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Abstract10

In this paper, we have constructed a color-induced signed graph of an11

algebraic graph, called the L(2, 1)-order sum signed graph of a group. Based12

on the nature of the group, the L(2, 1)-span of the order sum graph is ob-13

tained and the structural aspects of thus obtained L(2, 1)-order sum signed14

graph such as planarity, chordality, etc. have been investigated. We have15

also defined an automorphism which turns out to be the only possible au-16

tomorphism on the graph and have investigated the structural aspects of17

the graph such as edge transitivity and vertex transitivity. Further, a line-18

signed graph of L(2, 1)-order sum signed graph, which is a line graph with19

a signing protocol defined for the edges, has also been introduced. We have20

also explored the regularity of the line-signed graph.21
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1. Introduction25

The notion of the signed graph was introduced in [8] to model a social psycho-26

logical problem. Given a room with a set of people, where the vertices of the27

graph represent people and if two persons share a healthy relation then the edge28

is positive and if the two persons are enemies then they share a negative edge.29

An undirected graph with signed edges is called a signed graph, denoted by S.30

We can obtain a signed graph from every undirected graph by defining a function31

called the signature function which does the job of assigning signs to the edges32
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of the graph. There are structural properties of signed graphs that are of signifi-33

cance, some of them are; balance, a signed graph is said to be balanced if every34

cycle in the graph has an even number of negative edges; clusterability, a signed35

graph is said to be k-clusterable if we can partition its vertex set into k subsets36

such that every positive edge has both its end vertices in the same cluster and37

every negative edge has both its end vertices in two different clusters. A graph38

is said to be marked graph if its vertices are assigned signs. A signed graph that39

is also a marked graph is said to be sign compatible if every negative edge has40

both its end vertices marked as negative and no positive edge has both its end41

vertices marked as negative. The switching of a signed graph may be defined as42

a mapping σµ(e) : E(Γ) → {+,−}, defined by σµ(uv) = µ(u)σ(e)µ(v), for all43

uv ∈ E(Γ), where µ is the marking and σ is the signature function on S. For44

detailed content on the signed graph concepts, see [15].45

Graph coloring originated from the well-known four-color problem (see [6]).46

Due to its wide variety of applications, graph coloring has emerged as a separate47

field in graph theory, called the chromatic graph theory.48

Chromatic graph theory is itself a vast field in which we come across numerous49

types of coloring a graph. The proper coloring of a graph is assigning colors to the50

vertices in such a way that no two adjacent vertices receive the same color. One51

example of the application of proper vertex coloring is the scheduling problem.52

The channel assignment problem is another such application of graph coloring.53

For more details on graph colorings, see [6].54

The types of colorings, mostly used in channel assignment problems are55

distance-based colorings. In our study, we are interested in one such distance-56

based coloring, called the L(h, k)-coloring. An L(h, k)-coloring, for h, k ∈ Z+ ∪57

{0}, is a vertex coloring such that the adjacent vertices should have a color differ-58

ence of at least h and the vertices at a distance 2 should have a color difference of59

at least k. In our paper, we restrict ourselves to L(2, 1)-coloring which is a special60

case of L(h, k)-coloring. A graph Γ is said to admit an L(2, 1)-coloring if the ad-61

jacent vertices receive colors in such a way that their color difference is at least 262

and the vertices at distance 2 receive colors in a way that their color difference is63

at least 1. It is interesting to note that L(2, 1)-coloring admits proper coloring. A64

single graph can be colored in any number of ways to obtain an L(2, 1)-coloring,65

but we are interested in an L(2, 1)-coloring of a graph that uses minimum colors66

and thus the term L(2, 1)-span, denoted by λ(Γ), was introduced. Let c be one67

of the L(2, 1)-colorings of the graph Γ. Then, the c-span, denoted by λ(c) of the68

graph Γ is the difference between the maximum color and minimum color used in69

coloring the Γ. The L(2, 1)-span of the graph Γ is the minimum value obtained70

out of all c-spans of Γ.71
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2. Results and discussions72

Recall that a clique of a graph Γ is an induced subgraph of Γ which is a complete73

graph. Also, a vertex of a graph Γ is a simplicial vertex if its neighbours induce74

a clique.75

Definition 1. A graph is called a (k + 1)-clique graph if each simplicial vertex76

forms (k + 1)-clique with the same set of vertices. It is a complete split graph.77

