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Abstract

A Stonean Hilbert algebra is a bounded Hilbert algebra with supremum
that satisfies the Stone identity. In this paper we characterize the subdirectly
irreducible Stonean Hilbert algebras. We extend the duality of Hilbert alge-
bras with supreumum to bounded Hilbert algebras with supremum and we
identify among the dual spaces of bounded Hilbert algebras with supremum
those that correspond to Stonean Hilbert algebras in general, and, in par-
ticular, those that corresponds to sub-directly irreducible Stonean Hilbert
algebras. As an application we exhibit a special partial endomorphism of
the dual space of a Stonean Hilbert algebra.
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1. Introduction

Hilbert algebras (positive implication algebras in [22]) are the algebraic counter-
part of the implicative fragment of Intuitionistic Propositional Logic. A Hilbert
algebra is an algebra 〈A,→, 1〉 of type (2, 0). Diego in [8] proves that the class
of Hilbert algebras is a variety generated by the {→, 1}-reduct of Heyting alge-
bras. We recall that a Heyting algebra is an algebra 〈H,∨,∧,→, 0, 1〉 of type
(2, 2, 2, 0, 0). But there are examples of algebras 〈L,∨,∧,→, 0, 1〉 which are not
Heyting algebras but their {→, 1}-reduct is a Hilbert algebra. These examples
encourage the study of Hilbert algebra with lattice operations (∨,∧). The class
of Hilbert algebras is a subclass of the class of BCK-algebras (see [9]); indeed,
Hilbert algebras are dual isomorphic positive implicative BCK-algebras (see [18])
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and Hilbert algebras with lattice operations are a particular case of BCK-algebras
with lattice operations; this class of BCK-algebras has been studied by Idziak in
[16] and [17]. A Hilbert algebra with supremum is an algebra 〈A,∨,→, 1〉 such
that its natural order form a join-semi-lattice, i.e., a → b = 1 iff a ∨ b = b.

In this paper we study bounded Hilbert algebras with supremum (Hilbert
algebras with supremum which have a least element for their natural order) sat-
isfying the Stone identity. They were introduced in [7] and in [20] where they are
called Stonean Hilbert algebras. Our main motivation is to answer the question
up to what extent the structure of such a kind of Hilbert algebra is determined
by the monoid of its endomorphisms. We have addressed the same question for
the case of finite Hilbert algebras (see [12]) and for the case of Hilbert algebras
generated by finite chains (see [14]). With such a purpose, building on the duality
for (bounded) Hilbert algebras of Celani, Cabrer and Montangie (see [4, 5, 7]), in
Section 5 (Theorem 9) we characterize the dual space of a Stonean Hilbert algebra
and we identify the dual space of a subdirectly irreducible Stonean Hilbert alge-
bra; previously, in Section 3 we characterize the subdirectly irreducible Stonean
Hilbert algebras (Proposition 7 and Corollary 8).

The class of bounded Hilbert algebras with morphisms the algebraic ho-
momorphisms is a category dually equivalent to the category of dual spaces of
bounded Hilbert algebras with morphisms, a special kind of partial functions.
In the last section (Section 6) of the present paper we identify a partial endo-
morphism of the dual space of a Stonean Hilbert algebra; we think that this
partial endomorphism will play a very important roll in establishing a connec-
tion between the structure of Stonean Hilbert algebras and the monoid of their
endomorphisms. Section 2 will be devoted to recall the necessary definitions and
known results whereas in Section 4 we present some examples which serve to
illustrate the main concepts considered in this paper.

