
Discussiones Mathematicae
General Algebra and Applications 45 (2025) 71–100
https://doi.org/10.7151/dmgaa.1472

k-IDEALS AND k-{+}-CONGRUENCES OF CORE

REGULAR DOUBLE STONE ALGEBRAS

Sanaa El-Assar, Abd El-Mohsen Badawy

Tahany El-Sheikh and Eman Gomaa1

Department of Mathematics

Faculty of Science, Tanta University, Egypt

e-mail: sanaa.elassar@science.tanta.edu.eg
abdel-mohsen.mohamed@science.tanta.edu.eg
tahany.elshaikh@science.tanta.edu.eg
eman.gomaa@science.tanta.edu.eg

Abstract

In this paper, the authors study many interesting properties of ideals and
congruences of the class of all core regular double Stone algebras (briefly
CRD-Stone algebras). We introduce and characterize the concepts of k-
ideals and principal k-ideals of a core regular double Stone algebra with
the core element k and establish the algebraic structures of such ideals.
Also, we investigate k-{+}-congruences and principal k-{+}-congruences of
a CRD-Stone algebra L which are induced by k-ideals and principal k-ideals
of L, respectively. We obtain an isomorphism between the lattice of k-ideals
(principal k-ideals) and the lattice of k-{+}-congruences (principal k-{+}-
congruences) of a CRD-Stone algebra. We provide some examples to clarify
the basic results of this article.
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1. Introduction

The concept of psudo-complement was considered in semi-lattices and distributive
lattices by Frink [23] and Birkhof [13], respectively. The class S of Stone algebras
was studied and characterized by several authors, like, Badawy [1], Chain and

1Corresponding author.

https://doi.org/10.7151/dmgaa.1472


72 S. El-Assar, A. Badawy, T. El-Sheikh and E. Gomaa

Grätzer [19, 20], Grätzer [24], Frink [23], Balbes [14] and Katrinák [26]. Reg-
ular double p-algebras and regular double Stone algebras are characterized by
Katrinák [26] and Comer [22], respectively.

The intersection of the set D(L) of dense elements and the set D(L) of
dual dense elements of a double Stone algebra L is called the core of L and
denoted by K(L). In a regular double Stone algebra L, the core K(L) is ei-
ther an empty set or a singleton set, if a regular double Stone algebra L has
a non-empty core, then such a core K(L) has exactly only one element, which
is denoted by k. Ravi Kumar et al. [28] introduced some properties of core
regular double Stone algebra. Srikanth et al. [29] and [30] studied many prop-
erties of ideals (filters) and congruences of a core regular double Stone algebra,
respectively. Badawy et al. [10] constructed a double Stone algebra from a Stone
quadruple. Badawy [3] constructed each core regular Stone algebra from a suit-
able Boolean algebra B = (B;∨,∧,′ , 0, 1). The constructing CRD-Stone algebra
(B[2];∨,∧,∗ ,+ , (0, 0), (1, 1)) with the core element (0, 1), where

B[2] = {(x, y) ∈ B ×B : x ≤ y},
(x, y) ∧ (x1, y1) = (x ∧ x1, y ∧ y1),
(x, y) ∨ (x1, y1) = (x ∨ x1, y ∨ y1),

(x, y)∗ = (y′, y′),
(x, y)+ = (x′, x′).

In Section 2, We list the basic concepts and important results which are
needed throughout this paper. Also, we provide some examples of RD-Stone
algebras with core element k and RD-Stone algebras with empty core. We refer
the reader to [4, 8, 9, 11, 16] and [17] for filters, ideals and [2, 7, 12] for congruences
of lattices and p-algebras.

In Section 3, we introduce the k-ideals of a CRD-Stone algebra L and obtain
many related properties. A set of equivalent conditions for an ideal I of a CRD-
Stone algebra L to become a k-ideal is given. We observe that the class Ik(L) of
all k-ideals of L forms a bounded distributive lattice.

In Section 4, we define and characterize the concept of principal k-ideals of a
CRD-Stone algebra L. We show that the class Ipk(L) of all principal k-ideals of
L is a Boolean ring and so a Boolean algebra. Example 25 describes the Boolean
algebra Ipk(L).

In Section 5, we investigate the k-{+}-congruences via k-ideals of a CRD-
Stone algebra L. Also, we observe that the set Con+k (L) of all k-{

+}-congruences
forms a bounded distributive lattice which is isomorphic to the lattice Ik(L) of
k-ideals.

In Section 6, we investigate and charaterize the principal k-{+}-congruences
of a CRD-Stone algebra L via principal k-ideals of L. Then, we study the
properties and the algebraic structure of the class Conpk(L) of all principal k-{

+}-
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congruences of L. Moreover, we show that Ipk(L) and Conpk(L) are isomorphic
Boolean algebras. We give Example 42 to clarify the last result.

2. Preliminaries

In this section, we recall certain definitions and results which are used throughout
the paper, which are taken from the references [1, 5, 15, 22, 24, 28, 29] and [31].

Definition 1 [20]. An algebra (L;∧,∨) of type (2, 2) is said to be a lattice if

(1) the operations ∧,∨ are idempotent, commutative and associative,

(2) the absorption identities hold on L, that is, (a ∧ b) ∨ a = a, (a ∨ b) ∧ a = a
for all a, b ∈ L.

Definition 2 [15]. A lattice L is called a bounded if it has the greatest element
1 and the smallest element 0.

Definition 3 [18]. A lattice L is called a distributive lattice if it satisfies either
of the following equivalent distributive laws:

(1) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),

(2) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), for all a, b, c ∈ L.

Definition 4 [29]. A nonempty subset I of a lattice L is called an ideal if

(1) x ∨ y ∈ I for all x, y ∈ I,

(2) x ∈ I and z ∈ L be such that z ≤ x imply z ∈ I.

Definition 5 [24]. If φ 6= A ⊆ L, then (A] is the smallest ideal of a lattice
L which contains A, where (A] = {x ∈ L : x ≤ a1 ∨ a2 ∨ · · · ∨ an, ai ∈ A,
i = 1, 2, . . . , n}.

The case that A = {a}, we write (a] instead of ({a}] and (a] is called the
principal ideal of L generated by a, where (a] = {x ∈ L : x ≤ a}.

Let I(L) be the set of all ideals of a lattice L. Then (I(L);∧,∨) forms a
lattice, where

I ∧ J = I ∩ J and I ∨ J = {x ∈ L : x ≤ i ∨ j : i ∈ I, j ∈ J}.

Also, algebra (Ip(L);∨,∧) of all principal ideals of L is a sublattice of the lattice
I(L), where

(a] ∨ (b] = (a ∨ b] and (a] ∧ (b] = (a ∧ b].

It is known that the lattice I(L) is distributive if and only if L is distributive.
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Definition 6 [20]. For any element a of a bounded lattice L, the dual pseudo-
complement a+ (the pseudo- complement a∗) of a is defined as follows

a ∨ x = 1 ⇔ a+ ≤ x (a ∧ x = 0 ⇔ x ≤ a∗).

Definition 7 [24]. A distributive lattice L in which every element has a pseu-
docomplement is called a distributive pseudo-complemented lattice or a distribu-
tive p-algebra. Dually, a distributive lattice L in which every element has a dual
pseudocomplement is called a distributive dual pseudocomplement lattice or dual
distributive p-algebra.

Definition 8 [5]. A distributive p-algebra (distributive dual p-algebra) L is called
a Stone algebra (dual Stone algebra) if x∗∨x∗∗ = 1 (x+∧x++ = 0) for all x ∈ L.

Theorem 1 [20]. Let L be a distributive p-algebra (distributive dual p-algebra).
Then for any two elements a, b of L, we have

(1) 0∗∗ = 0 and 1∗∗ = 1 (0++ = 0 and 1++ = 1),

(2) a ∧ a∗ = 0 (a ∨ a+ = 1),

(3) a ≤ b implies b∗ ≤ a∗ (a ≥ b implies b+ ≥ a+),

(4) a ≤ a∗∗ (a++ ≤ a),

(5) a∗∗∗ = a∗ (a+++ = a+),

(6) (a ∨ b)∗ = a∗ ∧ b∗ ((a ∧ b)+ = a+ ∨ b+),

(7) (a ∧ b)∗ = a∗ ∨ b∗ ((a ∨ b)+ = a+ ∧ b+),

(8) (a ∨ b)∗∗ = a∗∗ ∨ b∗∗ ((a ∧ b)++ = a++ ∧ b++),

(9) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗ ((a ∨ b)++ = a++ ∨ b++).

Definition 9 [20]. A Double Stone-algebra L is an algebra 〈L,∗ ,+ 〉, where

(i) (L,∗ ) is a Stone algebra,

(ii) (L,+ ) is a dual Stone algebra.

Definition 10 [22]. A regular double Stone algebra (briefly RD-Stone algebra)
L is a double Stone such that

x∗∗ = y∗∗ and x++ = y++ imply x = y.

