theorem 4.1, I is an essential335

ideal of N .336

Note that the converse of the result is not true in general. As example:337

consider the near-ring (Z18,+, ·). Here, (3̄) is an essential ideal. But G(Z18) is338

not complete (cf. Figure 3 [8]).339

Theorem 4.4. Let I be a minimal ideal of a near-ring N which has the DCCI.340

Then G(N) is complete if and only if I is essential.341

Proof. Let G(N) be complete. Then, from the proof of Theorem 4.3, it is clear342

that I is an essential ideal of N . Conversely, let I be a minimal as well as an343

essential ideal of N . Then I is the unique minimal ideal of N . Otherwise, if there344

exists another minimal ideal J (̸= I), I∩J ̸= {0}, which contradicts the fact that345

I is an essential ideal of N . Hence, from Theorem 3.9, G(N) is complete.346

Theorem 4.5. Let N be a near-ring. If I is an essential ideal of N , then the347

eccentricity of I is 1.348

Proof. Let I be an essential ideal of N . Then, for any non-trivial ideal J of N ,349

I ∩ J ̸= {0} which implies that the distance between I and J , d(I, J) = 1. Thus,350

the eccentricity of I, e(I) = max{d(I, J) : J ∈ V (G(N))} = 1.351

Theorem 4.6. Let N be a near-ring. If I is an essential ideal of N , then I is352

central.353

Proof. Let I be an essential ideal of a near-ring N . Then, by Theorem 4.5, the354

eccentricity of I is 1 which implies that the radius of the graph G(N) is 1. Thus,355

e(I) = rad(G(N)). Hence, I is central.356

Theorem 4.7. A near-ring N contains an essential ideal if and only if the dom-357

ination number, γ(G(N)) = 1.358
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Proof. Let us consider that N contains an essential ideal I. Then I is adja-359

cent to all other vertices in G(N). This implies that {I} is a dominating set.360

Therefore, the minimum cardinality of any dominating set of G(N) is 1. Thus,361

the domination number, γ(G(N)) = 1. Conversely, suppose that domination362

number, γ(G(N)) = 1. Then there exists a dominating set {J} in G(N) whence363

any non-trivial ideal K (̸= {0}) of N , K is adjacent to J . This implies that364

J ∩K ̸= {0} for any non-trivial ideal K of N . Therefore, J is an essential ideal365

of N .366

Theorem 4.8. Let N be a near-ring. If N contains an essential ideal, then the367

complement G(N) of G(N) is disconnected.368

Proof. Let N be a near-ring containing an essential ideal I. Then, by Theorem369

4.1, deg(I) = |V (G(N)| − 1 in G(N) which implies that deg(I) = 0 in G(N). So,370

I is an isolated vertex in G(N). Hence G(N) is disconnected.371

Theorem 4.9. Let N be a near-ring and I be the unique essential ideal of N . If372

G(N) contains at least one vertex of degree one and |V (G(N))| ≥ 3, then I is a373

cut vertex. Moreover, I is a separating vertex.374

Proof. Let J be a non-trivial ideal such that deg(J) = 1. Now, |V (G(N))| ≥ 3375

implies that I ̸= J . Theorem 4.2 shows that G(N) is connected. Clearly, I is the376

only vertex adjacent with J . So, J is an isolated vertex in the induced subgraph377

G′(N) with vertex set V (G(N))−{I}. Hence, I is a cut vertex in G(N). Again,378

since every cut vertex is a separating vertex, I is a separating vertex.379

Theorem 4.10. Let N be a near-ring containing a unique essential ideal I. If380

all non-trivial ideals except I are minimal, then G(N) is a star.381

Proof. Let {Ii : i ∈ H}, where H is an index set, be the set of all non-zero382

proper ideals (except I) of N . Since I is an essential ideal, I is adjacent to Ii383

for all i ∈ H. Also, since Ii’s are minimal, Ii ∩ Ij = 0 for all i, j (i ̸= j) implies384