2. Preliminaries

In this section we provide the main definitions and several rules of computation
that will be used throughout the paper. They can be consulted mainly in [3, 7,
11, 22]. A Hilbert algebra is an algebraic structure A = 〈A,→, 1〉 of type (2,0)
that satisfies, for all a, b, c ∈ A the following:

a → (b → a) = 1;(1)

(a → (b → c)) → ((a → b) → (a → c)) = 1;(2)

a → b = 1 and b → a = 1 imply a = b.(3)

Following [3], we denote the class of Hilbert algebras by H. The binary relation
≤ defined on A by the rule a ≤ b iff a → b = 1 is a partial order on A with last
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element 1. We call this order the natural order induced on A by the operation
‘→’. The following rules valid in any Hilbert algebra will be used without special
reference

a → a = 1;(4)

1 → a = a;(5)

a ≤ b → a;(6)

a → (a → b) = a → b;(7)

a → (b → c) = b → (a → c);(8)

a → (b → c) = (a → b) → (a → c);(9)

a ≤ b implies b → c ≤ a → c and c → a ≤ c → b;(10)

a → b ≤ (b → c) → (a → c).(11)

A bounded Hilbert algebra or H0-algebra is a Hilbert algebra A := 〈A;→, 1〉 of
type (2, 0) for which there exists an element 0 ∈ A such that 0 → x = 1 for all
x ∈ A. We shall write ¬x instead of x → 0. The class of bounded Hilbert algebras
shall be denoted by H0. It is not difficult to check that the following properties
are satisfied for all elements a, b, c in any bounded Hilbert algebra:

a ≤ ¬¬a;(12)

a ≤ b =⇒ ¬b ≤ ¬a;(13)

¬a = ¬¬¬a;(14)

a → b ≤ ¬b → ¬a;(15)

¬a = a → ¬a;(16)

¬a → a = ¬¬a;(17)

a → ¬b = b → ¬a;(18)

¬¬(a → b) ≤ ¬¬a → ¬¬b;(19)

a ≤ ¬a → b and b ≤ ¬a → b.(20)

All these properties of bounded Hilbert algebras can be consulted in [7] and the
reference therein.

A non-empty subset D of a Hilbert algebra A is called a deductive system if

(i) 1 ∈ D, and

(ii) a, a → b ∈ D imply b ∈ D.

Deductive systems are called in [21] implicative filters or simply filters. We denote
the set of deductive systems of a bounded Hilbert algebra A as follows:

Ds(A) := deductive systems of A.
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A proper deductive system D is said to be irreducible if from D = D1 ∩ D2

with D1,D2 ∈ Ds(A) it always follows that D1 = D or D2 = D. The set of all
irreducible deductive system of A is denoted by X(A).

X(A) := irreducible deductive systems of A.

A proper deductive system is called maximal if it is not contained properly
in any other deductive system. Every maximal deductive system is also an irre-
ducible deductive system (see [1], Remark 1.2). A Hilbert algebra is called a local
Hilbert algebra if it has just a maximal deductive system.

An element a of a bounded Hilbert algebra A is called dense if ¬a = 0. The set

D(A) := {a ∈ A : ¬a = 0}

of dense elements of A is a deductive system (see [1, 2]).

Proposition 1 ([21], Proposition 3.3). Let A ∈ H0. Then, A is a local Hilbert
algebra iff all its elements except 0 are dense, i.e., D(A) = Ar {0}.

A bounded Hilbert algebra with supremum or H∨
0
-algebra is an algebra A :=

〈A;→,∨, 1〉 of type (2, 2, 0) such that the reduct 〈A;→, 1〉 is a bounded Hilbert
algebra, the reduct 〈A;∨, 1〉 is a join semi-lattice with last element 1 and the
identities

a → (a ∨ b) = 1,(21)

(a → b) → ((a ∨ b) → b) = 1(22)

are satisfied. The class of bounded Hilbert algebras with supremum shall be
denoted by H∨

0
. Hilbert algebras with supremum are called in [21], sH-Hilbert

algebras.
The following identity is valid in any Hilbert algebra with supremum (see

[11]):

(a → c) → ((b → c) → ((a ∨ b) → c)) = 1.(23)

Notation. Let 〈X,≤〉 a poset and S ⊆ X. Then (S] := {x ∈ X : x ≤ s, some
s ∈ S} and [S) := {x ∈ X : s ≤ x, some s ∈ S}.