Let L be a double Stone algebra. The element a ∈ L is called a closed
element of L if a∗∗ = a and the element a ∈ L is called a dual closed element of
L if a++ = a. An element d ∈ L is called dense if d∗ = 0 and an element d ∈ L
is called dual dense if d+ = 1.

Lemma 2 [29]. Let L be a double Stone algebra. Then
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(1) the set D(L) = {a ∈ L | a∗ = 0} = {a ∨ a∗ | a ∈ L} of all dense elements of

L is a filter of L,

(2) the set D(L) = {a ∈ L | a+ = 1} = {a ∧ a+ | a ∈ L} of all dual dense ele-

ments of L is an ideal of L,

(3) the set B(L) = {a∗ : a ∈ L} = {a+ : a ∈ L} of all closed elements of L
forms a Boolean subalgebra of L,

(4) the set K(L) = D(L) ∩ D(L) is called the core of L, we have two cases of

K(L), namely, K(L) = φ or K(L) 6= φ.

It is easy to show the proof of the following two lemmas.

Lemma 3. The non empty core K(L) of a RD-Stone algebra L has exactly one

element.

Definition 11. A regular double Stone algebra with non empty core is called a
core regular double Stone algebra (briefly CRD-Stone algebra).

Lemma 4. Let L be a CRD-Stone algebra with the core k. Then

(1) D(L) = [k), that is, D(L) is a principal filter of L generated by k,

(2) D(L) = (k], that is, D(L) is a principal ideal of L generated by k.

We use k for the core element of a CRD-Stone algebra L, that is,K(L) = {k}.
Now, we give examples of CRD-Stone algebras and RD-Stone algebras with
empty core.

Example 5. (1) Let L = {0, x, y, 1 : 0 < x < y < 1} be the four element chain. It
is clear that 〈L,∗ ,+ 〉 is a double Stone algebra, where x∗ = y∗ = 1∗ = 0, 0∗ = 1
and 0+ = x+ = y+ = 1, 1+ = 0. Then K(L) = D(L) ∩ D(L) = {x, y, 1} ∩
{x, y, 0} = {x, y} is a non empty core. We observe that L is not regular as
x++ = y++ and x∗∗ = y∗∗, but x 6= y.

(2) The double Stone algbra S3 = {0, k, 1 : 0 < k < 1} is the smallest non
trival core regular double Stone algebra with core k, (S3 is called the discrete
CRD-Stone algebra).

(3) Every Boolean algebra (B;∨,∧,′ , 0, 1) can be regarded as a RD-Stone
algebra with empty core, where x∗ = x+ = x′, for all x ∈ B and K(B) =
{1} ∩ {0} = φ.

Example 6. (1) Consider the bounded distributive lattice S9 in Figure 1. It
is clear that L1 is a core regular double Stone algebra with core element k,
where k∗ = 1∗ = y∗ = x∗ = 0, c∗ = a∗ = b, d∗ = b∗ = a, 1∗ = 0 and
k+ = c+ = d+ = 0+ = 1, b+ = y+ = a, x+ = a+ = b, 0+ = 1.

(2) Consider the bounded distributive lattice L1 in Figure 2. We observe that
L1 is a regular double Stone algebra with empty core as K(L) = D(L1)∩D(L1) =
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{d, 1} ∩ {0, y} = φ, where 0∗ = d∗ = 1∗, c = x∗, x = c∗ = y∗, 1 = 0∗ and 0 = 1+,
c = x+ = d+, x = c+, 1 = y+ = 0+.

Figure 1. S9 is a CRD-Stone algebra with core k.

Figure 2. L1 is a RD-Stone algebra with empty core.

Lemma 7. If L is a CRD-Stone algebra with core element k, then every element

x of L can be written by each of the following formulas:
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(1) x = x∗∗ ∧ (x++ ∨ k) and its dual x = x++ ∨ (x∗∗ ∧ k),

(2) x = x∗∗ ∧ (x ∨ k) and its dual x = x++ ∨ (x ∧ k).

Definition 12 [20]. An equivalent relation θ on a lattice L is called a lattice
congruence on L if (a, b) ∈ θ and (c, d) ∈ θ implies (a∨c, b∨d) ∈ θ and (a∧c, b∧d)
∈ θ.

Theorem 8 [24]. An equivalent relation on a distributive lattice L is a lattice

congruence on L if and only if (a, b) ∈ θ implies (a∨z, b∨z) ∈ θ and (a∧z, b∧z) ∈ θ
for all z ∈ L.

Definition 13. A lattice congruence θ on a dual Stone (Stone) algebra L is called
a {+}-congruence ({∗}-congruence) if (a, b) ∈ θ implies (a+, b+) ∈ θ ((a, b) ∈ θ
implies (a∗, b∗) ∈ θ).

Definition 14. A lattice congruence θ on a double Stone algebra L is called a
congruence (or {∗,+ }-congruence) if (a, b) ∈ θ implies (a∗, b∗) ∈ θ and (a+, b+) ∈
θ.

A binary relation Ψ+ defined a double Stone algebra L by

(x, y) ∈ Ψ+ ⇔ x+ = y+

is a {+}-congruence relation which is called the dual Glivenko congruence relation
on L. It is known that the quotient lattice L/Ψ = {[x]Ψ : x ∈ L} is a Boolean
algebra and L/Ψ ∼= B(L), where [x]Ψ = {y ∈ L : y+ = x+} is the congruence
class of x modulo Ψ. Moreover, the element x++ is the smallest element of the
congruence class [x]Ψ, [0]Ψ = D(L) and [1]Ψ = {1}.

For a double Stone algebra L, we use Con(L) to denote the lattice of all
congruence of L and Con+(L) to denote the lattice of all {+}-congruence of a
dual Stone algebra (L,+ ). Also, we use ∇L and ∆L for the universal congruence
L× L and equality congruence {(x, x) : x ∈ L} of L, respectively.

Definition 15 [15]. A lattice congruence θ on a lattice L is called a principal con-
gruence and is doneted by θ(a, b) if θ is the smallest congruence on L containing
a, b on the same class.

Theorem 9 [15]. If L is a distributive lattice and a, b ∈ L then the principal

congruence θ(a, b) of L is given by

(1) (x, y) ∈ θ(a, b) ⇔ x ∨ a ∨ b = y ∨ a ∨ b and x ∧ a ∧ b = y ∧ a ∧ b,

(2) If a ≤ b, then (x, y) ∈ θ(a, b) ⇔ x ∨ b = y ∨ b and x ∧ a = y ∧ a,

(3) (x, y) ∈ θ(0, b) ⇔ x ∨ b = y ∨ b.

Throughout the paper, we will use L for a CRD-Stone algebra and k for the
core element of L. For more information we refer the reader to [25, 32] for Stone
algebras, [33] for double Stone algebras, [22] for regular double Stone algebras
and [6, 21, 28, 29, 30] for core regular double Stone algebras.
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3. k-ideals of CRD-Stone algebras

In this section, we define the notion of k-ideal of a CRD-Stone algebra L and
introduce many basic properties of such ideals. A characterization of a k-ideal
of a CRD-Stone algebra L is given. Also, we observe that the class Ik(L) of all
k-ideals of L forms a bounded distributive lattice.

Definition 16. An ideal I of a CRD-Stone algebra L with core k is called a
k-ideal if k ∈ I.

Let A be a non empty subset of a CRD-Stone algebra L. Consider A▽ as
follows

A▽ =
{

x ∈ L : x++ ≤ a++ ∨ k, for some a ∈ A
}

.

Lemma 10. Let A be a non empty subset of a CRD-Stone algebra L, which is

closed under ∨. Then A▽ is a k-ideal of L containing A.

Proof. Clearly 0, k ∈ (A)▽. Let x, y ∈ (A)▽. Thus x++ ≤ a++ ∨ k, y++ ≤
b++ ∨ k for some a, b ∈ A. Then (x ∨ y)++ ≤ (a ∨ b)++ ∨ k and a ∨ b ∈ A, imply
x∨ y ∈ (A)▽. Now, let x ∈ L, y ∈ (A)▽ and x ≤ y. Then x++ ≤ y++ ≤ a++ ∨ k.
So x ∈ (A)▽. Thus (A)▽ is k-ideal of L. Since, a++ ≤ a++ ∨ k, forall a ∈ A,
then A ∈ A▽.

Lemma 11. Let A, B be two subsets of a CRD-Stone algebra L, which are closed

under ∨. Then

(1) (A]▽ = A▽,

(2) A ⊆ B ⇒ A▽ ⊆ B▽,

(3) A▽ = (A] ∨D(L),

(4) A▽▽ = A▽.

Proof. (1) Since A is closed with respect to ∨, then for a ∈ (A], we have a ≤
a1 ∨ a2 ∨ · · · ∨ an ∈ A, ai ∈ A, i = 1, 2, . . . , n. Immediately, we get

(a]▽ = {x ∈ L : x++ ≤ a++ ∨ k, for some a ∈ (A]}

= {x ∈ L : x++ ≤ (a1 ∨ a2 ∨ · · · ∨ an)
++ ∨ k, a1 ∨ a2 ∨ · · · ∨ an ∈ A} = A▽.