2.1. L(2,1)-span of order sum graph of finite groups78

In this paper, the group is denoted by G, o(G) is the order of the group.79

Definition 2 [2]. An order sum graph Γos(G) of a finite group G is a graph with80

V (Γos(G)) = G and u, v ∈ V (Γos(G)) are adjacent if o(u) + o(v) > o(G).81

A group is cyclic if it has at least one element whose order is equal to the82

order of the group. If the group is not cyclic then every element in the group has83

oder strictly less than n, the order of the group . Thus, we have the following84

proposition.85

Proposition 3 [2]. The order sum graph Γos(G) of order n is a null graph if and86

only if G is not a cyclic group.87

Throughout the paper, the color set used is S = {0, 1, 2, . . .}. Using Propo-88

sition 3, we get the L-span of the order sum graph of an acyclic group as follows.89

Proposition 4. The L-span of an order sum graph of an acyclic group is 0.90

Proof. By Proposition 3, we have the order sum graph obtained to be a null91

graph for an acyclic group. Thus, all the vertices can be assigned the same color,92

the minimum color from the set S and hence L-span of such graphs is 0.93

In a group of prime order except the identity element, every other element94

acts as a generator of the group. This leads to the following observation.95

Proposition 5 [2]. The order sum graph associated with a group of prime order96

p is complete.97

For a complete graph, the L-span is known. Hence, the L-span of the order98

sum graph of a group of prime order leads to the following proposition.99

Proposition 6. The L-span of the order sum graph of the prime order group is100

2(n− 1).101
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Proof. By Proposition 5, the prime order group is a cyclic group with all its102

elements being generators except the identity. Thus, Γos(G) induces a complete103

graph as an order sum graph. Hence, as we know for any complete graph of order104

n, the L-span is 2(n− 1). The result follows.105

A cyclic group will have at least one such element whose order is equal to106

the order of the group. This observation leads to the following proposition.107

Proposition 7 [2]. If G is a cyclic group of finite order then diam(Γos(G)) ≤ 2.108

The L-span of an order sum graph of a finite cyclic group with k generators109

is obtained and discussed in the following proposition.110

Proposition 8. The L-span of an order sum graph of a finite cyclic group of111

order n is n+ k − 1, where k is the number of generators in the group.112

Proof. By Proposition 7, for an order sum graph of a finite cyclic group, the113

diameter is less than or equal to 2. Suppose the diameter is 1, then the graph is114

complete, and hence the L-span is 2(n−1). If the diameter is 2, then consider the115

group with k generators, this implies that the corresponding L(2, 1)-order sum116

signed graph will be a (k+1)-clique graph with say, v1, v2 . . . vk vertices adjacent117

to all the vertices. As it is known that L-span ofKn is 2n−2. Thus, ourKk+1 will118

be colored with the span being 2k − 2. The remaining simplicial vertices will be119

colored with consecutive colors starting from 2k and so on. The remaining n− k120

vertices are non-generators and exactly n−k vertices are mutually non-adjacent,121

hence the L-span is 2k + (n− k − 1) = n+ k − 1.122

3. L(2,1)-order sum signed graph of a finite cyclic group123

Definition 9 [3]. An induced signed graph of a graph is a signed graph ob-124

tained from an ordinary graph Γ whose signature function is defined by σ(uv) =125

(−1)|ϕ(u)−ϕ(v)|, where ϕ is a mapping defined by ϕ : V (Γ) −→ Z, set of weights126

(or labels), associated with each vertex in the signed graph.127

Definition 10 [4]. Let Γ be a simple graph having an L(2, 1)-coloring, c : V (Γ) →128

N∪{0}, with λ(c) = λ(Γ). Then, the L(2, 1)-color induced signed graph or L(2, 1)-129

signed graph denoted by σ((Γ)) of Γ is the signed graph, induced by Γ, whose130

signing function σ is given by σ(uv) = (−1)|c(u)−c(v)| for all uv ∈ E(Γ).131

Let G = ({v1, v2, v3, v4, v5, v6, v7, v8}, ∗) be a finite cyclic group of order 8132

consisting of 4 generators. Let vi, i = 1 to 4 be the generator of the group.133

Figure 1 is an example of an L(2, 1)-order sum signed graph of G.134

Note that we are using dashed lines to represent negative edges and thick135

lines to represent positive edges throughout the paper.136
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Figure 1. L(2, 1)-order sum signed graph of G.