Definition 1 ([4], Definition 3.1). A Hilbert space or H-space is a ordered topo-
logical space X := 〈X,≤, τK〉 such that:

(i) K is a base of compact-open and decreasing subsets of X for the topology
τK on X;

(ii) For every A,B ∈ K, (A ∩B∁] ∈ K. So, ∅ ∈ K;
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(iii) For x, y ∈ X, x � y implies that there exists U ∈ K such that x /∈ U and
y ∈ U ;

(iv) If Y is a closed subset and L ⊆ K is dually directed set (i.e., for any A,B ∈
L,∃ C ∈ L such that C ⊆ A and C ⊆ B) such that Y ∩U 6= ∅ for all U ∈ L
then

⋂

{U : U ∈ L} ∩ Y 6= ∅.

Definition 2. X is called a H∨-space if X is a H-space such that

(v) U ∩ V ∈ K for all U, V ∈ K.

Definition 3. A boundedH∨-space or H∨
0
-space is a H∨-space such that X ∈ K.

The set of increasing subsets of X(A) ordered by inclusion (including there
the empty set) is denoted by Pi(X(A)).

It is shown in [8] (see also [6]) that

Pi(X(A)) := 〈Pi(X(A));→,∪,X〉,

where the operation → is defined by the rule

U → V :=
(

U ∩ V ∁
]∁

(24)

is a H∨
0
-algebra and, if A is a H∨

0
-algebra, then the mapping ϕ : A −→ Pi(X(A))

given by

ϕ(a) =
{

P ∈ X(A) : a ∈ P
}

(25)

is an injective homomorphism of H∨
0
-algebras ([4], Lemma 5.1). Moreover,

KA :=
{

ϕ(a)∁ : a ∈ A
}

(26)

is a basis for a topology τKA
on X(A) and X(A) := 〈X(A),⊆, τKA

〉 is a H∨-space
([4], Theorem 5.6).

If X := 〈X,≤, τK〉 is an H∨
0
-space then D(X) := 〈D(X);→,∪,X〉, where

D(X) :=
{

U ∁ : U ∈ K
}

and the operation → given by the formula (24) is a H∨
0
-algebra (see [4], Propo-

sition 5.3). The image of the mapping ϕ given by the equality (25) is D(X(A))
so that

ϕ : A ∼= D(X(A)).

Observe that if A ∈ H∨
0
, ϕ(0) = {P ∈ X(A) : 0 ∈ P} = ∅ = X∁ ∈ D(X(A)). As

a consequence of the preceding discussion we have the following theorem.
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Theorem 2 ([6], Theorem 2.8). Let A ∈ H∨
0
. Then, there exists a poset X :=

〈X,≤〉 with maximum such that A is isomorphic to a subalgebra of

Pi(X) := 〈Pi(X);→,∪,X〉.

Lemma 3 ([7], Lemma 9). Let A ∈ H∨
0
and P ∈ Ds(A). Then, the following

conditions are equivalent:

(i) P is maximal.

(ii) ∀ a ∈ A, (a 6∈ P =⇒ ¬a ∈ P ).

(iii) ∀ a ∈ A, (a 6∈ P =⇒ ¬¬a 6∈ P ).

(iv) P ∈ X(A) and D(A) ⊆ P .

Diego in [8] proves that if A ∈ H, P ∈ X(A) iff for every a, b ∈ A such that
a, b 6∈ P there exists c 6∈ P such that a, b ≤ c. From this, the following result
follows easily.

Proposition 4. Let A ∈ H∨
0
and P ∈ Ds(A). Then, P ∈ X(A) iff ∀ a, b ∈ A,

a ∨ b ∈ P =⇒ a ∈ P or b ∈ P .