(2) Suppose A ⊆ B and x ∈ A▽. Then x++ ≤ a++ ∨ k for some a ∈ A ⊆ B.
It follows that x ∈ B▽. Thus A▽ ⊆ B▽.
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(3) Since (A] ⊆ (A]▽ = A▽ by (1) andD(L) = (k] ⊆ A▽, then (A]▽∨D(L) ⊆
A▽. Conversely, let x ∈ A▽. Then x++ ≤ a++ ∨ k for some a ∈ A. We have

x = x++ ∨ (x ∧ k) ≤ (a++ ∨ k) ∨ (x ∧ k) (by Lemma 7.(2))

= (a++ ∨ k ∨ x) ∧ (a++ ∨ k) (by distributivity of L)

= a++ ∨ k ≤ a ∨ k ∈ (a ∨ k]

⇒ x ∈ (a ∨ k] = (a] ∨ (k] = (a] ∨D(L) ⊆ (A] ∨D(L)

((as (a] ⊆ (A]).)

Therefore A▽ = (A] ∨D(L).

(4) By the definition of A▽, we have

A▽▽ = {x ∈ L : x++ ≤ a++
1 ∨ k, for some a1 ∈ A

▽}

= {x ∈ L : x++ ≤ a++
1 ∨ k, a++

1 ≤ a++ ∨ k for some a ∈ A}

= {x ∈ L : x++ ≤ a++ ∨ k, for some a ∈ A} = A▽.

A characterization of k-ideals of a CRD-Stone algebra L is given in the
following.

Theorem 12. Let I be an ideal of a CRD-Stone algebra L with core k. Then

the following statements are equivalent:

(1) I is a k-ideal of L,

(2) D(L) ⊆ I,

(3) x ∧ x+ ∈ I, for all x ∈ L,

(4) I = I▽.

Proof. (1)⇒(2) Let I is a k-ideal of L. Then k ∈ I implies D(L) = (k] ⊆ I.

(2)⇒(3) Let D(L) ⊆ I. Forall x ∈ L, we have x ∧ x+ ∈ D(L) ⊆ I.

(3)⇒(4) By Lemma 10, I ⊆ I▽. For the converse, let y ∈ I▽. Then y++ ≤
i++ ∨ k, for some i ∈ I. Thus y++ ≤ i++. By Lemma 7(2) y = y++ ∨ (y ∧ k) ≤
i++ ∨ (y ∧ k). By (3), k = k ∧ k+ ∈ I, where k+ = 1. Since, i++, y ∧ k ∈ I, then
i++ ∨ (y ∧ k) ∈ I and hence y ∈ I.

(4)⇒(1) Since k ∈ I▽, Lemma 10. Then by (4), k ∈ I and hence I is a
k-ideal of a CRD-Stone algebra L.

As a consequence of Lemma 11 and Theorem 12, we invistigate the following
Corollary 13 and Lemma 14, respectively.

Corollary 13. For any two ideals I, J of a CRD-Stone algebra L, we have the

following:
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(1) I ⊆ J ⇒ I▽ ⊆ J▽,

(2) I▽▽ = I▽.

Lemma 14. Let L be a CRD-Stone algebra L. Then

(1) I▽ = I ∨D(L),

(2) D(L) is the smallest k-ideal of L,

(3) Every k-ideal of L can be expresed in the form I▽ for some I ∈ I(L).

Let Ik(L)={I : I is a k–ideal of L}= {I▽ : I ∈ I(L)} be the set of all
k-ideals of L.

Theorem 15. Let L be a CRD-Stone algebra L. Then for all I, J ∈ I(L)

(1) (I ∨ J)▽ = I▽ ∨ J▽,

(2) (I ∩ J)▽ = I▽ ∩ J▽.

Proof. (1) Since I, J ⊆ I ∨ J . Then by Corollary 13(1), I▽, J▽ ⊆ (I ∨ J)▽.
Thus, (I ∨ J)▽ is an upper bound of I▽ and J▽. Let H▽ be an upper bound of
both I▽ and J▽ for some H ∈ Ik(L). Then I▽, J▽ ⊆ H▽ implies I, J ⊆ H▽.
Hence, I ∨ J ⊆ H▽. Therefore, by Corollary 13(1) and (2), we get (I ∨ J)▽ ⊆
H▽▽ = H▽. This deduce that (I ∨J)▽ is the least upper bound of both I▽ and
J▽ in Ik(L). Then (I ∨ J)▽ = I▽ ∨ J▽.

(2) Obviously, (I ∩ J)▽ ⊆ I▽ ∩ J▽. Conversely, let x ∈ I▽ ∩ J▽. Then
x++ ≤ i++ ∨ k and x++ ≤ j++ ∨ k for some i ∈ I and j ∈ J . Hence x++ ≤
(i++∨k)∧ (j++∨k) = (i++∧ j++)∨k = (i∧ j)++∨k. It yields that x ∈ (I∩J)▽

as i ∧ j ≤ i, j imples i ∧ j ∈ I ∩ J . Therefore I▽ ∩ J▽ ⊆ (I ∩ J)▽.

Theorem 16. The class Ik(L) of all k-ideals of a CRD-Stone algebra L forms

a bounded distributive lattice and {1}-sublattice of I(L).

Proof. From Theorem 15, (Ik(L);∨,∧) is a sublattice of the lattice I(L), where

(I ∨ J)▽ = I▽ ∨ J▽ and (I ∩ J)▽ = I▽ ∩ J▽ for all I, J ∈ I(L).

Then (Ik(L);∨,∧) is sublattice of I(L). Since I(L) is a distributive lattice,
then Ik(L) is also distributive. Since D(L) and L are the smallest and the great-
est members of Ik(L), respectively. Then (Ik(L);∨,∧,D(L), L) is a bounded
distributive lattice on its own and hence a {1}-sublattice of I(L).

4. Principal k-ideals of a CRD-Stone algebra

In this section, we introduce the concept of principal k-ideals of a CRD-Stone
algebra L and investigate many elegant properties of such ideals. A characteri-
zation of a k-ideal of L is given via the principal k-ideals. It is observed the set
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of all principal k-ideals of a CRD-Stone algebra L is a Boolean ring and so a
Boolean algebra.

Now, let A = {a} be a subset of a CRD-Stone L. Then ready is seen that

{a}▽ =
{

x ∈ L : x++ ≤ a++ ∨ k
}

.

For brevity, set (a)▽ instead of {a}▽. Clearly, (0)▽ = D(L) and (1)▽ = L, are
the smallest and the greatest k-ideals of L, respectively.

Definition 17. A k-ideal I of a CRD-Stone algebra L is called a principal k-ideal
of L if I is a principal ideal of L.

Theorem 17. Let L be a CRD-Stone algebra. Then for any x, y ∈ L, we get

(1) y ∈ (x)▽ ⇔ y+ ∨ x = 1,

(2) (x)▽= (x++ ∨ k] = (x++] ∨D(L), this is, (x)▽ is a principal k-ideal of L,

(3) x ∈ D(L) ⇔ (x)▽ = D(L).

Proof. (1) Let y ∈ (x)▽. Then, we have

y++ ≤ x++ ∨ k ⇔ y+ ≥ x+

⇔ y+ ∨ x = 1. (by Definition 6)

(2) For all x ∈ L, we get

(x)▽ = {y ∈ L : y++ ≤ x++ ∨ k}

= {y ∈ L : y++ ∨ (y ∧ k) ≤ x++ ∨ k ∨ (y ∧ k)}

= {y ∈ L : y ≤ x++ ∨ k} (by Lemma 7(2) and Definition 1(2))

= (x++ ∨ k]

= (x++] ∨ (k] = (x++] ∨D(L).

(3) Let x ∈ D(L). Then x+ = 1. Now,

(x)▽ = (x++ ∨ k] (by(2))

= (0 ∨ k] = (k] = D(L).

The second implication is clear.

More interesting properties of principal k-ideals are given in the following
two lemmas.

Lemma 18. Let L be a CRD-Stone algebra L. Then for any x, y ∈ L, we have

(1) (x)▽▽ = (x)▽,
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(2) (x]▽ = (x)▽,

(3) x ∈ (y)▽ ⇔ (x)▽ ⊆ (y)▽,

(4) x ≤ y ⇒ (x)▽ ⊆ (y)▽.

Lemma 19. Let L be a CRD-Stone algebra L. For any x, y ∈ L, we have

(1) (x)▽ = (x++)▽,

(2) (x ∧ y)▽=(x)▽ ∩ (y)▽,

(3) (x ∨ y)▽ = (x)▽ ∨ (y)▽,

(4) (x ∨ x+)▽ = (1)▽ = L,

(5) (x ∧ x+)▽ = D(L).

Proof. (1) (x)▽ = {y ∈ L : y++ ≤ x++ ∨ k = (x++)++ ∨ k} = (x++)▽, as
x++++ = x++.

(2) By Theorem 17.(2), we get

(x ∧ y)▽ = ((x ∧ y)++] ∨D(L)

= ((x++ ∧ y++)] ∨D(L)

= ((x++] ∩ (y++]) ∨D(L)

= ((x++] ∨D(L)) ∩ ((y++)] ∨D(L)) (by distributivity of I(L))

= (x)▽ ∩ (y)▽.

