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Abstract

Let R be an unital prime ring with characteristic not 2 and containing
a nontrivial idempotent P and φ be an additive map on R satisfying

φ([[A,B], C]) = [[φ(A), B], C] = [[A, φ(B)], C],

for any A,B,C ∈ R whenever AB = 0. In this paper, we study the structure
of map φ and prove that φ on R is proper, i.e., has the form φ(A) = λA +
h(A), where λ ∈ Z(R) and h is an additive map into its center vanishing
at second commutators [[A,B], C] with AB = 0. Applying these results, we
characterize generalized Lie triple derivations on R. The obtained results
can be used for some classical operator prime algebras such as standard
operator algebras and factor von Neumann algebras, which generalize some
known results.
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1. Introduction

AssumeR be an associative ring. Recall that an additive map δ : R → R is called
a derivation if d(ab) = d(a)b + ad(b) for all a, b ∈ R. Suppose [a, b] = ab − ba

denote the Lie product and admit a ◦ b = ab + ba denote the Jordan product
of elements a, b ∈ R. An additive map δ on R to R is called a Lie derivation

1Corresponding author.

https://doi.org/10.7151/dmgaa.1475


242 Sh. Goodarzi and A. Khotanloo

if it is a derivation for the Lie product, i.e., δ([a, b]) = [δ(a), b] + [a, δ(b)] for all
a, b ∈ R. Similarly, an additive map δ on R to itself is called a Jordan derivation
if it satisfies δ(a ◦ b) = δ(a) ◦ b+ a ◦ δ(b) for all a, b ∈ R. An additive map ∆ on
R is said to be a generalized Lie derivation associated with the Lie derivation δ
if

∆([a, b]) = [∆(a), b] + [a, δ(b)], (a, b ∈ R).

A Lie triple derivation is an additive map δ : R → R, which satisfies

δ([[a, b], c]) = [[δ(a), b], c] + [[a, δ(b)], c] + [[a, b], δ(c)], (a, b, c ∈ R).

An additive map ∆ : R → R is said to be a generalized Lie triple derivation
associated with the Lie triple derivation δ if

∆([[a, b], c]) = [[∆(a), b], c] + [[a,∆(b)], c] + [[a, b], δ(c)], (a, b, c ∈ R).

Every derivation is a Lie derivation and a Jordan derivation. Also, every Lie
derivation is a generalized Lie derivation. Obviously, Lie derivations are Lie triple
derivations. The known equation [[a, b], c] = a◦(b◦c)−b◦(a◦c) for all a, b, c ∈ R
it concludes that every Jordan derivation is also a Lie triple derivation. Lie triple
derivations are generalized Lie triple derivations. However, the converse is not
true in general. Therefore, the investigation of the structure of the generalized Lie
triple derivations leads to the simultaneous characterization of both important
classes of Jordan, Lie, and Lie triple derivations. These mappings are among the
important cases in studying the structure of Lie algebras. Extensive studies have
been performed to characterize these maps on different algebras, and here, for
instance, we refer to [2, 5, 6, 30, 29] and the references therein.

An additive map φ : R → R is said to be a Lie centralizer if

φ([a, b]) = [φ(a), b] = [a, φ(b)], (a, b ∈ R).

Also, An additive map φ on R into R is a Lie triple centralizer if

φ([[a, b], c]) = [[φ(a), b], c] = [[a, φ(b)], c], (a, b ∈ R).

Clearly, each Lie centralizer is a Lie triple centralizer, but the converse is not
true in general. Therefore, the concept of Lie triple centralizer generalizes the
concept of Lie centralizer. Additive map φ on R is called a Jordan centralizer
if φ(a ◦ b) = φ(a) ◦ b for all a, b ∈ R and every Jordan centralizer is also a Lie
triple centralizer. By straightforward calculations, it can be checked that ∆ is a
generalized Lie (triple) derivation associated with the Lie derivation δ if and only
if φ = ∆ − δ is a Lie (triple) centralizer. Hence on a ring, if we determine the
structure of the Lie (triple) centralizers and Lie (triple) derivations, then we can
also characterize the structure of the generalized Lie (triple) derivations.
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In the [19, 28], we see that the concept of Lie centralizer is a classical concept
in other nonassociative algebras and the theory of Lie algebras. Determining the
structure of Lie (triple) centralizers in the form of centralizers can be of great
interest. In recent years, maps of Non-linear Lie centralizers on generalized matrix
algebras to itself and Non-additive Lie centralizers on triangular rings, have been
studied and investigated by many researchers, and the structure of these maps
has been characterized into standard forms [12, 13, 16, 18, 22, 25].