Let A ∈ H∨
0
. A is said to be an Stone H∨

0
-algebra if it satisfies the Stone

identity

¬a ∨ ¬¬a = 1.(27)

Stone H∨
0
-algebras are called in [20], Stonean Hilbert algebras. It follows from

Proposition 1 that a local bounded Hilbert algebra with supremum is necessarily
a Stonean Hilbert algebra.

Several characterizations of this kind of H∨
0
-algebras are given in [7]; for our

purpose, we mention next two of them.

Proposition 5 ([7], Theorem 26). Let A ∈ H∨
0
. Then A is a Stone H∨

0
-algebra

iff for increasing subsets U, V of X(A), we have (U ] ∩ (V ] = (U ∩ V ] iff each
irreducible deductive system of A is contained in a unique maximal deductive
system.

3. Sub-directly irreducible Stonean Hilbert algebras

Proposition 6. For A ∈ H∨
0
and a ∈ A, the relation x ∼a y iff a → x = a → y

is a congruence relation on A.

Proof. It is proved in [15] that ∼a is a equivalence relation on A that preserves
→, i.e., ∼a is a congruence relation on 〈A,→, 1〉. Next we prove that ∼a also
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preserves ∨: suppose that x ∼a y and z ∼a w, i.e., a → x = a → y and
a → z = a → w. It follows that a ≤ x → y, y → x, z → w,w → z. We want
a → (x ∨ z) = a → (y ∨ w). We show first that (a → (x ∨ z) ≤ a → (y ∨ w). Set
c = y ∨ w. By (23) we have

(x → c) → ((z → c) → ((x ∨ z) → c)) = 1.

As y ≤ c, we have x → y ≤ x → c. Then we have

(x → y) → ((z → c) → ((x ∨ z) → c)) = 1

or, equivalently,

(z → c) → ((x → y) → ((x ∨ z) → c)) = 1.

As w ≤ c, we have z → w ≤ z → c and therefore we obtain

(z → w) → ((x → y) → ((x ∨ z) → c)) = 1.

It follows from a ≤ z → w and the above equation that

a → ((x → y) → ((x ∨ z) → c)) = 1

or, equivalently,
(x → y) → (a → ((x ∨ z) → c)) = 1

and, finally, since a ≤ x → y we obtain

a → ((x ∨ z) → c)) = a → (a → ((x ∨ z) → c)) = 1

and, from this, we get a → (x ∨ z) ≤ a → c = a → (y ∨ w). In a similar way we
obtain the reverse inequality. So, a → (x ∨ z) = a → (y ∨ w).

Proposition 7. A ∈ H∨
0
is sub-directly irreducible iff A has a unique co-atom,

i.e., there exists e ∈ A such that e < 1 and for all x ∈ A, if x 6= 1 then x ≤ e.

Proof. Suppose that A is sub-directly irreducible and let Υ be the monolith
of A. First we observe that ∼x= ∆ iff x = 1. Clearly, Υ = Cg(e, b) (the
smallest congruence containing the pair (e, f)) for some e, b ∈ A. If ∆ 6∈ {∼e,∼b}
then Υ = Cg(e, b) ⊆∼e ∩ ∼b. But this means that 1 = e → e = e → b and
1 = b → b = b → e, i.e., e = b, a contradiction. Then, say ∼b= ∆, i.e., b = 1,
so Υ = Cg(e, 1). Let x ∈ A r {1}. As Υ ⊆∼x we have that (e, 1) ∈∼x, i.e.,
x → e = x → 1 = 1 and this means that x ≤ e.