Ii and Ij are not adjacent for all i, j ∈ H. So, the vertex set can be partitioned385

into two subsets X = {I} and Y = {Ij : j ∈ H} such that each edge has one end386

in X and one end in Y . Hence, G(N) is a star graph.387

The following corollary comes directly from the above theorem.388

Corollary 4.11. Let N be a near-ring containing a unique essential ideal I. If389

all non-trivial ideals except I are minimal, then G(N) is a rooted tree with root390

vertex I.391

Theorem 4.12. Let N be a near-ring containing at least one essential ideal.392

If |V (G(N))| = n (≥ 2), then 1 ≤ κ(G(N)) ≤ λ(G(N)) ≤ δ(G(N)) ≤ n − 1,393

where κ(G(N)), λ(G(N)) and δ(G(N)) denote the vertex connectivity, the edge394

connectivity and the minimum degree of G(N) respectively.395
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Proof. Let I an essential ideal of N . Theorem 4.2 shows that G(N) is connected,396

which implies that the minimum cardinality of a vertex cut is 1. Hence, 1 ≤397

κ(G(N)). Now, Theorem 4.1 shows that ∆(G(N)) = deg(I), which implies that398

δ(G(N)) ≤ deg(I) = n− 1. Also, for any graph G, it is well known that κ(G) ≤399

λ(G) ≤ δ(G). Hence, the result is proved.400

Theorem 4.13. Let N be a near-ring containing exactly r (r ≥ 1) essential401

ideals. If |V (G(N))| = n (⪈ r), then r ≤ κ(G(N)) ≤ λ(G(N)) ≤ δ(G(N)) ≤402

n−1, where κ(G(N)), λ(G(N)) and δ(G(N)) denote the vertex connectivity, the403

edge connectivity and the minimum degree of G(N) respectively.404

Proof. Let S = {Ii : i = 1, 2, . . . , r} be the finite set of essential ideals of N .405

Theorem 4.12 shows that the result is true for r = 1. Suppose that r ≥ 2. Let406

S′ ⊆ V (G(N)) such that V (G(N)) − S′ contains at least one essential ideal.407

Then, by Theorem 4.2, it is clear that G(N)−S′ is connected. So, S′ can not be408

a vertex cut. Therefore, any vertex cut V ′ is a superset of S. Thus, the vertex409

connectivity κ(G(N)) ≥ r. Hence, by Theorem 4.12, we have r ≤ κ(G(N)) ≤410

λ(G(N)) ≤ δ(G(N)) ≤ n− 1.411

Theorem 4.14. Let N be a near-ring containing a unique essential ideal I.412

(i) If G(N) does not contain a cycle, then G(N) is a star.413

(ii) If G(N) contains a cycle, then I is contained in a 3-cycle.414

Proof. (i) Suppose that G(N) does not contain a cycle. Then any two distinct415

vertices different from I are not adjacent. Since I is an essential ideal of N , I is416

adjacent with all other vertices in G(N). Thus, G(N) is a star.417

(ii) Let us consider that G(N) contains a cycle Cn = I1-I2 − · · · − In-I1418

(n ≥ 3). First consider that I is in Cn. If n = 3, then we are done. Suppose419

n ≥ 4. Let I = Ik (k /∈ {1, n}). Then I1-Ik-In-I1 forms a 3-cycle. If I = I1,420

then I1-I2-I3-I1 forms a 3-cycle. If I = In, then In-I1-I2-In forms a 3-cycle. Now,421

suppose that I is not in Cn. Since I is adjacent with I1 and I2, I-I1-I2-I forms422

a 3-cycle. Hence, the result is proved.423

Theorem 4.15. Let N be a near-ring containing at least two essential ideals. If424

|V (G(N))| ≥ 3, then G(N) contains a 3-cycle.425

Proof. Let I, J be two essential ideals and K (̸= I, J) be any non-trivial ideal426

of N . Clearly, I and J are adjacent and K is adjacent with I, J . Thus, I-J-K-I427

forms a 3-cycle.428

The following corollary comes directly from the above theorem.429

Corollary 4.16. Let N be a near-ring containing at least two essential ideals. If430

|V (G(N))| ≥ 3, then431
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(i) G(N) cannot be a tree,432