In recent years, certain mappings that act as derivatives in local products
have been investigated. One of the research paths in this field is the study
of conditions in which the structure of derivatives on rings (algebras) can be
determined by mappings that act on local products. Let R be a ring, in this
case, an additive (a linear) map δ : R → R is called derivable at a given point G
in R if we have δ(ab) = δ(a)b + aδ(b) for all a, b ∈ R with ab = G. These types
of maps have been discussed by several researchers (see that [1, 3, 10, 11, 21, 32]
and references therein). So far, few papers have worked on Lie triple derivations
mappings that act on local products, and the authors have obtained results on
operator algebras [23, 24]. An additive (a linear) map δ : R → R is called Lie
triple derivable at a given point G ∈ R, if δ([[a, b], c]) = [[δ(a), b], c]+[[a, δ(b)], c]+
[[a, b], δ(c)] for all a, b, c ∈ R with ab = G. In [30] the authors described the
additive map δ : R → R, where R is a prime ring containing a non-trivial
idempotent P satisfying

a, b ∈ R, ab = 0 =⇒ δ([a, b]) = [δ(a), b] + [a, δ(b)],

Hereon, we say δ is a Lie derivation at zero products. Also, in order to characterize
various mappings with these local features on different algebras, related works
have been done in this field, we can see [20, 27, 30]. Recently authors have studied
the characterization of Lie centralizers and generalized Lie derivations on non-
unital triangular algebras through zero products [2]. Following their research, the
authors working in this area have also obtained results, e.g. [8, 12, 15, 17, 26].

Now, considering the results obtained regarding derivations type maps in
special products, it seems natural to address the problem of characterizing maps
that are such as Lie triple centralizers or generalized Lie triple derivations at local
acting. An additive (a linear) map φ : R → R is called Lie n-centralizer at a
given point G ∈ R, if

φ[[a, b], c] = [[φ(a), b], c] = [[a, φ(b)], c]

for all a, b, c ∈ R with ab = G. It is clear that each Lie triple centralizer satisfies
Lie triple centralizer at zero product and the converse is, in general, not true
(see Example 2.4 of [15]). Recently authors have studied the characterization of
Lie centralizers and generalized Lie derivations on non-unital triangular algebras
through zero products [2]. Following their research, the authors working in this
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area have also obtained results, e.g. [8, 15]. Also, the authors in [7, 9] characterize
Lie triple mappings at zero product as well as at idempotent product on arbitrary
von Neumann algebras. Suppose that exist λ ∈ Z(R) and an additive map
h : R → Z(R) vanishing at every second commutator [[A,B], C] when AB = 0
such that φ(A) = λA+ h(A) for any A ∈ R. In this case, the additive mapping
φ : R → R defined by φ(A) = λA + h(A) is a Lie triple centralizer, which is
called the Lie triple centralizer with standard form (proper Lie triple centralizer).
Note that, in general, every Lie triple centralizer is not necessarily a proper Lie
triple centralizer (see Example 1.2 in [12]). In [12], Also Fadaee, Gharamani,
and jing studied Lie triple centralizer φ : U → U under some conditions on an
unital generalized, and they showed that φ(A) = λA+ ψ(A), where ψ is a linear
map from U into the center of U which annihilates all second commutators in
commutators and λ is in the center of U .

Now, with the idea from the studies mentioned above and as a continuation
of the above works in this research, we determine the structure of additive maps
on the unital prime rings that local act like Lie triple centralizers or generalized
Lie triple derivations at zero products. Specifically, we consider the following
conditions in additive maps φ and ∆ on a unital prime ring R

a, b, c ∈ R, ab = 0 =⇒ φ([[a, b], c] = [[φ(a), b], c];

a, b, c ∈ R, ab = 0 =⇒

{

∆([[a, b], c]) = [[∆(a), b], c] + [[a,∆(b)], c] + [[a, b], δ(c)]

δ([[a, b], c]) = [[δ(a), b], c] + [[a, δ(b)], c] + [[a, b], δ(c)].