The L(2, 1)-order sum signed graph denoted by σ(Γos(G)) is an L(2, 1)-color137

induced signed graph of an order sum graph Γos(G) of a finite group G. We will138

now see an interesting result on the number of positive and negative edges of an139

L(2, 1)-order sum signed graph of a finite cyclic group.140

Theorem 11. Let G be a cyclic group with k generators and Γos(G) be its order141

sum graph. Then, Γos(G) has142

(i) k(k−1)
2 + pk positive edges if p simplicial vertices are colored with even num-143

bers.144

(ii) qk negative edges if q simplicial vertices are colored with odd numbers.145

Proof. Consider the k generators v1, v2, . . . , vk, in the finite cyclic group that146

are the vertices in the L(2, 1)-order sum signed graph. These vertices induce147

a complete graph of order k; thus one may see that according to our signing148

protocol, all the edges in the clique receive a positive sign. Thus, k(k−1)
2 positive149

edges within the clique induced by generators. Now, suppose p simplicial vertices150

are colored with even numbers, then the edges between the vertices v1, v2, . . . , vk151
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and p simplicial vertices receive a positive sign. Thus, we have k(k−1)
2 +pk positive152

edges. Now, suppose q simplicial vertices are colored with odd numbers, then153

clearly the edges between v1, v2, . . . , vk, and each of q simplicial vertices receive154

a negative sign. Thus, we have qk negative edges in the graph.155

The idea of clusterability helps us in partitioning the vertex set of a signed156

graph. The k-clusterability of a signed graph implies that we can partition its157

vertex set into k partitions or clusters. The theorem below gives us a result on158

the clusterability of an L(2, 1)-order sum signed graph of a finite cyclic group.159

Theorem 12. The L(2, 1)-order sum signed graph of a finite cyclic group is at160

most (q + 1)-clusterable, where q is the number of simplicial vertices that are161

colored with odd numbers.162

Proof. The vertices in the clique share positively signed edges mutually. Further,163

the simplicial vertices that are assigned colors with even numbers, let them be164

p in number, also share positively signed edges with the vertices in the clique.165

Thus, all the vertices in the clique along with the p simplicial vertices can be166

put into one cluster. The remaining are the simplicial vertices that are colored167

with odd numbers, let them be q in number, implying that they share negatively168

signed edges with the vertices belonging to the clique. We can put each of these169

q vertices in one single cluster as they form an independent set or put each of q170

simplicial vertices into q different cluster, each cluster consisting of exactly one171

vertex. This is the maximum possible way of forming clusters of the vertices of172

our graph. Hence, the graph is at most (q + 1)-clusterable.173

A graph is said to be planar if we can draw the graph in a way that no two174

edges intersect each other. In the following definitions, we discuss about planarity175

of a signed graph restricting ourselves to the signs of the edges.176

Definition 13. A signed graph S is said to be pseudo-planar if no two edges of177

the same parity cross each other.178

There can be signed graphs where the edges crossing each other can be pos-179

itive edges. Thus, we have the following definition.180

Definition 14. A signed graph S is said to be positive pseudo-planar if no two181

positive edges cross each other.182

There can be signed graphs where the edges crossing each other can be neg-183

ative edges. Thus, we have the following definition.184

Definition 15. A signed graph S is said to be negative pseudo-planar if no two185

negative edges cross each other.186
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The above definitions leads to the following results.187

Theorem 16. An L(2, 1)-order sum signed graph of a finite cyclic group with188

exactly two generators is pseudo-planar.189

Proof. The L(2, 1)-order sum signed graph of a group with two generators is190

a theta graph θt,2, where θt,2 is a graph such that two adjacent vertices have t191

internally disjoint paths of length 2. The graph has an embedding such that no192

two edges of any parity cross each other. Hence, the graph is pseudo-planar.193

Theorem 17. An L(2, 1)-order sum signed graph of a group with 3 generators194

is pseudo-planar if its independent set has not more than two vertices belonging195

to the same parity of colors.196

Proof. Referring to the proof of Proposition 8, the L(2, 1)-order sum signed197

graph of a group containing 3 generators is a 4-clique graph. The complete graph198

K4 is a planar graph. But when considering more than two vertices belonging199

to the same parity of colors, we get an embedding of a complete bipartite graph200