(3) By Theorem 17(2), we get

(x ∨ y)▽ = ((x ∨ y)++] ∨D(L)

= ((x+ ∧ y+)+] ∨D(L)

= (x++ ∨ y++] ∨D(L)

= ((x++] ∨ (y++]) ∨D(L)

= ((x++] ∨D(L)) ∨ ((y++)] ∨D(L)) (by distributivity of I(L))

= (x)▽ ∨ (y)▽.

(4) Since x ∨ x+, we get (x ∨ x+)▽ = (1] = L.

(5) Since x ∧ x+ ∈ D(L), then by Theorem 17(3), (x ∧ x+)▽ = D(L).

Lemma 20. Let L be a CRD-Stone algebra L. For any x, y ∈ L, we have

(1) (x)▽ = (y)▽ ⇔ x++ = y++⇔ x+ = y+,

(2) (x)▽ = (y)▽ ⇒ (x ∧ z)▽ = (y ∧ z)▽, ∀z ∈ L,

(3) (x)▽ = (y)▽ ⇒ (x ∨ z)▽ = (y ∨ z)▽, ∀z ∈ L.
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Now, we introduce the following important result.

Theorem 21. Every principal k-ideal of L can be expressed as (x)▽ for some

x ∈ L.

Proof. Let (x] be a principal k-ideal of L. We claim that (x] = (x)▽. Since
x ∈ (x)▽ then (x] ⊆ (x)▽. For the converse, let y ∈ (x)▽. Then

y ∈ (x)▽ ⇒ y++ ≤ x++ ∨ k

⇒ y++ ∨ (y ∧ k) ≤ (x++ ∨ k) ∨ (y ∧ k) = (x++ ∨ k ∨ y) ∧ (x++ ∨ k)

= x++ ∨ k ≤ x ∨ k

⇒ y ≤ x ∨ k as y = y++ ∨ (y ∧ k)

⇒ y ∈ (x ∨ k] ⊆ (x] as k ≤ x.

Therefore (x)▽ ⊆ (x] and hence (x)▽ = (x].

A characterization of a k-ideal via principal k-ideals is given in the following
theorem.

Theorem 22. Let I be an ideal of a CRD-Stone algebra L. Then the following

statements are equivalent:

(1) I is a k-ideal,

(2) x++ ∈ I ⇒ x ∈ I,

(3) for all x, y ∈ L, (x)▽ = (y)▽ and y ∈ I ⇒ x ∈ I,

(4) I =
⋃

x∈I(x)
▽,

(5) x ∈ I ⇒ (x)▽ ⊆ I.

Proof. (1)⇒(2) Let I be a k-ideal of L and x++ ∈ I. Then k ∈ I implies
x ∧ k ∈ I. Now, x++, x ∧ k ∈ I imply that x = x++ ∨ (x ∧ k) ∈ I.

(2)⇒(3) Let (x)▽ = (y)▽, y ∈ I. Thus x ∈ (y)▽. Then, x++ ≤ y++ ∨ k
implies x++ ≤ y++ ≤ y ∈ I. Thus, x++ ∈ I. By (2), we get x ∈ I.

(3)⇒(4) For any x ∈ I, we have x ∈ (x)▽ ⊆
⋃

x∈I(x)
▽. Then I ⊆

⋃

x∈I(x)
▽.

Conversely, let y ∈
⋃

x∈I(x)
▽. Then y ∈ (z)▽ for some z ∈ I. Hence, (y)▽ ⊆

(z)▽, by Lemma 18(3). It follows that (y)▽ = (y)▽ ∩ (z)▽ = (y ∧ z)▽. Since
y ∧ z ∈ I, then by (3), we get y ∈ I. Therefore,

⋃

x∈I(x)
▽ ⊆ I and hence

⋃

x∈I(x)
▽ = I.

(4)⇒(5) Assume (4). Let x ∈ I. Then by (4), we get x ∈ (i)▽ for some
i ∈ I. Suppose t ∈ (x)▽. Then it concludes t ∈ (x)▽ ⊆ (i)▽with i ∈ I. Then
t ∈

⋃

i∈I(i)
▽ = I and hence (x)▽ ⊆ I.

(5)⇒(1) Assume (5). Since k ∈ (x)▽, ∀x ∈ I, then by (5), k ∈ (x)▽ ⊆ I.
This proves that I is a k-ideal of L.
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Let Ipk(L) = {(x)▽ : x ∈ L} be the set of all principal k-ideal of a CRD-Stone
algebra L.

Theorem 23. Let L be a CRD-Stone algebra. Then (Ipk(L);+, •, (0)
▽, (1)▽)

forms a Boolean ring, where + the addition operation and • the multiplication

operation are defined as follows:

(x)▽ + (y)▽ = ((x ∧ y+) ∨ (y ∧ x+))▽,

(x)▽ • (y)▽ = (x ∧ y)▽.

Proof. Let (x)▽, (y)▽, (z)▽ ∈ Ipk(L). Then we deduce the following properties:

(i) Associativity of +,

(x)▽ + ((y)▽ + (z)▽)

= (x)▽ + ((y ∧ z+) ∨ (z ∧ y+))▽

= ((x ∧ {(y ∧ z+) ∨ (z ∧ y+)}+) ∨ (x+ ∧ {(y ∧ z+) ∨ (z ∧ y+)}))▽

= ({x ∧ y+ ∧ z+} ∨ {x ∧ z++ ∧ y++} ∨ {x+ ∧ y ∧ z+} ∨ {x+ ∧ z ∧ y+})▽

where

(x ∧ {(y ∧ z+) ∨ (z ∧ y+)}+)

= (x ∧ {(y ∧ z+)+ ∧ (z ∧ y+)+}) (by Theorem 1(7))

= x ∧ {(y+ ∨ z++) ∧ (z+ ∨ y++)} (by Theorem 1(6))

= {(x ∧ y+) ∨ (x ∧ z++)} ∧ (z+ ∨ y++) (by distributivity of L)

= {(x ∧ y+) ∧ (z+ ∨ y++)} ∨ {(x ∧ z++) ∧ (z+ ∨ y++)} (by distributivity of L)

= (x ∧ y+ ∧ z+) ∨ (x ∧ y+ ∧ y++) ∨ (x ∧ z++ ∧ z+) ∨ (x ∧ z++ ∧ y++)

= (x ∧ y+ ∧ z+) ∨ (x ∧ z++ ∧ y++) as x+ ∧ x++ = 0, ∀x ∈ L.

On the other hand, we have

((x)▽ + (y)▽) + (z)▽

= (((x ∧ y+) ∨ (y ∧ x+))▽ + z▽)

= (({(x ∧ y+) ∨ (y ∧ x+)} ∧ z+) ∨ ({(x ∧ y+) ∨ (y ∧ x+)}+ ∧ z))▽

= ({x ∧ y+ ∧ z+} ∨ {x+ ∧ y ∧ z+} ∨ {x++ ∧ y++ ∧ z} ∨ {x+ ∧ y+ ∧ z})▽
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where

({(x ∧ y+) ∨ (y ∧ x+)}+ ∧ z)

= ({(x ∧ y+)+ ∧ (y ∧ x+)+} ∧ z) (by Theorem 1(7))

= ({(x+ ∨ y++) ∧ (y+ ∨ x++)} ∧ z) (by Theorem 1(6))

= ({((x+ ∨ y++) ∧ y+) ∨ ((x+ ∨ y++) ∧ x++)} ∧ z) (by distributivity of L)

= {(x+ ∨ y++) ∧ y+ ∧ z} ∨ {(x+ ∨ y++) ∧ x++ ∧ z} (by distributivity of L)

= (x+ ∧ y+ ∧ z) ∨ (y++ ∧ y+ ∧ z) ∨ (x+ ∧ x++ ∧ z) ∨ (y++ ∧ x++ ∧ z)

= (x+ ∧ y+ ∧ z) ∨ (y++ ∧ x++ ∧ z) as x+ ∧ x++ = 0, ∀x ∈ L.

Now, we use the fact (x)▽ = (y)▽ ⇔ x++ = y++⇔ x+ = y+, see Lemma 20(1).
It is easy to check that

{{x ∧ y+ ∧ z+} ∨ {x ∧ z++ ∧ y++} ∨ {x+ ∧ y ∧ z+} ∨ {x+ ∧ z ∧ y+}}+

{{x ∧ y+ ∧ z+} ∨ {x+ ∧ y ∧ z+} ∨ {x++ ∧ y++ ∧ z} ∨ {x+ ∧ y+ ∧ z}}+

={x+∨ y++ ∨ z++} ∧ {x+ ∨ z+ ∨ y+} ∧ {x++ ∨ y+ ∨ z++} ∧ {x++ ∨ z+ ∨ y++}.