Firstly, in Section 2 we characterize the structure of the additive Lie triple
centralizers at zero products (Theorem 2.1) and Lie triple centralizers (Theorem
2.2) on unital prime rings included a non-trivial idempotent and the above results
are applied to some classical operator prime algebras such as standard operator
algebras and factor von Neumann algebras (Corollaries 2.3–2.6). Also, in section
2 we characterize the structure of the additive Lie centralizers (Corollary 2.7)
and Jordan centralizers (Corollary 2.8) on unital prime rings including a non-
trivial idempotent and using these results we apply several classical examples of
unital prime rings with nontrivial idempotents. In Section 3, we proved the main
results. Finally, in Section 4 using the results above, we determine generalized
Lie triple derivations at zero products and generalized Lie triple derivations on
unital prime rings containing a non-trivial idempotent and also on factor von
Neumann algebras and standard operator algebras (Theorem 4.2 and Corollaries
4.3–4.5).

Suppose that R is a prime ring, that is, for any A,B ∈ R, quotation
ARB = {0} implies A = 0 or B = 0. In this case, we denote the maximal
right ring of quotients and the two-sided right ring of quotients of R by Qmr(R)
and Qr(R), respectively. Note that R ⊆ Qr(R) ⊆ Qmr(R). We say that he
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centre C = Z(Qr(R)) of Qr(R) is the extended centroid of R. We also know that
the extended centroid of any prime ring is a field(To see more details, you can
see [4]). On the other, we have Z(R) ⊆ C.

2. Main results and corollaries on some classical examples of

prime rings

In this section, we present the main results of this paper. Throughout this sec-
tion, it is assumed that R is an unital prime ring with characteristic not 2 and
containing a nontrivial idempotent P . In the following theorem, we give the
structure of Lie triple centralizers on prime rings by acting on zero products.

Theorem 2.1. Suppose R be an unital prime ring with characteristic not 2 and
containing a nontrivial idempotent P and let φ on R is an additive map. Then,
the following statements are equivalent.

(i) A,B,C ∈ R, with AB = 0 =⇒ φ([[A,B], C]) = [[φ(A), B], C]= [[A,φ(B)], C].

(ii) φ on R is proper Lie triple centralizer (i.e., for A ∈ R, φ has form φ(A) =
λA + h(A), where λ in center R and h : R → Z(R) is an additive map
vanishing at every second commutator [[A,B], C] when AB = 0.

According to Theorem 2.1, we characterize the structure of Lie triple cen-
tralizers on prime rings in the form of the following theorem.

Theorem 2.2. Suppose R be an unital prime ring with characteristic not 2 and
containing a nontrivial idempotent P and let φ on R is an additive map. Then
map φ is a Lie triple centralizer if and only if φ is a proper Lie triple centralizer.

Now, we apply the 2.1 theorem to some classical examples of prime rings,
such as the standard operator algebra and the von Neumann factor algebra,
to determine the structure of Lie triple centralizer mappings, and we get some
interesting results. For this, we will first have a review of these operator algebras.

Standard operator algebras

Suppose X be a Banach space over the real or complex field F with dimX ≥ 2.
In this case, we denote the algebra of all bounded operators and the ideal of
all finite rank operators as B(X ) and F(X ), respectively. We remark that a
standard operator algebra A is any subalgebra of B(X ) which F(X ) ⊆ A and
contain the identity operator I. It is clear B(X ) is a unital standard operator
algebra. We note that the extended centroid of the standard operator algebra A
is equal to Z(A) = FI. Also, every standard operator algebra is a prime algebra
and contains nontrivial idempotents.
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Corollary 2.3. Let X be a Banach space over the real or complex field F with
dimension greater than 2 and A subalgebra of B(X ) be a standard operator algebra.
Suppose that φ on A is an additive map. Then, the following statements are
equivalent.

(i) A,B,C ∈A, with AB = 0 =⇒ φ([[A,B], C]) = [[φ(A), B], C] = [[A,φ(B)], C].

(ii) There exist λ ∈ F and a map h such that φ(A) = λA + h(A)I, where h :
A → FI is an additive map vanishing on each second commutator [[A,B], C]
whenever AB = 0.

Proof. The standard operator algebra A is an unital prime algebra that satisfies
all the conditions of Theorem 2.1.

According to the explanations in this section and Corollary 2.3, we have the
following result.

Corollary 2.4. Let X be a Banach space over the real or complex field F with
dimension greater than 2 and A subalgebra of B(X ) be a standard operator algebra.
Then an additive map φ on A is a Lie triple centralizer if and only if φ is a proper
Lie triple centralizer.