Conversely, suppose that A has a unique co-atom e. Let θ ∈ Con(A)r {∆}.
Let x, y, x 6= y in A such that (x, y) ∈ θ. As x 6= y we have that, say, x → y < 1 so
that (x → y) → e = 1. Observe now that (x → x = 1, x → y) ∈ θ; consequently,
(1 → e = e, (x → y) → e = 1) ∈ θ. Then, as θ ∈ Cong(A) r {∆} was arbitrary,
we have proved that Cg(e, 1) is the monolith of A and, consequently, A is sub-
directly irreducible.
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The set of congruences of A ∈ H∨ is denoted by Con(A). If θ ∈ Con(A),
[1]θ ∈ Ds(A) ([1]θ denote the congruence class of 1). If D ∈ Ds(A) then θ(D) =
{(a, b) ∈ A2 : a → b, b → a ∈ D} ∈ Con(A). If θ1, θ2 ∈ Con(A), θ1 ⊆ θ2 =⇒
[1]θ1 ⊆ [1]θ2 and if D1,D2 ∈ Ds(A), D1 ⊆ D2 =⇒ θ(D1) ⊆ θ(D1) (see [3]).
In the previous proposition, it is evident that {e, 1} is a irreducible deductive
system. Indeed, {e, 1} is the smallest irreducible deductive system which, at the
same time, is the smallest non-trivial deductive system of A; then, having in
mind Proposition 1 and Proposition 5 we have the following corollary.

Corollary 8. A Stonean Hilbert algebra is sub-directly irreducible iff it is a local
bounded Hilbert algebra with supremum that has a smallest non-trivial deductive
system which is also the smallest irreducible deductive system.

From a result of Idziak (see [16]) it follows that the class of Hilbert algebras
with supremum is a variety. Here, we need to consider the class of Stone H∨

0
-

algebras as a variety. Indeed, this class of Hilbert algebras with supremum is
closed under the formation of homomorphic images and direct product but it is
not closed under the formation of sub-algebras, as the Stonean Hilbert algebra
A0 (taking from [20]) shows:

A0:=

→ 0 a b c d e f g 1

0 1 1 1 1 1 1 1 1 1
a f 1 1 f 1 1 f 1 1
b f g 1 f g 1 f g 1
c b b b 1 1 1 1 1 1
d 0 b b f 1 1 f 1 1
e 0 a b f g 1 f g 1
f b b b e e e 1 1 1
g 0 b b c e e f 1 1
1 0 a b c d e f g 1 .

We see that {a, b, c, d, e, f, g, 1} is a subalgebra of such a bounded Hilbert algebra
with supremum which is not even Stonean since it does not have a minimum.
So, in order to consider the class of Stonean Hilbert algebra as a variety, the
minimum 0 has to be considered as a nullary operation. This automatically im-
plies that the unary operation ¬ is preserved by Hilbert algebra homomorphisms
which, by the way, being them order preserving maps, have to send minimums
to minimums, i.e., they have to preserve the least element (see [10]). Now, since
there is a one to one an onto correspondence between congruences and homo-
morphic images then any sub-directly irreducible Stonean Hilbert algebra is also
sub-directly irreducible as a Hilbert algebra.
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Figure 1. The natural order of A0.

4. Examples

Example I.

A1:=

→ 0 1 2 3 4 5

0 5 5 5 5 5 5
1 0 5 5 5 5 5
2 0 3 5 3 5 5
3 0 2 2 5 5 5
4 0 1 2 3 5 5
5 0 1 2 3 4 5

r

r

r

r r

@@ ��
�� @@

r

1

2 3

0

5

4

Figure 2. The natural order of A1.
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Pi(X(A1)) :=

Figure 3. The order of the irreducible deductive systems of A1.
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Observe that A1
∼= Pi(X(A1))). Observe also that B := {0, 2, 3, 4, 5} is a subuni-

verse of A1 and that X(A1) = X(B), B being a proper subalgebra of Pi(X(B)).
Notice that A1 as well as B are local sub-directly irreducible Stonean Hilbert
algebras.

Example II.

A2:=

→ 0 1 2 3

0 3 3 3 3
1 2 3 2 3
2 1 1 3 3
3 0 1 2 3

r

r

r r

@@ ��
�� @@

0

1 2

3

Figure 4. The natural order of A2.