Therefore, ({x∧y+∧z+}∨{x∧z++∧y++}∨{x+∧y∧z+}∨{x+∧z∧y+})▽=({x∧
y+ ∧ z+} ∨ {x+ ∧ y ∧ z+} ∨ {x++ ∧ y++ ∧ z} ∨ {x+ ∧ y+ ∧ z})▽ implies ((x)▽ +
(y)▽) + (z)▽ =(x)▽ + ((y)▽ + (z)▽).

(ii) Since (x)▽ +(0)▽ = ((x∧ 0+)∨ (x+ ∧ 0))▽ = (x∨ 0)▽ = (x)▽,then (0)▽

is the additive identity on Ipk(L).

(iii) Commutativity of + and •,

(x)▽ + (y)▽ = (x ∧ y+) ∨ (y ∧ x+)▽

= (y ∧ x+) ∨ (y+ ∧ x)▽

= (y)▽ + (x)▽,

(x)▽ • (y)▽ = (x ∧ y)▽

= (y ∧ x)▽

= (y)▽ • (x)▽.

(iv) It is clear that the additive inverse of (x)▽ ∈ IpK(L) is (x)▽ itself, that
is, −(x)▽ = (x)▽.

(v) The multiplicative identity of Ipk(L) is (1)
▽.

(vii) The distributive law on Ipk(L),

(x)▽ • {(y)▽ + (z)▽} = (x)▽ • ((y ∧ z+) ∨ (z ∧ y+))▽

= (x ∧ {(y ∧ z+) ∨ (z ∧ y+)})▽

= ({x ∧ y ∧ z+} ∨ {x ∧ z ∧ y+})▽,
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and

{(x)▽ • (y)▽}+ {(x)▽ • (z)▽}

= (x ∧ y)▽ + (x ∧ z)▽

= ({(x ∧ y) ∧ (x ∧ z)+} ∨ {(x ∧ y)+ ∧ (x ∧ z)})▽

= ({(x ∧ y) ∧ (x+ ∨ z+)} ∨ {(x+ ∨ y+) ∧ (x ∧ z)})▽

= ({x ∧ y ∧ x+} ∨ {x ∧ y ∧ z+} ∨ {x+ ∧ x ∧ z} ∨ {y+ ∧ x ∧ z})▽.

Then by Lemma 20(1), we get ({x ∧ y ∧ z+} ∨ {x ∧ z ∧ y+})▽ = ({x ∧ y ∧ x+} ∨
{x ∧ y ∧ z+} ∨ {x+ ∧ x ∧ z} ∨ {y+ ∧ x ∧ z})▽.

Therefore, (x)▽ • {(y)▽ + (z)▽} = {(x)▽ • (y)▽}+ {(x)▽ • (z)▽}.

(viii) (x)▽ • (x)▽ = (x ∧ x)▽ = (x)▽. Consequently (Ipk(L);+, •, (0)
▽, (1)▽)

is a Boolean ring.

It is known that there is a one-to-one correspondence between Boolean alge-
bras and Boolean rings (see [18]). Then we can convert the Boolean ring Ipk(L)
into a Boolean algebra as follows.

Corollary 24. Let (Ipk (L);+, •, (0)
▽, (1)▽) be a Boolean ring of all principal k-

ideals of a CRD-Stone algebra L. Then (Ipk(L);∨,∧,
′ , (0)▽, (1)▽) is a Boolean

algebra, where

(x)▽ ∨ (y)▽ = (x)▽ + (y)▽ + {(x)▽ • (y)▽} = (x ∧ y)▽,

(x)▽ ∩ (y)▽ = (x)▽ • (y)▽ = (x ∧ y)▽,

(x)▽′ = (x+)▽.

Now, we give an example to clarify the basic properties of the class of all
principal k-ideals of a certain CRD-Stone algebra L.

Example 25. Consider the CRD-Stone algebra S9 which is given in Example
6(1) (see Figure 1). The principal k-ideals of S9 are given as follows:
(0)▽ = (c)▽ = (d)▽ = (k)▽ = (k], (a)▽ = (x)▽ = (x], (b)▽ = (y)▽ = (y] and
(1)▽ = L = (1]. We determine the algebras (Ipk(L),+) and (Ipk (L), •) as in the
following tables.

From the tables, we abserve that (Ipk(L);+, •) forms a Boolean ring. Also,
Figure 3. Shows that (Ipk(L);∨,∧,

′ , (0)▽, (1)▽) forms a Boolean algebra which is
isomorphic to B(L), where ′ is given as, (0)▽′ = (1)▽, (a)▽′ = (b)▽, (b)▽′ = (a)▽,
(1)▽′ = (0)▽.

Theorem 26. Let L be a CRD-Stone algebra. Then

(1) (Ik(L);∨,∧,D(L), L) is a {1}-sublattice of I(L),

(2) (Ipk (L);∨,∧, (0)
▽, (1)▽) is a bounded sublattice of Ik(L),

(3) B(L) is isomorphic to Ipk(L).
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+ (0)▽ (a)▽ (b)▽ (1)▽

(0)▽ (0)▽ (a)▽ (b)▽ (1)▽

(a)▽ (a)▽ (0)▽ (b)▽ (1)▽

(b)▽ (b)▽ (1)▽ (0)▽ (a)▽

(1)▽ (1)▽ (b)▽ (a)▽ (0)▽

• (0)▽ (a)▽ (b)▽ (1)▽

(0)▽ (0)▽ (0)▽ (0)▽ (0)▽

(a)▽ (0)▽ (a)▽ (0)▽ (a)▽

(b)▽ (0)▽ (0)▽ (b)▽ (b)▽

(1)▽ (0)▽ (a)▽ (b)▽ (1)▽

Figure 3. Ipk (L) and B(L) are isomorphic Boolean algebras.

Proof. (1) Let I, J ∈ Ik(L). Since k ∈ I, J , then I ∩ J and I ∨ J are k-ideals.
Since k ∈ L = (1], then L is the greatest k-ideal of L, but D(L) = (k] is the
smallest k-ideal of L. Then Ik(L) is a {1}-sublattice of the lattice I(L).

(2) We have (x ∨ y)▽ = (x)▽ ∨ (y)▽ and (x ∧ y)▽ = (x)▽ ∧ (y)▽ for all
(x)▽, (y)▽ ∈ Ipk(L). It is observed that (0)▽ = D(L), (1)▽ = L are the smallest
and the greatest members of Ipk(L), respectively. Therefore, (Ipk(L);∨,∧, (0)

▽,
(1)▽) is a bounded sublattice of the lattice Ik(L).

(3) Define mapping: f : B(L) −→ Ipk(L) by f(x) = (x)▽, for all x ∈ B(L).
To prove that f is a homomorphism, let x, y ∈ B(L),

f(x ∨ y) = (x ∨ y)▽

= (x)▽ ∨ (y)▽ (by Lemma 19(3))

= f(x) ∨ f(y).

Thus f(x ∨ y) = f(x) ∨ f(y). Similarly, we can get f(x ∧ y) = f(x) ∧ f(y).
Then f is homomorphism. Let f(x) = f(y). Then (x)▽ = (y)▽ and hence
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x = x++ = y++ = y. Then f is an injective map. For all (x)▽ ∈ Ipk(L), we have
(x)▽ = (x++)▽ = f(x++), x++ ∈ B(L). Then f is a surjective map. Therefore
f is an isomorphism and B(L) ∼= Ipk(L).

5. k-{+}-congruences on a CRD-Stone algebra

In this section, we study the relationships between k-ideals and k-{+}-congruences
of a CRD-Stone algebra L. Also, we describe the lattice Con+k (L) of all k-{

+}-
congruences of L.

Definition 18. A {+}-congruence θ on a CRD-Stone algebra L is called a k-
{+}-congruence if k ∈ Ker θ, where Ker θ = {x ∈ L : (x, 0) ∈ θ} = [0]θ

Proposition 27. Define a binary relation θ on a core regular double Stone L as

follows:

(x, y) ∈ θ ⇔ (x)▽ = (y)▽.

Then θ is a k-{+}-congruence on L. Moreover, θ = ψ+.

Let I be a k-ideal of CRD-Stone algebra L. Define a binary relation θI on
L as follows:

θI = {(a, b) ∈ L× L : a ∨ i ∨ k = b ∨ i ∨ k, for some i ∈ I} .

Theorem 28. Let I be a k-ideal of CRD-Stone algebra L. Then θI is a k-{+}-
congerence on L such that Ker θI = I.

Proof. It is clear that θI is an equivalent relation on L. Let (a, b) ∈ θI . Then
a ∨ i ∨ k = b ∨ i ∨ k for some i ∈ I. Now for all c ∈ L, then by distributivity of
L, we get

(a ∧ c) ∨ i ∨ k = (b ∧ c) ∨ i ∨ k,

(a ∨ c) ∨ i ∨ k = (b ∨ c) ∨ i ∨ k.

Therefore (a ∧ c, b ∧ c), (a ∨ c, b ∨ c) ∈ θI . So by Theorem 8, θI is a lattice
congruence on L. It remains to show that (a, b) ∈ θI implies (a+, b+) ∈ θI .