Factor von Neumann algebras

A von Neumann algebraM is a weakly closed, self-adjoint algebra of operators on
a Hilbert space H containing the identity I. A von Neumann algebra is a factor if
its center is trivial. It is well known that every factor von Neumann algebras are
unital prime algebras with nontrivial idempotents. It follows from these notes
that each factor von Neumann algebra satisfies all conditions of Theorem 2.1.

Corollary 2.5. Let M be a factor von Neumann algebra with degM > 1 and
let φ on M is an additive map. Then, the following statements are equivalent.

(i) A,B,C ∈M, with AB = 0 =⇒ φ([[A,B], C])= [[φ(A), B], C]= [[A,φ(B)], C].

(ii) There exist λ ∈ C and a map h such that φ(A) = λA + h(A)I, where h :
M → CI is an additive map vanishing on each second commutator [A,B]
whenever AB = 0.

According to the explanations in this section and Corollary 2.3, we have the
following results.

Corollary 2.6. Let M be a factor von Neumann algebra with deg M > 1. Then
an additive map φ : M → M is a Lie triple centralizer if and only if φ is a proper
Lie triple centralizer.

Note that a Lie centralizer and Jordan centralizer must be a Lie triple cen-
tralizer. So the following corollary is immediate.
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Corollary 2.7. Suppose that φ : U → U be an additive map. Let U be any of the
following algebras.

(a) Unital prime ring with characteristic not 2 and containing a nontrivial idem-
potent P .

(b) Standard operator algebra on a complex Banach space X.

(c) Factor von Neumann algebra.

Then an additive map φ on U into itself is a Lie centralizer if and only if φ
is a proper Lie centralizer.

Corollary 2.8. Suppose that φ : U → U be additive map. Let U be any of the
following algebras.

(a) Unital prime ring with characteristic not 2 and containing a nontrivial idem-
potent P .

(b) Standard operator algebra on a complex Banach space X.

(c) Factor von Neumann algebra.

Then an additive map φ on U to U is a Jordan centralizer if and only if φ is
a proper Jordan centralizer.

3. The proof of main results

In this section, we will present the proof of the main result, Theorems 2.1 of this
paper. First, we give the following lemma which is needed to prove the main
result.

Lemma 3.1 [4, Theorem 1]. Suppose that R be a prime ring, and let AXB =
BXA for any A,B ∈ Qmr(R) and any X ∈ R. Then A and B are C-dependent.

Proof of Theorem 2.1. Let P1 = P be a nontrivial idempotent in R, and
P2 = I − P1. Set Rij = PiRPj , i, j = 1, 2, then R = R11 +R12 +R21 +R22.

The ”if” part is obvious, we only check the “only if” part. We will organize
the proof into a series of Claims.

Claim 1. φ(Rij) ⊆ Rij , 1 ≤ i 6= j ≤ 2.

For any A12 ∈ R12, since P2(A12) = 0, by the assumption we have

φ(A12) = φ([[P2, A12], P1])

= [[φ(P2), A12], P1]

= [φ(P2)A12 −A12φ(P2), P1]

= −A12φ(P2)P1 − P1φ(P2)A12 +A12φ(P2).
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Multiplying above equation once from left and right to P1, once from left and
right to P2, and once from left to P2 and from right to P2, we conclude that

P1φ(A12)P1 = P2φ(A12)P2 = P2φ(A12)P1 = 0.

Now it is deduced from the previous equations φ(A12) = P1φ(A12)P2. Conse-
quently, φ(R12) ⊆ R12.

For any A21 ∈ R21, since P1(A21) = 0, we have

φ(A12) = φ([[P1, A21], P2])

= [[φ(P1), A21], P2]

= [φ(P1)A21 −A21φ(P1), P2]

= −A21φ(P1)P2 − P2φ(P1)A21 +A21φ(P1).

Similar to the previous case can be seen φ(A21) ∈ R21.

Claim 2. φ(Rii) ⊆ R11 +R22, for i ∈ {1, 2}.

For any A11 ∈ R11 and B22 ∈ R22, since A11P2 = P1B22 = 0, we have

0 = φ([[A11, P2], P1]) = [[φ(A11), P2], P1]

and

0 = φ([[B22, P1], P2]) = [[φ(B22), P1], P2]

which implies that

(1) P2φ(A11)P1 + P1φ(A11)P2 = 0

and

(2) P1φ(B22)P2 + P2φ(B22)P1 = 0.