X(A2) =
{

(1]∁, (2]∁
}

= {[2), [1)}. In this example, X(A2) is an anti-chain, does
not have a maximum and does not have a minimum.

r r[1) [2)X(A2) :=

r

r

r r

@@ ��
�� @@

∅)

[[1)) [[2))

[[1), [2))

Pi(X(A2)) :=

Figure 5. The order of the irreducible deductive systems of A2.

Observe that A2 is a Stonean Hilbert algebra, neither local nor subdirectly
irreducible.

Example III.

A3:=

→ 0 1 2 3 4

0 4 4 4 4 4
1 0 4 4 4 4
2 0 3 4 3 4
3 0 2 2 4 4
4 0 1 2 3 4
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Figure 6. The natural order of A3.

X(A3) =
{

(0]∁, (2]∁, (3]∁
}

= {[1), [3), [2)}. In this example, X(A3) has a maxi-
mum but it does not have a minimum.
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[[2), [3))

Pi(X(A3)) :=

Figure 7. The order of X(A3).

Example IV. A bounded Hilbert algebra with supremum which is not Stonean.

A4:=

→ 0 1 2 3 4 5

0 5 5 5 5 5 5
1 2 5 2 5 5 5
2 1 1 5 3 5 5
3 0 1 2 5 5 5
4 0 1 2 3 5 5
5 0 1 2 3 4 5

r

r

r r

@@ ��
�� @@

r

r

0

1 2

3

4

5

r

r

r r

@@ ��

[5)

[1) [2)
[4)

Figure 8. The natural order of A4 and X(A4).
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5. Dual space of a Stonean Hilbert algebra

Next we characterize Stone H∨
0
-algebra in terms of its dual H∨

0
-space, more pre-

cisely, in terms of the inclusion order of its irreducible deductive systems.

Theorem 9. The dual H∨
0
-algebra of a H∨

0
-space X := 〈X,≤, τK〉 is a Stone

H∨
0
-algebra iff in case X has a minimum then it has a maximum and, in case X

does not have a minimum then the poset X r {m} (m, if any, is the top element
of X) is a direct sum of a family {Xi : i ∈ I} of disjoint posets (Xi ∩Xj = ∅ for
i, j ∈ I with i 6= j) such that each Xi has a maximum mi. This means that for
x, y ∈ X to be comparable, they have to belong to the same Xi. In symbols,

X =
˙⋃

i∈I
Xi, X :=

⊕

i∈I

Xi.

Proof. For the sufficiency part, based on Theorem 2, it is enough to prove the
result for the H∨

0
-algebra Pi(X). So let U ∈ Pi(X). We consider two cases:

Case 1. X does not have a top element. Clearly,

U =
˙⋃

j∈J
(U ∩Xj) some J ⊆ I.

Then

¬U = U → ∅ =
(

U ∩ ∅∁
]∁

= (U ∩X]∁ = (U ]∁ =

(

˙⋃

j∈J
(U ∩Xj)

]∁

=
˙⋃

j 6∈J
Xj

and

¬¬U = ¬U → ∅ =

(

˙⋃

j 6∈J
Xj

]∁

=

(

˙⋃

j 6∈J
Xj

)∁

=
˙⋃

j∈J
Xj .

So, ¬U ∪ ¬¬U = ˙⋃
i∈IXi = X.

Case 2. X has a top element m. In this case it is enough to observe that, as
m ∈ U ∈ Pi(X) then ¬U = U → ∅ = (U ∩ ∅∁]∁ = (U ]∁ = X∁ = ∅ and obviously,
¬¬U = X so, ¬U ∪ ¬¬U = ∅ ∪X = X.

For the necessity we have into account Proposition 5. Just observe that if
the order on X(A) does not look like the direct sum just described then there
exist two distinct co-atoms x, y ∈ X(A) and a third element z ∈ X(A) such that
z ≤ x, y. Then, ([x) ∩ [y)] = ∅ whereas ∅ 6= (z] ⊆ ([x)] ∩ ([y)].

Corollary 10. The H∨-space described in the previous theorem has a top element
m iff the corresponding Stone H∨

0
-algebra is local.