(a, b) ∈ θI ⇒ a ∨ i ∨ k = b ∨ i ∨ k

⇒ a+ ∧ i+ ∧ k+ = b+ ∧ i+ ∧ k+

⇒ a+ ∧ i+ = b+ ∧ i+ as k+ = 1
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⇒
(

a+ ∧ i+
)

∨ i =
(

b+ ∧ i+
)

∨ i

⇒
(

a+ ∨ i
)

∧
(

i+ ∨ i
)

=
(

b+ ∨ i
)

∧
(

i+ ∨ i
)

(by distributivity of L)

⇒
(

a+ ∨ i
)

∧ 1 =
(

b+ ∨ i
)

∧ 1 (by Theorem 1(2))

⇒ a+ ∨ i = b+ ∨ i

⇒
(

a+, b+
)

∈ θI .

Then θI is a {+}-congruence on L.

Now, we prove that Ker θI = I.

Ker θI = {x ∈ L : (0, x) ∈ θI}

= {x ∈ L : 0 ∨ i ∨ k = x ∨ i ∨ k, i ∈ I}

= {x ∈ L : i ∨ k = x ∨ i ∨ k}

= {x ∈ L : x ≤ i ∨ k}

= {x ∈ L : x++ ≤ i++ ≤ i++ ∨ k}

= {x : x ∈ I▽ = I} = I.

Since k ∈ I = Ker θI , then θI is a a k-{+}-congruence on L.

Theorem 29. For any k-ideals I, J of a CRD-Stone algebra L, we have

(1) I ⊆ J ⇔ θI ⊆ θJ ,

(2) ψ+ ⊆ θI , where ψ
+ is the dual Glivenko congruence on L,

(3) θ
D(L)

= ψ+,

(4) θL = ∇L,

(5) the quotient lattice L/θI forms a Boolean algebra.

Proof. (1) Suppose I ⊆ J and (a, b) ∈ θI . Then there exists i ∈ I such that
a ∨ i ∨ k = b ∨ i ∨ k. Since I ⊆ J , then (a, b) ∈ θJ . Thus θI ⊆ θJ . Conversely, let
θI ⊆ θJ . Then by the above Theorem 28, I = Ker θI ⊆ Ker θJ = J .

(2) Let (a, b) ∈ ψ+. Then a+ = b+ implies a++ = b++. Now, we have

a ∨ i ∨ k = (a++ ∨ (a ∧ k)) ∨ i ∨ k (by Lemma 7(2))

= a++ ∨ i ∨ ((a ∧ k) ∨ k)

= a++ ∨ i ∨ k (by Definition 1(2))

= b++ ∨ i ∨ k

= b++ ∨ i ∨ ((b ∧ k) ∨ k)

= (b++ ∨ (b ∧ k)) ∨ i ∨ k

= b ∨ i ∨ k.
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Thus (a, b) ∈ θI and hence ψ+ ⊆ θI .

(3) Since, i+ = 1, for all i ∈ D(L), we get

θ
D(L) = {(a, b) ∈ L× L : a ∨ i ∨ k = b ∨ i ∨ k, i ∈ D(L)}

= {(a, b) ∈ L× L : a+ ∧ i+ ∧ k+ = b+ ∧ i+ ∧ k+}

= {(a, b) ∈ L× L : a+ = b+} = ψ+ (as i+ = k+ = 1).

(4) Since a ∨ 1 ∨ k = b ∨ 1 ∨ k for all a, b ∈ L, then (a, b) ∈ θL and hence
θL = ∇L.

(5) The quotient set L/θI is {[a]θI : a ∈ L}, where [a]θI is the congruence
class of an element a ∈ L modulo θI . It is known that L/θI = (L/θI ;∨,∧, [1]θI ,
[0]θI) is a bounded distributive lattice, where [0]I = I, [1]θI are the bounds of
L/θI and [a]θI ∧ [b]θI = [a∧ b]θI , [a]θI ∨ [b]θI = [a∨ b]θI . Define L/θI by [a]′θI =
[a+]θI , since [a]θI ∧ [a+] θI = [a∧a+]θI = [0]θI , [a]θI ∨ [a+]θI = [a∨a+]θI = [1]θI
and [a]′′θI = [a+]′θI = [a++]θI = [a]θI . Then (L/θI ;∨,∧,

′ , [0]θI , [1]θI) is a
Boolean algebra.

Let Con+k (L) ={θI : I ∈ Ik(L)} be the set of all k-{+}-congruences on L
which are induced by the k-ideals of L. Using Theorem 29. We can show the
following results.

Theorem 30. For any θI and θJ of Con+k (L), we have the following:

(1) θI ∩ θJ = θ(I∩J),

(2) θI ∨ θJ = θ(I∨J),

(3)
(

Con+k (L);∨,∧, θD(L)
, θL

)

forms a bounded lattice and a sublattice of

Con+(L).

Proof. (1) Since I ∩ J ⊆ I, J , by Theorem 29, θ(I∩J) ⊆ θI , θJ implies θ(I∩J) ⊆
θI ∩ θJ . Conversely, let (a, b) ∈ θI ∩ θJ . We get

(a, b) ∈ θI ∩ θJ ⇒ (a, b) ∈ θI and (a, b) ∈ θJ

⇒ a ∨ i ∨ k = b ∨ i ∨ k for some i ∈ I and a ∨ j ∨ k = b ∨ j ∨

k for some j ∈ J

⇒ (a ∨ i ∨ k) ∧ (a ∨ j ∨ k) = (b ∨ i ∨ k) ∧ (b ∨ j ∨ k)

⇒ (a ∨ k ∨ i) ∧ (a ∨ k ∨ j) = (b ∨ k ∨ i) ∧ (b ∨ k ∨ j)

⇒ a ∨ k ∨ (i ∧ j) = b ∨ k ∨ (i ∧ j)

⇒ (a, b) ∈ θ(I∩J) as (i ∧ j) ∈ (I ∩ J).

Then θI ∩ θJ ⊆ θ(I∩J) and hence θI ∩ θJ = θ(I∩J).
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(2) Since I, J ⊆ I ∨ J , then by Theorem 29, θI , θJ ⊆ θ(I∨J). Thus, θ(I∨J) is
an upper bound of θI ,θJ . Conversely, let θk be an upper bound of θI and θJ , for
k ∈ Ik(L). Then θI , θJ⊆ θk. Hence I, J ⊆ k as I ∨ J is the least upper bound of
I, J on Ik(L). By Theorem 29, θI , θJ⊆ θk. Therefore θ(I∨J) is the least upper
bound of θI ,θJ . This proves that θI ∨ θJ = θ(I∨J).

(3) From (1) and (2), it is clear that (Con+k (L);∨,∧) forms a sublattice of
Con+(L). Since θ

D(L) and θL are the smallest and the greatest members of

Con+k (L), respectively. Then (Con+k (L);∨,∧, θD(L)
, θL) is a bounded lattice.

Now, we introduce the following interesting results.

Theorem 31. For every k-{+}-congruence θ on a CRD-Stone algebra L, we

have

(1) [0] θ is a k-ideal of L,

(2) θ can be expressed as θI for some k-ideal I of L.

Proof. (1) It is clear that [0]θ = {x ∈ L : (x, 0) ∈ θ)} = Ker θ. It is known
that the Ker θ is an ideal of L. Since θ is a k-{+}-congruence, then k ∈ Ker θ.
Therefore [0]θ is a k-ideal of L.

(2) We claim that θ = θ[0]θ. Let (x, y) ∈ θ. Since (k, k) ∈ θ hence
(x ∧ k, y ∧ k) ∈ θ. Since [0]θ is a k-ideal of L, then x ∧ k, y ∧ k ∈ [0]θ. Hence
(x ∧ k, y ∧ k) ∈ θ[0]θ. Now, we prove that (x++, y++) ∈ θ[0]θ.

(

x+, y+
)

∈ θ ⇒
(

x+ ∧ x++, y+ ∧ x++
)

∈ θ and
(

x+ ∧ y++, y+ ∧ y++
)

∈ θ

⇒
(

0, y+ ∧ x++
)

∈ θ and
(

x+ ∧ y++, 0
)

∈ θ (by Definition 8)

⇒ x+ ∧ y++, y+ ∧ x++ ∈ [0]θ

⇒
(

x+ ∧ y++, y+ ∧ x++
)

∈ θ[0]θ

⇒
(

x+ ∨
(

x+ ∧ y++
)

, x+ ∨
(

y+ ∧ x++
))

=
(

x+, x+ ∨ y+
)

θ[0]θ

(by Definition 1(2))

and
(

y+ ∨
(

x+ ∧ y++
)

, y+ ∨
(

y+ ∧ x++
))

=
(

x+ ∨ y+, y+
)

∈ θ[0]θ

⇒
(

x+, y+
)

∈ θ[0]θ

⇒
(

x++, y++
)

∈ θ[0]θ.