Multiplying (1) once from left to P1 and once from left to P2, we get P1φ(A11)
P2 = 0 and P2φ(A11)P1 = 0. Therefore,

φ(A11) = P1φ(A11)P1 + P2φ(A11)P2.

It is obtained by(2) and using similar methods above

φ(B22) = P1φ(B22)P1 + P2φ(B22)P2.

Claim 3. For i ∈ {1, 2}, there exists a map hi : Rii → Z(R) such that
Pjφ(Aii)Pj = hi(Aii)Pj (1 ≤ i 6= j ≤ 2), holds for any Aii ∈ Rii.
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For any A11 ∈ R11, B22 ∈ R22, and Cij ∈ Rij (1 ≤ i 6= j ≤ 2), since
A11B22 = B22A11 = 0, we see

0 = φ([[A11, B22], P1]) = [[φ(A11), B22], C21]

and
0 = φ([[B22, A11], P2]) = [[φ(B22), A11], C12].

Considering the above equations, and using Claim 2, we arrive at

(P2φ(A11)P2B22 −B22P2φ(A11)P2)C21 = 0

and
(P1φ(B22)P1A11 −A11P1φ(B22)P1)C12 = 0.

Since R is prime, we conclude that P2φ(A11)P2 ∈ Z(R22) and P1φ(B22)P1 ∈
Z(R11). Thus P2φ(A11)P2AP2 = P2AP2φ(A11)P2 for any A ∈ R and P1φ(B22)
P1BP1 = P1BP1φ(B22)P1 for any B ∈ R. Therefore Lemma 3.1, there exists
unique elements λ1, λ2 ∈ C, such that P2φ(A11)P2 = λ1P2 and P1φ(B22)P1 =
λ2P1. Moreover, since C is feild, it is clear that λ1, λ2 ∈ Z(R). We now define the
maps h1 : R11 → Z(R) by h1(A11) = λ1 and h2 : R22 → Z(R) by h2(B22) = λ2.
Given the uniqueness of λ1 and λ2, we know that the maps h1 and h2 are well-
defined and additive. Also

P2φ(A11)P2 = h1(A11)P2, and P1φ(B22)P1 = h2(B22)P1.

Now, for any A = A11+A12+A21+A22 ∈ R, we define linear maps h : R →
Z(R) and ψ : R → R by

h(A) = h1(A11) + h2(A22), and ψ(A) = φ(A)− h(A).

By Claims 1–3, it is clear that ψ(Rij) ⊆ Rij, ψ(Rii) ⊆ Rii and ψ(Rij) = φ(Rij),
1 ≤ i 6= j ≤ 2.

Claim 4. ψ is an additive centralizer.

We divide the proof into the following four Steps.

Step 1. ψ(AiiBij) = ψ(Aii)Bij = Aiiψ(Bij) for all Aii ∈ Rii and Bij ∈ Rij,
1 ≤ i 6= j ≤ 2.

In fact, for any Aii ∈ Rii and Bij ∈ Rij , since BijAii = 0, we have

ψ(AiiBij) = φ(AiiBij)

= φ([[Bij , Aii], Pi])

= [[φ(B12), A11], Pi]

= Aiiφ(Bij)

= Aiiψ(Bij)
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and

ψ(AiiBij) = φ(AiiBij)

= φ([[Bij , Aii], Pi])

= [[Bij , φ(Aii)], Pi]

= φ(Aii)Bij

= ψ(Aii)Bij .

Hence, we obtain

(3) ψ(AiiBij) = Aiiψ(Bij) = ψ(Aii)Bij .

Step 2. ψ(AijBjj) = ψ(Aij)Bjj = Aijψ(Bjj) for all Aij ∈ Rij and Bjj ∈ Rjj,
1 ≤ i 6= j ≤ 2.

For anyAij ∈ Rij and Bjj ∈ Rjj, since BjjAij = 0, and with the similar
argument Step 1, one can easily check that Step 2 is hold.

Step 3. ψ(AiiBii) = ψ(Aii)Bii = Aiiψ(Bii) for all Aii, Bii ∈ Rii, i = 1, 2.

For any Aii, Bii ∈ Rii and any Sij ∈ Rij, by Step 1, we have

ψ(AiiBiiSij) = ψ(AiiBii)Sij ,

on other hands

ψ(AiiBiiSij) = Aiiψ(BiiSij) = Aiiψ(Bii)Sij .