Corollary 11. Let A ∈ H∨
0
. Then A is Stonean iff, ∀P ∈ X(A) one of the

following things occurs:
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(i) P * D(A),

(ii) P ⊆ D(A).

In the first case, A is not a local Hilbert algebra. In the second case, A is a local
Hilbert algebra.

Proof. It is known that D(A) =
⋂

Max(A) where Max(A) denotes the set of
all maximal filters of A (see [1]). If A is local, it is off course Stonean and in this
case, D(A) is the unique maximal filter of A.

Proposition 12. A Stone H∨
0
-algebra A is sub-directly irreducible iff its dual

space X has a minimum and consequently, | I |= 1.

Proof. It follows at once from Theorem 9 and Corollary 8.

Proposition 13. Any sub-directly irreducible Stonean Hilbert algebra A is local.

Proof. By Proposition 7, A has a co-atom, name it e. If A is not local, then
D(A) 6= A r {0}. Choose a 6∈ D(A) such that a 6= 0. Note that ¬a = 1 =⇒
a ≤ ¬¬a = 0 =⇒ a = 0. So ¬a ≤ e. Note also that ¬¬a = 1 =⇒ ¬a = 0. So
1 = ¬a ∨ ¬¬a ≤ e, a contradiction.

Remark. The converse of the previous proposition is not true, the Stone-H∨
0

algebra A3 of example III is local but not sub-directly irreducible.

It is clear that Stonean Hilbert algebras form a subvariety of the variety
of bounded Hilbert algebra with supremum. We call the H∨

0
-spaces referred in

Theorem 9, Stone H-spaces and we denote this class of H-spaces by Hst-spaces.
Summing up, we have that the Hst-space that corresponds to a local Stonean

Hilbert algebra has to have a maximum and if it corresponds to a sub-directly
irreducible Stonean Hilbert algebra, must have a minimum. The Hst-space of a
non-local Stonean Hilbert algebra must be the disjoint union (direct sum) of at
least two Hst-spaces corresponding to local Stonean Hilbert algebras. In partic-
ular, it possesses neither maximum nor minimum. In case it possess minimum
but not maximum, it does not even correspond to a Stonean Hilbert algebra.

6. H-partial functions

We begin this section extending the concept of H-partial function for H∨-spaces
given in [4] to H∨

0
-spaces. Let X1 := 〈X1;≤, τK1

〉 and X2 := 〈X2;≤, τK2
〉 be two

H∨
0
-spaces.

Definition 4. A partial map f : X1 −→ X2 with domain denoted by dom(f) is
said to be a H0-partial function if the following conditions are satisfied:
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(i) [f(x)) = f([x)) for each x ∈ dom(f);

(ii) [x) ∩ dom(f) = ∅ for each x 6∈ dom(f) and (x] ⊆ dom(f) if x ∈ dom(f);

(iii) (f−1(U)] ∈ K1 for each U ∈ K2 r {X2};

(iv) f−1(X2) = X1.

Conditions (i) and (iii) of this definition are conditions (1) and (3) of Definition
6.1 in [4]; our condition (ii) make more precise condition (2) of the mentioned
definition.

The variety H∨
0
may be viewed as the category with objects the H∨

0
-algebras

and morphisms the algebraic homomorphisms (they must preserve 0). Following
the ideas of Celani and Montangie in [4], it is easy to show that this category and
the category with objects the H∨

0
-spaces and morphisms the H0-partial functions

are dually equivalent. The details of this duality can be consulted in [4]. Here
we will describe the dual space of a given H∨

0
-algebra and the dual algebra of a

given H∨
0
-space.

Let A ∈ H∨
0
. For a ∈ A define

ϕ(a) := {P ∈ X(A) : a ∈ P}.

It has been shown that KA := {ϕ(a)∁ : a ∈ A} is a basis for a topology τKA
on

X(A) and X(A) := 〈X(A);⊆,KA〉 is an H∨
0
-space called the dual space of A.