Now, (x++, y++) ∈ θ[0]θ and (x ∧ k, y ∧ k) ∈ θ[0]θ imply that (x, y) = (x++ ∨
(x ∧ k) , y++ ∨ (y ∧ k)) = (x++, y++) ∨ (x ∧ k, y ∧ k) ∈ θ[0]θ. Then θ ⊆ θ[0]θ. For
the converse, let (x, y) ∈ θ[0]θ. Then (x ∧ k, y ∧ k) ∈ θ[0]θ. Since x∧k, y∧k ∈ [0]θ,
then (x ∧ k, y ∧ k) ∈ θ.
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Now, we prove that (x++, y++) ∈ θ for all (x, y) ∈ θ[0]θ

(x, y) ∈ θ[0]θ

⇒
(

x+, y+
)

∈ θ[0]θ

⇒
(

x+ ∧ x++, y+ ∧ x++
)

,
(

x+ ∧ y++, y+ ∧ y++
)

∈ θ[0]θ

⇒
(

0, y+ ∧ x++
)

,
(

x+ ∧ y++, 0
)

∈ θ[0]θ as x+ ∧ x++ = 0, y+ ∧ y++ = 0

⇒ x+ ∧ y++, y+ ∧ x++ ∈ [0]θ

⇒
(

x+ ∧ y++, y+ ∧ x++
)

∈ [0]θ

⇒
(

x+∨
(

x+∧y++
)

, x+∨
(

y+∧ x++
))

,
(

y+∨
(

x+∧ y++
)

, y+∨
(

y+∧ x++
))

∈ θ

⇒
(

x+,
(

x+ ∨ y+
)

∧
(

x+ ∨ x++
))

,
((

y+ ∨ x+
)

∧
(

y+ ∨ y++
)

, y+
)

∈ θ

(by Definition 1(2))

⇒
(

x+, x+ ∨ y+
)

,
(

x+ ∨ y+, y+
)

∈ θ (by Definition 8)

⇒
(

x+, y+
)

∈ θ

⇒
(

x++, y++
)

∈ [0]θ.

Now, (x++, y++) ∈ θ and (x ∧ k, y ∧ k) ∈ [0]θ imply that (x, y) = (x++, y++)
∨ (x ∧ k, y ∧ k) ∈ θ. Therefore θ[0]θ ⊆ θ and θ = θ[0]θ.

According to Theorem 30 and Theorem 31, we observe that there is a one
to one correspondence between the elements of the lattice Ik(L) of all k-ideals of
a CRD-Stone algebra L and the elements of the lattice Con+k (L) of all k-{+}-
congruences of L. In fact, this deduces that the lattices Ik(L) and Con

+
k (L) are

isomorphic and hence the lattice Con+k (L) is a distributive lattice.

Theorem 32. Let L be a CRD-Stone algebra. Then the lattices Ik(L) and

Con+k (L) are isomorphic and hence Con+k (L) is a distributive lattice.

Proof. Define a map h: Ik(L) −→ Con+k (L) by h(I) = θI , for all I ∈ Ik(L).
From Theorem 30, for I, J ∈ Ik(L), we have

h(I ∨ J) = θI ∨ θJ = θ(I∨J) = h(I) ∨ h(J),

h(I ∩ J) = θI ∩ θJ = θ(I∩J) = h(I) ∩ h(J),

h(D(L)) = θ
D(L) = ψ+,

h(L) = θL = ∇L.

Then h is (0,1)-lattice homomorphism. Let h(I) = h(J). Then θI = θJ implies
I = J . Thus h is an injective map. For each θ ∈ Con+k (L), by Theorem 31(2),
we have θ = θI for some I ∈ Ik(L). Then h(I) = θI = θ implies that h is a
surjective. Therefore, h is an isomorphism and hence Ik(L) and Con+k (L) are
isomorphic lattices. Since Ik(L) is a distributive lattice (see Theorem 16), then
also, Con+k (L) a distributive lattice.
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6. Principal k-{+}-congruences on a CRD-Stone algebra

In this section, we describe the principal k-{+}-congruences on a CRD-Stone
algebra L which are induced by the principal k-ideals of L. Also, we describe the
algebraic structure of the class Conpk(L) all principal k-{

+}-ideals of L.

Proposition 33. Let L be a CRD-Stone algebra L and I = (x)▽. Then θ(x)▽
is given as follows

θ(x)▽ =
{

(a, b) ∈ L× L : a ∨ x ∨ k = b ∨ x ∨ k
}

and Ker θ(x)▽ = (x)▽.

Proof. Let I = (x)▽. Then

θI = θ(x)▽ =
{

(a, b) ∈ L× L : a ∨ i ∨ k = b ∨ i ∨ k, for some i ∈ (x)▽
}

.

Let (a, b) ∈ θI . Since I = (x)▽, thus a ∨ i ∨ k = b ∨ i ∨ k, for some i ∈ (x)▽ and
hence a++ ∨ i++ = b++ ∨ i++. Since i ∈ (x)▽, then i++ ≤ x++ ∨ k and we have
i++ ≤ x++

a ∨ x ∨ k = (a++ ∨ (a ∧ k)) ∨ (x++ ∨ (x ∧ k)) ∨ k (by Lemma 7(2))

= (a++ ∨ (a ∧ k)) ∨ x++ ∨ ((x ∧ k) ∨ k)

= (a++ ∨ (a ∧ k)) ∨ x++ ∨ k (by Definition 1(2))

= a++ ∨ x++ ∨ ((a ∧ k) ∨ k)

= a++ ∨ x++ ∨ k (by Definition 1(2))

= b++ ∨ x++ ∨ k

= b++ ∨ x++ ∨ (x ∧ k) ∨ (b ∧ k) ∨ k

= (b++ ∨ (b ∧ k)) ∨ (x++ ∨ (x ∧ k)) ∨ k

= b ∨ x ∨ k.

Then, we have (a, b) ∈ θ(x)▽ if and only if a∨x∨ k = b∨x∨ k and hence θ(x)▽ =

{(a, b) ∈ L× L : a ∨ x ∨ k = b ∨ x ∨ k}. From Theorem 28, Ker θ(x)▽ = (x)▽.

Definition 19. A k-{+}-congruence θ on a CRD-Stone algebra L is called a
principal k-{+}-congruence if θ is a principal {+}-congruence on L.

Proposition 34. For any element x of a CRD-Stone algebra L, define θ(0, x++

∨ k) on L as follows

θ(0, x++ ∨ k) =
{

(a, b) ∈ L× L : a ∨ x++ ∨ k = b ∨ x++ ∨ k
}

.

Then θ(0, x++∨k) is a principal k-{+}-congruence on L and Ker θ(0, x++∨k) =
(x++ ∨ k] = (x)▽.
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Proof. It is known that θ(0, x++ ∨ k) is a principal lattice congruence on L (see
Theorem 9(3)).

Let (a, b) ∈ θ(0, x++ ∨ k). Then, we get

a ∨ x++ ∨ k = b ∨ x++ ∨ k

⇒ a+ ∧ x+ ∧ k+ = b+ ∧ x+ ∧ k+

⇒ a+ ∧ x+ = b+ ∧ x+ as k+ = 1

⇒ (a+ ∧ x+) ∨ (x++ ∨ k) = (b+ ∧ x+) ∨ (x++ ∨ k)

⇒ (a+ ∨ x++ ∨ k) ∧ (x+ ∨ x++ ∨ k) = (b+ ∨ x++ ∨ k) ∧ (x+ ∨ x++ ∨ k)

⇒ a+ ∨ x++ ∨ k = b+ ∨ x++ ∨ k as x+ ∨ x++ = 1.

Then (a+, b+) ∈ θ(0, x++ ∨ k). Thus θ(0, x++ ∨ k) a principal {+}-congruence
on L. Since 0 ∨ x++ ∨ k = k ∨ x++ ∨ k, then (0, k) ∈ θ(0, x++ ∨ k). Then
k ∈ Ker θ(0, x++ ∨ k) and hence θ is a principal k-{+}-congruence on L.

Now, for every for all x ∈ L, we prove Ker θ(0, x++ ∨ k) = (x++ ∨ k]

Ker θ(0, x++ ∨ k) =
{

y ∈ L : (0, y) ∈ θ(0, x++ ∨ k)
}

=
{

y ∈ L : x++ ∨ k = y ∨ x++ ∨ k
}

=
{

y ∈ L : y ≤ x++ ∨ k
}

= (x++ ∨ k]

= (x)▽.

Theorem 35. Let x be an element of a CRD-Stone algebra L. Then

θ(0, x++ ∨ k) = θ(x)▽ .

Proof. Let (a, b) ∈ θ(0, x++ ∨ k). Then

a ∨ x++ ∨ k = b ∨ x++ ∨ k ⇒ a ∨ x++ ∨ x ∨ k = b ∨ x++ ∨ x ∨ k

⇒ a ∨ x ∨ k = b ∨ x ∨ k

⇒ (a, b) ∈ θ(x)▽ .