It can be seen from the combination of the above two equations that ψ(AiiBii)Sij
= Aiiψ(Bii)Sij holds for all Sij ∈ Rij. It follows that ψ(AiiBii) = Aiiψ(Bii) since
R is prime. Also for any Aii, Bii ∈ Rii and any Sji ∈ Rji, by Step 2, we get

ψ(SjiAiiBii) = Sjiψ(AiiBii),

on other hands

ψ(SjiAiiBii) = ψ(SjiAii)Bii = Sjiψ(Aii)Bii,

Comparing the above two equations and sinceR is prime, we see that ψ(AiiBii) =
ψ(Aii)Bii.

Step 4. ψ(AijBji) = ψ(Aij)Bji = Aijψ(Bji) for all Aij ∈ Rij and Bji ∈ Rji,
1 ≤ i 6= j ≤ 2.

Let Aij ∈ Rij and Bji ∈ Rji, 1 ≤ i 6= j ≤ 2. It follows from Steps 1, 2 and,
3 that

ψ(AijBji) = ψ(PiAijBji) = ψ(Pi)AijBji = ψ(Aij)Bji,
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and
ψ(AijBji) = ψ(AijBjiPi) = AijBjiψ(Pi) = Aijψ(Bji).

In Steps 1–4, it is easy to check that ψ is an additive centralizer. In other
words, the claim of Claim 4 is obtained.

Claim 5. h([[A,B], C]) = 0 for all A,B,C ∈ R with AB = 0.

In fact, for any A,B,C ∈ R with AB = 0, we have

h([[A,B], C]) = φ([[A,B], C]) − ψ([[A,B], C])

= [[φ(A), B], C] − ψ([[A,B], C])

= [[ψ(A) + h(A), B], C]− ψ([[A,B], C])

= [[ψ(A), B], C] − ψ([[A,B], C])

= 0.

Claim 6. The theorem holds.

Indeed, By Claims 1–6, φ(A) = ψ(A) + h(A) for any A ∈ R. Since ψ is a
centralizer on R, for all A ∈ R we have

ψ(A) = ψ(AI) = Aψ(I), ψ(A) = ψ(IA) = ψ(I)A.

Hence, ψ(I) ∈ Z(R). Set λ = ψ(I). So λ in center R and ψ(A) = λA for
any A ∈ R. Therefore,we show that φ(A) = λA + h(A) for any A ∈ R, where
λ ∈ Z(R) and h vanishes at second commutators [[A,B], C] for all A,B,C ∈ R
with AB = 0. Here the proof of one side of the theorem is complete.

The converse proof is trivial.

4. An applications: characterization of generalized Lie

derivations on prim rings

In this section, as an application of the 2.1 theorem, we determine the Lie triple
derivations on prim rings by acting on zero products. To present the main result
of this section, we need the following theorem, which was proved in [31].

To the main result of this section, we need the following theorem, which is
proved in [31].

Theorem 4.1. Let R be an unital prime ring with characteristic not 2 and
containing a nontrivial idempotent P and PRP , (1 − P )R(1 − P ) are noncom-
mutative. Suppose δ on R be a map, then δ is a Lie triple derivation if only if
there exists an additive derivation d : R → R and a map h : R → Z(R) satisfy-
ing h([[A,B], C]) = 0 for all A,B,C ∈ R such that δ(A) = d(A) + h(A) for all
A ∈ R.
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The following theorem, which is a result of Theorem 2.2 and Theorem 4.1,
actually generalizes Theorem 4.1.

Theorem 4.2. Let R be an unital prime ring with characteristic not 2 and
containing a nontrivial idempotent P and PRP , (1 − P )R(1 − P ) are noncom-
mutative. Then the following statements are equivalent.

(i) ∆ : R → R be a generalized Lie triple derivation associated with the Lie
triple derivation δ : R → R.

(ii) There exist derivation d : R → R, additive maps h, h1 : R → Z(R) and an
element λ in center R such that

∆(A) = d(A) + h(A) + λA, δ(A) = d(A) + h1(A), (A ∈ R)

where h([[A,B], C]) = h1([[A,B], C]) = 0 for all A,B,C ∈ R.