(ii) the girth of G(N) is 3, and433

(iii) G(N) is never bipartite.434

Note that the converse of Corollary 4.16(iii) is not true in general. For ex-435

ample: consider the near-ring Mc(Z12) with pointwise addition and composition,436

where Mc(Z12) denotes the set of all constant mappings from Z12 to Z12. Here,437

G(Z12) is not bipartite (cf. Figure 2), but Mc(Z12) contains exactly one essential438

ideal.439

Theorem 4.17. Let N be a near-ring containing exactly three essential ideals.440

If G(N) is planar, then deg(I) = 3, for any non-essential ideal I of N .441

Proof. Let J,K,L be three essential ideals and I be any non-trivial non-essential442

ideal of N . Clearly, deg(I) ≥ 3. If possible, let deg(I) ⪈ 3. Then there exists443

at least one non-trivial ideal P ( ̸= I, J,K,L) of N such that I is adjacent to P .444

Since J,K,L are essential ideals, they are adjacent to P also. Thus, the graph445

induced by the following set of vertices {I, J,K,L, P} is isomorphic to K5, which446

contradicts the fact that G(N) is planar. Hence, deg(I) = 3.447

Example 4.18. If N is a near-ring containing no essential ideal, then the above448

result in Theorem 4.17 is not true in general. Consider the near-ring Mc(Z30),449

the set of all constant mappings from Z30 to Z30, with pointwise addition and450

composition. Here, Mc(Z30) contains no essential ideal and G(Mc(Z30)) is planar451

(cf. Figure 2). But there is no non-essential ideal of degree 3.452

Example 4.19. If N is a near-ring containing exactly one essential ideal, then453

the above result in Theorem 4.17 is not true in general. Because, the near-ring454

Mc(Z12) contains exactly one essential ideal and G(Mc(Z12)) is planar (cf. Figure455

2.), but there is no non-essential ideal of degree 3 in G(Mc(Z12)).456

Example 4.20. Let N be a near-ring containing exactly two essential ideals.457

If G(N) is non-planar, then the above result in Theorem 4.17 is not true in458

general. Because, the near-ring Mc(Z24) contains exactly two essential ideals459

and G(Mc(Z24)) is non-planar, but there is no non-essential ideal of degree 3 in460

G(Mc(Z24)).461

Example 4.21. Let N be a near-ring containing exactly three essential ideals.462

If G(N) is non-planar, then the above result in Theorem 4.17 is not true in463

general. Because, the near-ring Mc(Z36) contains exactly three essential ideals464

and G(Mc(Z36)) is non-planar, but there is no ideal of degree 3 in G(Mc(Z36)).465

Theorem 4.22. Let N be a near-ring containing exactly three essential ideals.466

If G(N) is planar and |V (G(N))| ≥ 4, then the chromatic number of G(N) is 4.467
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Proof. Let J,K,L be three essential ideals and {Ii : i ∈ H}, where H is an index468

set, be the set of non-zero proper non-essential ideals of N . Clearly, J,K,L are469

adjacent to each other. This shows that we need 3 different colours to colour470

J,K,L. Moreover, Theorem 4.17 shows that each Ii is adjacent to J,K,L and471

Ii, Ij are not adjacent for all i, j (i ̸= j). So, all Ii’s can be coloured by only one472

colour different from the colours of J,K,L. Thus, the chromatic number of G(N)473

is 4.474

Theorem 4.23. Let N be a near-ring containing exactly three essential ideals. If475

G(N) is planar and |V (G(N))| = n+3 (n ≥ 3), then G(N) contains no asteroidal476

triple.477

Proof. Suppose that {Ii : i = 1, 2, . . . , n} is the set of all non-zero proper non-478

essential ideals of N . Then V ′ = {I1, I2, . . . , In} is the largest independent vertex479

subset of V (G(N)). We take a vertex subset V̄ = {u, v, w} of V ′. Note that480

any two among these three vertices are connected by an essential ideal which is481

adjacent with the third one. Thus, any vertex subset V̄ of V ′ is not an asteroidal482

triple. Hence, the theorem is proved.483

Theorem 4.24. Let N be a near-ring containing exactly three essential ideals.484

If G(N) is planar and |V (G(N))| = n+3 (n ∈ N), then the independence number485

α(G(N)) = n.486

Proof. Let I, J,K be three essential ideals and {Ii : i = 1, 2, . . . , n} be the set of487

non-zero proper non-essential ideals of N . Since G(N) is planar, Theorem 4.17488

shows that deg(Ii) = 3 for all i = 1, 2, . . . , n. So, each Ii is adjacent with I, J,K489

only. Thus, {Ii : i = 1, 2, . . . , n} is the largest independent vertex set in G(N).490