Thus θ(0, x++ ∨ k) ⊆ θ(x)▽ . Conversely, let (a, b) ∈ θ(x)▽ . Then we get

a ∨ x ∨ k = b ∨ x ∨ k

⇒ a ∨ (x++ ∨ (x ∧ k)) ∨ x ∨ k = b ∨ (x++ ∨ (x ∧ k)) ∨ x ∨ k (by Lemma 7(2))

⇒ a ∨ x++ ∨ ((x ∧ k) ∨ k) = b ∨ x++ ∨ ((x ∧ k) ∨ k) (by Definition 1(2))

⇒ a ∨ x++ ∨ k = b ∨ x++ ∨ k

⇒ (a, b) ∈ θ(0, x++ ∨ k).

Then θ(x)▽ ⊆ θ(0, x++ ∨ k) and hence θ(x)▽ = θ(0, x++ ∨ k).
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Corollary 36. Let L be a CRD-Stone algebra. Then

Ker θ(x)▽ = Ker θ(0, x++ ∨ k) = (x++ ∨ k] = (x)▽.

A charclerization of a principle k-{+}-congruence on a CRD-Stone algebra
L is given in the following two theorems.

Theorem 37. Let θ be a principle {+}-congruence of L. Then θ(0, a) is principle
k-{+}-congruence if and only if k ≤ a.

Proof. If θ is a principle k-{+}-congruence, then k ∈ Ker θ(0, a) implies (k, 0) ∈
θ(0, a) and hence k∨a = 0∨a = a. Thus k ≤ a. Conversely, let k ≤ a and θ(0, a)
is a principal k-{+}-congruence. Then (k, 0) ∈ θ(0, a). Since k ∈ Ker θ(0, a),
thus θ(0, a) is a k-{+}-congruence on L.

Theorem 38. Let θ(0, a) be principle k-{+}-congruence on L. Then θ(0, a) =
θ(a)▽ if and only if k ≤ a.

Proof. Let θ(a, b) be a k-{+}-congruence on L and θ(0, a) = θ(a)

θ(0, a) = θ(a)▽ ⇒ k ∈ Ker θ(0, a) = Ker θ(a)▽

⇒ (k, 0) = θ(0, a)

⇒ k ∨ a = 0 ∨ a = a

⇒ k ≤ a.

Conversely, let k ≤ a and (x, y) ∈ θ(0, a)

(x, y) ∈ θ(0, a) ⇒ x ∨ a = y ∨ a

⇒ x ∨ a ∨ k = y ∨ a ∨ k

⇒ (x, y) ∈ θ(a)▽ .

Then θ(0, a) ⊆ θ(a)▽ . Let (x, y) ∈ θ(a)▽ . Then we have

(x, y) ∈ θ(a)▽ ⇒ x ∨ a ∨ k = y ∨ a ∨ k

⇒ x ∨ a = y ∨ a

⇒ (x, y) ∈ θ(0, a).

Then θ(a)▽ ⊆ θ(0, a) and hence θ(a)▽ = θ(0, a).

Corollary 39. Every principle k-{+}-congruence θ(0, a) on CRD-Stone algebra

L can be expressed as θ(0, a++ ∨ k).

Let Conpk(L) =
{

θ(x)▽ : x ∈ L
}

be the class of all principal k-{+}-congerences
which are induced by the principal k-ideals of L. Theorem 40 shows that the class
Conpk(L) forms a Boolean ring which is isomorphic to the Boolean ring Ipk(L).
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Theorem 40. Let L be a CRD-Stone algebra. Then (Conpk(L);⊕,⊙, θ(1)▽ , θ(0)▽)
forms a Boolean ring, where

θ(x)▽ ⊕ θ(y)▽ = θ(x)▽+(y)▽ ,

θ(x)▽ ⊙ θ(y)▽ = θ(x)▽•(y)▽.

Moreover, Conpk(L) and I
p
k(L) are isomorphic Boolean rings.

Proof. According to Theorem 23,
(

Ipk(L);+, •, (0)
▽, (1)▽

)

is a Boolean ring.

Consequently, for any θ(x)▽ , θ(y)▽ , θ(z)▽ ∈ Con▽k (L), we use the properties of the

ring
(

Ipk(L),+, •
)

to show the following properties.

(i) The associativity of ⊕ and ⊙.

θ(x)▽ ⊕
{

θ(y)▽ ⊕ θ(z)▽
}

= θ(x)▽ ⊕ θ(y)▽+(z)▽

= θ(x)▽+{(y)▽+(z)▽}

= θ{(x)▽+(y)▽}+(z)▽ by associativity of +

= θ(x)▽+(y)▽ ⊕ θ(z)▽

=
{

θ(x)▽ ⊕ θ(y)▽
}

⊕ θ(z)▽ ,

and
θ(x)▽ ⊙

{

θ(y)▽ ⊙ θ(z)▽
}

= θ(x)▽ ⊙ θ(y)▽•(z)▽

= θ(x)▽•{(y)▽•(z)▽}

= θ{(x)▽•(y)▽}•(z)▽ by associativity of •

= θ(x)▽•(y)▽ ⊙ θ(z)▽

=
{

θ(x)▽ ⊙ θ(y)▽
}

⊙ θ(z)▽ .

(ii) The additive identity and the multiplicative identity in Conpk(L) are θ(1)▽
and θ(0)▽ , respectively.

(iii) The commutativity of ⊕ and ⊙.

θ(x)▽ ⊕ θ(y)▽ = θ(x)▽+(y)▽

= θ(y)▽+(x)▽ as + is commutative in Ipk(L)

= θ(y)▽ ⊕ θ(x)▽ ,

θ(x)▽ ⊙ θ(y)▽ = θ(b)▽•(y)▽

= θ(y)▽•(x)▽ as • is commutative in Ipk(L)

= θ(y)▽ ⊙ θ(x)▽ .
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(iv) The additive inverse of θ(x)▽ is θ(x)▽ itself.
(v) The distributive law holds as

θ(x)▽ ⊙
{

θ(y)▽ ⊕ θ(z)▽
}

= θ(x)▽ ⊙ θ{(y)▽+(z)▽}

= θ(x)▽•{(y)▽+(z)▽}

= θ{(x)▽•(y)▽}+{(x)▽•(z)▽} by distributivity of Ipk(L)

= θ{(x)▽•(y)▽} ⊕ θ{(x)▽•(z)▽}

=
{

θ(x)▽ ⊙ θ(y)▽
}

⊕
{

θ(x)▽ ⊙ θ(z)▽
}

.

(vii)
[

θ(x)▽
]2

= θ(x)▽ ⊙ θ(x)▽ = θ(x)▽•(x)▽ = θ(x)▽ .

Therefore (Conpk(L);⊕,⊙, θ(1)▽ , θ(0)▽) is a Boolean ring. It is observed that the

two rings Ipk(L) and Conpk(L) are isomorphic under the isomorphism (x)▽ 7→
θ(x)▽ .

Combining the above Theorem 40 and Corollary 24, we will investigate the
following interesting result.

Corollary 41. Let (Conpk(L);⊕,⊙, θ(1)▽ , θ(0)▽) be the Boolean ring of all princi-

pal k-{+}-congerences on a CRD-Stone algebra L. Then (Conpk(L);∨,∩,
′, θ(1)▽ ,

θ(0)▽) is a Boolean algebra, where

θ(x)▽ ∨ θ(y)▽ = θ(x∨y)▽ ,

θ(x)▽ ∩ θ(y)▽ = θ(x∧y)▽ ,

θ′(x)▽ = θ(x+)▽.

Example 42. Consider the CRD-Stone algebra S9 as in Figure 1. The principal
k-{+}-congerences of S9 are gives as follows

θ(0, 0) = θ(0, c) = θ(0, d) = θ(0, k) = △L,

θ(0, a) = θ(0, x) = {{0, d, c, k, a, x}, {b, y, 1}},

θ(0, b) = θ(0, y) = {{0, d, c, k, b, y}, {a, x, 1}},

θ(0, 1) = ▽L.

Then the following two tables show that (Conpk(L);⊕,⊙) is a Boolean ring, where
Conpk(L) = {θ(0, 0), θ(0, a), θ(0, b), θ(0, 1)} = {θ(0)▽ , θ(a)▽ , θ(b)▽ , θ(1)▽}.

Figure 4 shows that (Conpk(L) and I
p
k(L) are isomorphic Boolean algebras.
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⊕ θ(0, 0) θ(0, a) θ(0, b) θ(0, 1)

θ(0, 0) θ(0, 0) θ(0, a) θ(0, b) θ(0, 1)

θ(0, a) θ(0, a) θ(0, 0) θ(0, 1) θ(0, b)

θ(0, b) θ(0, b) θ(0, 1) θ(0, 0) θ(0, a)

θ(0, 1) θ(0, 1) θ(0, b) θ(0, a) θ(0, 0)

⊙ θ(0, 0) θ(0, a) θ(0, b) θ(0, 1)

θ(0, 0) θ(0, 0) θ(0, 0) θ(0, 0) θ(0, 0)

θ(0, a) θ(0, 0) θ(0, a) θ(0, 0) θ(0, a)

θ(0, b) θ(0, 0) θ(0, 0) θ(0, b) θ(0, b)

θ(0, 1) θ(0, 0) θ(0, a) θ(0, b) θ(0, 1)

Figure 4. Conpk(L) and I
p

k (L) are isomorphic Boolean algebras.
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