K3,3, giving rise to more than two chords of the same sign conflicting with each201

other. Hence, the graph in this case is not pseudo-planar.202

Theorem 18. If the number of generators k of a finite cyclic group is at least 4,203

then the corresponding L(2, 1)-order sum signed graph is not pseudo-planar.204

Proof. If the number of generators is greater than or equal to 4, then we obtain205

a d-clique graph with d ≥ 5. Thus, the embedding will have a complete graph206

K5 induced subgraph in it having more than two chords of the same sign crossing207

each other. Hence, the graph is not pseudo-planar.208

Definition 19 [13]. Let Ck; k ≥ 4, be a cycle in a graph Γ. An edge in Γ which209

joins two non-consecutive vertices in Γ is called a chord. A graph Γ is said to be210

a chordal graph if every cycle Ck; k ≥ 4, in Γ has a chord.211

We have extended the idea of the chordality of a graph to a signed graph.212

Restricting the cycle to a positive homogeneous cycle in the signed graph we213

define positive chordality as follows214

Definition 20. A signed graph is said to be positive chordal if it contains a215

positive homogeneous cycle of length greater than or equal to 4 with positive216

chords.217

Further, restricting the cycle to a negative homogeneous cycle in the signed218

graph we define negative chordality as follows.219

Definition 21. A signed graph is said to be negative chordal if it contains a220

negative homogeneous cycle of length greater than or equal to 4 with negative221

chords.222
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Using Definition 20, we have the following theorem on the positive chordality223

of L(2, 1)-order sum signed graph.224

Theorem 22. Every L(2, 1)-order sum signed graph of a finite cyclic group is225

positive chordal.226

Proof. The L(2, 1)-order sum signed graph is a triangulated graph when the227

generators in the corresponding group are greater than or equal to 2. The smallest228

color used will be 0 and to obtain the minimum span we have considered coloring229

the non-simplicial vertices first. Thus, as the set of non-simplicial vertices forms230

a clique and by Definition 10 all of them will be assigned even colors. The edges231

between all the nonsimplicial vertices will be positive. Similarly, any simplicial232

vertex colored with an even number will have positive edges with their neighbours,233

thus making the graph positive chordal.234

Using Definition 21 we have the following result on the negative chordality235

of L(2, 1)-order sum signed graph.236

Theorem 23. An L(2, 1)-order sum signed graph of a finite cyclic group is neg-237

ative chordal.238

Proof. We know that every L(2, 1)-order sum signed graph is a triangulated239

graph. Thus, any simplicial vertex that is colored with an odd number forms a240

triangle, the neighbours of whose vertices are already colored with even numbers.241

Hence, we never get a negative homogeneous induced C3 as two negative edges242

are in each C3 contributed by a simplicial vertex that is colored with an odd243

number. Thus, the graph is negative chordal.244

Having made some structural observations in the previous results, we will245

now define an automorphism of an L(2, 1)-order sum signed graph to itself as246

follows.247

Theorem 24. The mapping γ : V (σ(Γos(G)) −→ V (σ(Γos(G)), where σ(Γos(G))248

denotes the L(2, 1)-order sum signed graph of a finite cyclic group G with k gen-249

erators and 2 ≤ p ≤ q ≤ n− k, defined by250

(1)

γ(vi) =


vj whenever vi, vj ∈ V (Qk),

vk if c(vi) and c(vk) are of odd parity, whenever vi, vk /∈ V (Qk),

vl if c(vi) and c(vl) are of even parity, whenever vi, vl /∈ V (Qk).

where, c(vi) denotes the color received by vertex vi in an L(2, 1)-coloring c of the251

order sum graph and Qk is the clique induced by the set of k generators in the252

group. Then, the mapping γ is an automorphism.253
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Proof. Consider an arbitrary vertex vi ∈ V (σ(Γos(G)). If vi ∈ V (Qk), then254

vi will have both positive and negative edges incident on it. Hence, if we map255

vi to any vertex that is not in Qk, then some simplicial vertex will be mapped256

to a vertex in Qk, which violates the nature of the edges incident on it. Thus,257

if vi ∈ V (Qk), then it can be mapped to any vertex belonging to Qk only. If258

vi /∈ Qk, then vi is a simplicial vertex. That is, all edges incident to it are all259

positive or all negative. Thus, if c(vi) is even, then vi can only be mapped to a260

simplicial vertex that is colored with an even number. Similarly, if c(vi) is odd,261

then, vi can be mapped to a simplicial vertex that is colored with an odd number.262