Hence, the independence number α(G) = |{Ii : i = 1, 2, . . . , n}| = n.491

Theorem 4.25. Let N be a near-ring containing exactly three essential ideals.492

If G(N) is planar and |V (G(N))| = n + 3 (n ≥ 3), then the geodetic number493

g(G(N)) = n.494

Proof. Let I, J,K be three essential ideals and {Ii : i = 1, 2, . . . , n} be the set495

non-trivial non-essential ideals of N , where n ≥ 3. We are going to show that496

S = {Ii : i = 1, 2, . . . , n} is a geodetic set of G(N). Since G(N) is planar,497

Theorem 4.17 shows that deg(Ii) = 3 i.e., Ii is adjacent with I, J,K only, for498

all i = 1, 2, . . . , n. We take the vertices I1, I2, I3 ∈ S. Clearly, the paths I1-I-499

I2, I1-J-I3, I2-K-I3 are I1-I2, I1-I2, I2-I3 geodesics (respectively). This implies500

that I, J,K ∈ I[S]. So, I[S] = V (G) i.e., S is a geodetic set of G. To prove the501

theorem it is enough to show that S is a geodetic set with minimum cardinality.502

If possible, let there exist S′ ⊊ S such that S′ is a geodetic set of G(N). Without503

loss of generality, suppose that S′ = S − {Ir} for some r ∈ {1, 2, . . . , n}. Since504
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each Ii is adjacent with I, J,K only, there is no shortest path from Ii to Ij505

(i, j ̸= r) through Ir. This implies that Ir does not belong to I[S′]. Therefore,506

I[S′] ̸= V (G(N)), which contradicts the fact that S′ is a geodetic set of G(N).507

Hence, S is a geodetic set of G(N) with minimum cardinality. Thus, the geodetic508

number g(G(N)) = |S| = n.509

Theorem 4.26. Let N be a near-ring containing exactly three essential ideals.510

If G(N) is planar and |V (G(N))| = n+3 (n ≥ 3), then the hull number h(G(N))511

is 2.512

Proof. Let I, J,K be three essential ideals and {Ii : i = 1, 2, . . . , n} be the set513

non-trivial non-essential ideals of N , where n ≥ 3. Theorem 4.17 shows that514

each vertex Ii of V̄ = {I1, I2, . . . , In} is adjacent with I, J,K only. Clearly, the515

convex hull [v] of any single vertex v is {v}. Now, we take the vertex subset516

S = {Ii, Ij} for some i, j ∈ {1, 2, . . . , n}. We are to show that S is a hull set517

with minimum cardinality. Now, for any vertex subset S′ of V (G(N)) such that518

S ⊆ S′ ⊆ V̄ , I[S′] ̸= S′ as at least one of I, J , or K belongs to I[V ′], where519

V ′ ⊆ V̄ such that |V ′| = k (2 ≤ k ≤ n). Now, V̄ ∪ {I} ∪ {J} ⊆ I[V̄ ∪ {I}]520

and I[V̄ ∪ {I} ∪ {J}] = V (G(N)). Therefore, V (G(N)) is the smallest convex521

set containing S. So, S is a hull set with minimum cardinality. Hence, the hull522

number h(G(N)) = |S| = 2.523

Theorem 4.27. Let N be a near-ring containing exactly three essential ideals.524

If G(N) is planar and |V (G(N))| = n+ 3 (n ≥ 2), then G(N) is chordal.525

Proof. Let I, J,K be three essential ideals and {Ii : i = 1, 2, . . . , n} be the finite526

set of non-trivial non-essential ideals of N , where n ≥ 1. Theorem 4.17 shows527

that no two vertices of {Ii : i = 1, 2, . . . , n} are adjacent. So, any n−cycles528