Proof. Since (ii)⇒(i) is clear, it suffices to prove (i)⇒(ii). Therefore, by Theorem
4.1, there exist derivation d : R → R, additive maps h1 : R → Z(R) such that
δ = d + h1 and h1([[A,B], C]) = 0 for all A,B,C ∈ R. By assumption, for the
additive map φ = ∆− δ on R, we have

φ([[A,B], C]) = [[φ(A), B], C] = [[A,φ(B)], C], (A,B,C ∈ R).

Thus, by Theorem 2.2, there exist λ in center R and addtive map h2 on R such
that φ = λI + h2 where h2(A) ∈ Z(R) for all A ∈ R and h2([[A,B], C]) = 0 for
all A,B,C ∈ R. Suppose that h = h1 + h2. Thus, h : R → Z(R) is a addtive
map that h([[A,B], C]) = 0 for all A,B,C ∈ R. Thus, we have

∆(A) = δ(A) + φ(A) = d(A) + h1(A) + λA+ h2(A) = d(A) + h(A) + λA

for all A ∈ R. This completes the proof.

According to the explanations of the previous section and the above Theorem,
we have the following results.

Corollary 4.3. Suppose that ∆ : U → U and δ : U → U be additive maps. Let U
be any of the following algebras.

(a) Standard operator algebra on a complex Banach space X.

(b) Factor von Neumann algebra.

∆ is a generalized Lie triple derivation associated with the Lie triple derivation
δ if and only if there exist the additive maps d : U → U , h, h1 : U → Z(U) and
an element λ ∈ Z(U) such that

∆(A) = d(A) + h(A) + λA, δ(A) = d(A) + h1(A), (A ∈ U)

where d is a derivation and h([[A,B], C]) = h1([[A,B], C]) = 0 for all A,B,C
∈ U .
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To the next corollary, we need the following theorem, which is proved in [23].

Theorem 4.4. Let M be a factor von Neumann algebra with dimension greater
than 1 acting on a Hilbert space and a linear map δ : M → M satisfying

δ([[A,B,C]) = [[δ(A), B], C] + [[A, δ(B)], C] = [[A,B],∆(C)],

for all A,B,C ∈ M with AB = 0. Then there exist an operator M ∈ M and a
linear map h : M → CI vanishing at every second commutator [[A,B], C] when
AB = 0 such that

δ(A) = AM −MA+ h(A),

for any A ∈ M.

The following results are a generalization of Theorem 4.4.

Corollary 4.5. Let M be a factor von Neumann algebra with dimension greater
than 1 acting on a Hilbert space. Suppose that ∆ : M → M and δ : M → M be
additive maps. Then the following statements are equivalent.

(i) ∆ and δ satisfy the following conditions.

∆([[A,B], C]) = [[∆(A), B], C] + [[A, δ(B)], C] = [[A,B],∆(C)];

δ([[A,B], C]) = [[δ(A), B], C] + [[A, δ(B)], C] = [[A,B],∆(C)];

for all A,B,C ∈ M with AB = 0.

(ii) There exist additive maps d : M → M, h, h1 : M → CI and are elements
M,T ∈ CI such that

∆(A) = AM − TA+ h(A), δ(A) = d(A) + h1(A), (A ∈ M)

where d is a derivation and h([[A,B], C]) = h1([[A,B], C]) = 0 for all
A,B,C ∈ M with AB = 0.

Proof. Since (ii)⇒(i) is clear, it suffices to prove (i)⇒(ii). Therefore, by Theorem
4.4, there exist an operator M ∈ M and a linear map h1 : M → CI such that
δ(A) = AM−MA+h1(A), and h1(A) ∈ CI for all A ∈ R and h1([[A,B], C]) = 0
for all A,B,C ∈ R with AB = 0. By assumption, for the additive map φ = ∆−δ
on R, we have

φ([[A,B], C]) = [[φ(A), B], C] = [[A,φ(B)], C], (A,B,C ∈ R).

By Theorem 2.1, there exist R ∈ CI and addtive map h2 on R such that φ =
λI+h2 where h2(A) ∈ CI for all A ∈ R and h2([[A,B], C]) = 0 for all A,B,C ∈ R
with AB = 0. Suppose that h = h1 + h2. Thus, h : R → CI is a addtive map
that h([[A,B], C]) = 0 for all A,B,C ∈ R. Set T =M +R. Thus, we have

∆(A) = δ(A) + φ(A) = AM −MA+ h1(A) +RA+ h2(A) = AM − TA+ h(A)

for all A ∈ R. This completes the proof.
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