Thus, γ is an automorphism.263

It is interesting to observe that γ is the only possible automorphism on264

σ(Γos(G)) and thus we can list out all possible ways of mapping the vertices,265

which is mentioned in the following corollary.266

Corollary 25. There are k!p!q! permutations possible in the automorphism γ,267

where k denotes the number of generators in the group G, p and q denote the268

number of simplicial vertices in the graph σ(Γos(G)) that have only positive edges269

and negative edges incident to them respectively.270

Proof. By Theorem 24, γ is an automorphism, which implies that γ is one-271

one and onto function. Given a set of k generators, they can be mapped in k!272

ways amongst themselves. Similarly, p simplicial vertices can be mapped in p!273

ways and q simplicial vertices can be mapped in q! ways, amongst themselves.274

Thus. for each permutation out of k! possible permutations, we have p! possible275

combinations and thus k!p! permutations possible. And for each permutation out276

of k!p! permutations, there are q! combinations possible. Thus, we have k!p!q!277

permutations possible in the mapping defined by γ.278

The idea of vertex transitivity and edge transitivity can be extended to signed279

graphs, but the only difference comes with signs of the edges being preserved when280

investigating the mapping. This leads us to the following observations.281

Theorem 26. An L(2, 1)-order sum signed graph σ(Γos(G)) of a finite cyclic282

group G with k generators and 2 ≤ p ≤ q ≤ n− k, is not vertex transitive.283

Proof. The vertices contributing positive edges are the ones that belong to the284

clique Qk or are the simplicial vertices that are colored with even numbers. Now,285

it is easy to observe that the edges incident on each vertex that is not part of286

the clique Qk, are all positive or are all negative. Consider a vertex in the clique287

Qk, say vi, vi has both positively signed and negatively signed edges incident on288

it. Thus, if we map any vertex in Qk to any simplicial vertex that has positively289

signed edges incident on it, we can see that the negative edges that were adjacent290

to edges on vi will now be adjacent to the positively signed edges of a simplicial291
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vertex, thus violating the structure of our graph. Hence, we can only map any292

vertex in Qk to a vertex in Qk. Hence, the L(2, 1)-order sum signed graph is not293

vertex-transitive.294

Theorem 27. An L(2, 1)-order sum signed graph σ(Γos(G)) of a finite cyclic295

group with k generators and 2 ≤ p ≤ q ≤ n− k, is not edge transitive.296

Proof. Consider the positive edges in the graph. Let us assume that any two297

positive edges are mapped to each other. Let e1 = v1v2 be a positive edge such298

that v1, v2 ∈ V (Qk) and e2 = v1vk+1 be another positive edge where vk+1 /∈299

V (Qk). Let π be a permutation that maps e1 to e2; hence the possibility is that300

either v1 is mapped to vk+1 and v2 is mapped to v1 or v1 mapped to v1 and v2301

mapped to vk+1. If v1 is mapped to vk + 1 we see that v1 has both negative and302

positive edges incident to it, whereas, vk+1 has only positive edges incident to it303

and hence we cannot map v1 to vk +1, the same argument holds if v2 is mapped304

to vk + 1. Thus, the L(2, 1)-order sum signed graph is not edge transitive.305

4. The line-signed graph of L(2,1)-order sum signed graph of a306

finite group307

Definition 28 section. For a signed graph S = (Γ, σ(Γ)), L(S) is the line-signed308

graph of S with V (L(S)) = E(S) and for any u, v ∈ V (L(S)), uv ∈ E(L(S)) if309

and only if u and v share a common vertex in S and σ(uv) = σ(u)σ(v).310

Figure 2 is an example of a line-signed graph of the graph in Figure 1.311

In a signed graph, d−(u) refers to the total number of negative edges incident312

to u ∈ V (S), and d+(u) refers to the total number of positive edges incident to313

u ∈ V (S). The following proposition gives the degree of a vertex in the line-314

signed graph. The term tri-regular in our context implies that (d−(u), d+(u))315

takes three fixed pairs of values.316

Proposition 29. The line-signed graph L(S) of an L(2, 1)-order sum signed317

graph of a finite cyclic group with k generators and 2 ≤ p ≤ q ≤ n − k, is a318

tri-regular signed graph.319

Proof. By a known theorem, we have that for an edge uv ∈ E(Γ) of a graph Γ,320

its degree d(uv) = d(u)+d(v)−2, where u, v ∈ V (Γ). Since in the line graph, this321