Cn (n ≥ 4) contains at least two vertices of {I, J,K} which are not adjacent529

in Cn but adjacent in G(N) because I, J,K are adjacent with each other. This530

implies that every n-cycle (n ≥ 4) possesses a chord. Hence, G(N) is chordal.531

Theorem 4.28. Let N be a near-ring containing exactly three essential ideals.532

If G(N) is planar and |V (G(N))| = n+3 (n ≥ 2), then G(N) is never Eulerian.533

Proof. Let G(N) be planar and |V (G(N))| = n + 3 (n ≥ 2). Theorem 4.17534

shows that deg(I) = 3 for any non-essential ideal I. Clearly, G(N) is connected535

and degree of each vertex is not even. Hence, G(N) is not Eulerian (cf. Theorem536

3.1.1 [12]).537

Theorem 4.29. Let N be a near-ring containing exactly three essential ideals.538

If G(N) is planar and |V (G(N))| = n+ 3, then the vertex connectivity κ(G(N))539

and the edge connectivity λ(G(N)) are 3. Moreover, the strong vertex connectivity540

K(G(N)) = κ(G(N)) = 3.541
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Proof. Let S = {I, J,K} be the set of essential ideals and {Ii : i = 1, 2, . . . , n}542

be the finite set of non-trivial non-essential ideals of N , where n ≥ 2. Since G(N)543

is planar, Theorem 4.17 shows that deg(Ii) = 3 for all i = 1, 2, . . . , n. So, the544

minimum degree δ(G(N)) = 3. Then, by Theorem 4.13, we have 3 ≤ κ(G(N)) ≤545

λ(G(N)) ≤ 3 which implies that κ(G(N)) = λ(G(N)) = 3. Moreover, since546

G(N)−S is a null set i.e., G(N)−S is totally disconnected, S is a strong vertex547

cut. Clearly, S is a minimum strong vertex cut. So, the strong vertex connectivity548

K(G(N) is 3. Hence, the result is proved.549

Theorem 4.30. Let N be a near-ring containing at least four essential ideals.550

If |V (G(N))| ≥ 5, then G(N) is non-planar.551

Proof. Let I1, I2, I3, I4 be essential ideals and J be an non-trivial ideal of N552

different from Ii (i = 1, 2, 3, 4). Then the induced subgraph of G(N) with vertex553

set {I1, I2, I3, I4, J} is K5. Hence, G(N) is non-planar.554

Note that the converse of the above theorem is not true in general. For ex-555

ample: consider the near-ring Mc(Z56) with pointwise addition and composition,556

where Mc(Z56) denotes the set of all constant mappings from Z56 to Z56. Here,557

G(Mc(Z56)) is non-planar, but Mc(Z56) contains exactly two essential ideals.558

5. Concluding remarks559

In this paper, we have studied several graphical properties of the intersection560

graph of ideals of a near-ring N in terms of direct summand and essential ideal of561

N . Based on our work done here, we mention below some possible future scope562

for further study.563

1. One can determine the chromatic number, the independence number, the564

geodetic number and the hull number of a non-planar intersection graph.565

2. One can study the graphical properties of the intersection graph of ideals of566

the direct product of near-rings.567

3. It will be nice if one can exhibit a near-ring containing a unique essential568

ideal I such that I is a cut vertex as well as a separating vertex but the569

corresponding intersection graph has no vertex of degree one to counter the570

converse part of Theorem 4.9.571

4. M(Zn) denotes the set of all mappings from Zn to Zn and Mc(Zn) denotes572

the set of all constant mappings from Zn to Zn. Here, we observed that the573

intersection graph of Mc(Zn) and the intersection graph of Zn are isomorphic574

(cf. Figure 2 and Figure 3 [8]). One can establish the relation between575

the intersection graphs corresponding to Zn and M(Zn) and hence one can576

generalize that result for an arbitrary additively written group Γ.577
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