For a given H∨
0
-space X = 〈X;≤,K〉 consider the set D(X) := {U ∁ : U ∈ K}.

Then, D(X) := 〈D(X);⇒,∪,X〉 with the operation ⇒ given by the formula

U ⇒ V :=
(

U ∩ V ∁
]∁

= {x ∈ X : [x) ∩ U ⊆ V }

is an H∨
0
-algebra which is called the dual H∨

0
-algebra of X.

Let h : A1 −→ A2 be an homomorphism of H∨
0
-algebras. Then, the map

hX : X(A2) −→ X(A1) given by the formula

hX(P ) = h−1(P )

is an H0-partial function with domain {P ∈ X(A2) : h−1(P ) ∈ X(A1)} called
the dual H0-partial function of h.

Let f : X1 −→ X2 be an H0-partial function. Then, the map fD : D(X2) −→
D(X1) given by the formula

fD(U) =
(

f−1

(

U ∁
)]∁

is a homomorphism of H∨
0
-algebras called the dual homomorphism of f .

The following results were proved in [14] for X a H∨-space; they remain valid
when considering X to be a H∨

0
-space.
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Proposition 14 (Proposition 8, [14]). Let X := 〈X;≤, τK〉 be a H∨
0
-space. Then,

the image im(g) of an H0-partial endomorphism g of X is an increasing set and
if g is idempotent then its domain, dom(g), is equal to (im(g)]. Consequently, if
t ∈ dom(g), t ≤ g(t).

Corollary 15 (Corollary 9, [14]). Let X := 〈X;≤, τK〉 be a H∨
0
-space. Let f and

g be idempotent H0-partial endomorphisms of X. Then f = g iff im(f) = im(g).

Proposition 16. Let X = 〈X,≤ τK〉 be a Stone H-space (Hst-space) and let
U ∈ K. For x ∈ X such that U ∁ ∩ [x) 6= ∅, define fU (x) = m where m is the
unique maximal element of X \ {u} (u is the maximum of X if any) above x.
Then fU is an idempotent H0-partial endomorphism.

Proof. To see that fU is well defined we recall that U ∁ is an increasing set and
since U ∁∩ [x) 6= ∅, then taking into account the order structure of X described in
Theorem 9, there is a unique maximal element m of X such that x ≤ m. Clearly,
fU is idempotent and if x ∈ dom(fU ), fU ([x)) = [fu(x)) = {m}. Let x 6∈ dom(fU )
and t ∈ [x). Then [t) ∩ U ∁ ⊆ [x) ∩ U ∁ = ∅ which means that t 6∈ dom(fU ). This
shows that [x) ∩ dom(fU ) = ∅. Finally, it is easy to check that if V ∈ K then
f−1

U (V ) = (U ∁ ∩ V ] ∈ K.

Conclusion and future research. In this paper we have characterized the
sub-directly irreducible Stonean Hilbert algebras and we have described the dual
H∨

0
-space of a Stonean Hilbert algebra. The relation between a universal algebra

and the monoid of its endomorphisms was considered first in [19]. A bounded
Hilbert algebra with supremum generated by finite chains is determined by the
monoid of their endomorphisms (see [14]). In achieving such a result, the equiva-
lence between the category of H∨-spaces with morphismsH-partial functions and
the category of bounded Hilbert algebras with morphisms the algebraic homo-
morphisms was a powerful tool. It follows from Theorem 9 that Hilbert algebras
generated by finite chains are Stonean Hilbert algebras. The class of H0-partial
endomorphisms of Stone H-spaces exhibited in Proposition 16, we think, will be
very useful to determine up to what extent a Stonean Hilbert algebra is deter-
mined by the monoid of its endomorphisms; for instance, it follows from Proposi-
tion 14 and Corollary 15 that if A is a Stonean Hilbert algebra, the constant map
with image {1} is an (idempotent) endomorphism iff A is subdirectly irreducible.
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