edge acts as a vertex, the equation should hold. Consider e ∈ V (L(S)) such that322

e = uv in σ(Γos(G)). For u, v ∈ V (σ(Γos(G))), let V (Qk) denote the vertex set323

of the clique Qk, V (Vp) denote the set of p simplicial vertices and V (Vq) denote324

the set of q simplicial vertices. We consider the following cases.325
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Figure 2. Line-signed graph of an L(2, 1)-order sum signed graph from Figure 1.

Case 1. If u, v ∈ V (Qk), then d
+(e) = d+(u) + d+(v)− 2 = k − 1 + p+ k −326

1 + p − 2 = 2k + 2p − 4. Futher, d−(e) = d−(u) + d−(v) = q + q = 2q. Thus,327

(d+(e), d−(e)) = (2k + 2p− 4, 2q).328

Case 2. If u ∈ V (Vp), v ∈ V (Qk), (or u ∈ V (Qk) and v ∈ V (Vp)) then329

d+(e) = d+(u) + d+(v) − 2 = k − 1 + p + k − 2 = 2k + p − 3. Further, d−(e) =330

d−(u) + d−(v) = q + 0 = q. Thus, (d+(e), d−(e)) = (2k + p− 3, q).331

Case 3. If u ∈ V (Vq), v ∈ V (Qk) (or u ∈ V (Qk) and v ∈ V (Vq)) then332

d+(e) = d−(u)+d−(v)−2 = k+q−2 = k+q−2. Further,d−(e) = d+(u)+d+(v) =333

0 + k − 1 + p = k − 1 + p. Thus, (d+(e), d−(e)) = (k + q − 2, k + p− 1).334

Therefore, the only values that the pair (d+(e), d−(e)) can take is (2k+2p−335

4, 2q), (2k + p − 3, q) and (k + q − 2, k + p − 1). Thus, the line-signed graph of336

L(2, 1)-order sum signed graph is tri-regular.337



12 D. Bankapur and S. Naduvath

The motivation for introducing the concept of edge code is taken from the338

color code concept from the color connections of a graph (see [5]). As seen in339

Proposition 29, the number of negative and positive edges differ for different sets340

of vertices. Thus, edge code helps one in determining whether or not the vertex341

belongs to the clique Qk.342

Definition 30. For a signed graph S = (Γ, σ) with V (S) being its vertex set343

and E(S) being its edge set, we define an edge code of a vertex vi ∈ V (S) as344

a tuple (ei, ei+1, . . . , ei+k, ei+k+1, ei+k+2, . . . , er) such that ej ∈ E(S), j ∈ {i, i +345

1, . . . , i + k} is a positive edge incident to the vertex vi and es ∈ E(S), s ∈346

{i+ k + 1, i+ k + 2, . . . , r} is a negative edge incident to the vertex vi.347

We know that in the line-signed graph V (L(S)) = E(S), which implies that348

ej , es that are edges in σ(Γos(G)) are the vertices in its line-signed graph L(S).349

Fixing our i to a fixed vi, where vi ∈ V (Qk) ⊆ V (σ(Γos(G))), we define a350

homomorphism from L(2, 1)-order sum signed graph of a finite cyclic group with351

k generators and 2 ≤ p ≤ q ≤ n− k, to its line-signed graph as follows.352

Theorem 31. The mapping ψ : V (σ(Γos(G))) −→ V (L(S)) defined by

ψ(vi) =

{
ej , if vi ∈ V (Qk) ∪ V (Vp)

es, if vi ∈ V (Vq)

is a homomorphism.353

Proof. As vi is fixed, its edge code (ei, ei+1, . . . , ei+k, ei+k+1, ei+k+2, . . . , er) is354

a fixed tuple. Since all these edges are incident to the vertex vi, they share355

a common vertex, which is vi. From the construction of the line graph and by356

Definition 28, we can verify that the adjacency condition and the sign of the edges357

are preserved concerning the defined mapping ψ. Hence, ψ is a homomorphism.358

Conclusion

The authors of the paper acknowledge the critical comments and suggestions359

given by the anonymous referee which improved the quality of the paper in a360

significant manner.361
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