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Abstract

In this paper, the structures of Hall subgroups of finite metacyclic and
nilpotent groups are studied. It is proved that the collection of all Hall
subgroups of a metacyclic group is a lattice and a group G is nilpotent if
and only if its collection of Hall subgroups forms a distributive lattice. Also,
lower semimodularity and complementation are studied in a collection of
Hall subgroups of Dn for different values of n.
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1. Introduction and notation

Throughout this article, G denotes a finite group. It is known that the set
of all subgroups of a given finite group G forms a lattice denoted by L(G) with
H∧K = H∩K and H∨K = ⟨H,K⟩ for subgroups H, K of G. The interrelations
between the theory of lattices and the theory of groups have been studied by many
researchers, see Pálfy [10], Schmidt [12], Suzuki [14]. For the group theoretic
concepts and notations, we refer to Birkhoff [1], Luthar and Passi [8], Schmidt
[12].

1This work is supported by CSIR, under SRF (09/137(0621)/2019-EMR-I), Ministry of Sci.
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There are a few types of subgroups such as Hall subgroups whose collections
may form lattices and these lattices can be used to study the properties of groups.
Accordingly, a study for collection of Hall subgroups of metacyclic and nilpotent
groups has been carried out.

The following notations are used throughout this article.

• LH(G) – Collection of all Hall subgroups of G.

• LN(G) – Collection of all normal subgroups of G, which is a sublattice of
L(G).

• |G| – Order of G.

• |L(G)| – Number of subgroups of G - Cardinality of L(G).

• e – Neutral (Identity) element in G.

• [m, r] – lcm of m and r.

• (m, r) – gcd of m and r.

• ∧LH – g.l.b. in LH(G).

• ∨LH – l.u.b. in LH(G).

• H ≺ K – H is covered by K.

• Dn – Dihedral group of order 2n : ⟨a, b | an = e = b2, ba = a−1b⟩.

The following definition of a Hall subgroup of a finite group is essentially due
to Hall [6].

Definition 1.1 [6]. A Hall subgroup of a finite group is a subgroup whose order
is coprime to its index.

Remark 1.2. Every Sylow p-subgroup of a finite group is a Hall subgroup.

The collection of Hall subgroups of a group is not necessarily a lattice, i.e.,
we have a group G in which LH(G) does not form a lattice.

Consider L(A7) and its collection LH(A7) of all Hall subgroups of A7. Note
that, the subgroupsH = ⟨(1 2 3) (2 3 4 5 6)⟩ andK = ⟨(1 2 3), (2 3 4 5 7)⟩ are iso-
morphic to A6 and so Hall subgroups of A7. Moreover, H∧K = ⟨(1 2 3), (2 3 4 5)⟩
is isomorphic to A5. Note that,

(
|H ∧K|, |G|

|H∧K|

)
= (120, 42) = 6 and so H ∧K

is not a Hall subgroup.

Also, the subgroups T = ⟨(2 3 4 5 6)⟩ and S = ⟨(2 4 3 5 6)⟩ are Sylow
5-subgroups of A7. Note that, T ∨ S = H ∧K which is not a Hall subgroup of
A7. Consequently, join of T ∨LH S as well as meet of H ∧LH K does not exists
and therefore LH(A7) is not a lattice.

Next consider, the lattice depicted in Fig 1.1 which is the Hasse diagram of
L(S4). Note that, LH(Sn) = L(Sn) for n ≤ 3. The Hasse diagram of LH(S4)
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is depicted in Figure 1.2, and it is a lattice. Observe that for P28 and P27 in
LH(Sn), we have P28 ∧ P27 = M18 in L(S4), but M18 /∈ LH(S4) and as such,
LH(S4) is not a sublattice of L(S4).

K1

L14L13L12L11

A4

M18M21M20M19M17M16M15

P28P27P26

K4K3K2 T1 T2 T3 T4 T5 T6

N22 N23 N24 N25

S4

Figure 1.1. L(S4).

K1

P26P27P28 L11 L12 L13 L14

S4

Figure 1.2. LH(S4).

So it is necessary to investigate the groups for which LH(G) is a lattice and
similarly, LH(G) is a sublattice of L(G). It is also worth studying some properties
of LH(G) in these situations.

Faigle, et al. (see [4, 11, 13]) studied strong lattices of finite length in which
the join-irreducible elements play a key role.

For the following definition and other relevant definitions in lattice theory we
refer to Birkhoff [1], Grätzer [5] and Stern [13].

Definition 1.3 [13]. An element j of a lattice L is called join-irreducible if, for
all x, y ∈ L, j = x ∨ y implies j = x or j = y.



60 S. Mitkari and V. Kharat

For a lattice L of finite length J(L) denotes the set of all non-zero join-
irreducible elements.

We introduce the concept of join-irreducible subgroups as follows.

Definition 1.4. A subgroup of a group G is said to be join-irreducible if it is a
join-irreducible element of L(G).

We note that every cyclic subgroup of prime power order of a finite group is
a join-irreducible subgroup.

From this fact and Lemma 2 of [15], the following Lemma follows.

Lemma 1.5. A subgroup of a finite group is a join-irreducible subgroup if and
only if it is a cyclic subgroup of prime power order.

The following concept of a strong element was coined by Faigle [4]; see also
[13].

Definition 1.6 [4]. Let L be a lattice of finite length. A join-irreducible element
j ̸= 0 is called a strong element if the following condition holds for all x ∈ L:
(St) j ≤ x∨ j− =⇒ j ≤ x, where j− denotes the uniquely determined lower cover
of j.

A lattice is said to be strong if every join-irreducible element of it is strong.

Remark 1.7. The condition (St) in the definition of a strong element is equiva-
lent to the following; see [13] for more details.

(St’) For every q < j ∈ J(L), x ∈ L, j ≤ x ∨ q implies j ≤ x.

The following characterization of strong lattices is due to Richter and Stern
[11].

Theorem 1.8 [11]. A lattice L of finite length is strong if and only if it does not
contain a special pentagon sublattice with j ∈ J(L).

j ∧ x

j−

j

x

j− ∨ x

Figure 1.3. Special Pentagon.
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Proof of the following Lemma follows from Theorem 1.8.

Lemma 1.9. Let L be a finite lattice. If atoms are the only join-irreducible
elements in L, then L is strong.

Theorem 1.10. Let G be a group, if LH(G) is a lattice, then LH(G) is strong.

Proof. In view of the Lemma 1.9, it is sufficient to prove that only atoms are
join-irreducible elements. Let |G| =

∏m
i=1 p

αi
i and J ∈ LH(G) a join-irreducible

Hall subgroup. Then |J | = pαt
t for some prime t ∈ {1, 2, . . . ,m} and |J−| =

pαt−1
t ∈ L(G). Note that, |J−| = {e} in LH(G). Consequently, if a subgroup J

is join-irreducible in LH(G) then it is an atom.

Note that, there exists a strong lattice which is not a Hall subgroup lattice
of any finite group. Figure 1.4 depicts a strong lattice, which is not a LH(G) for
any finite group G.

{e}

Q

G

Figure 1.4. C3

2. Hall subgroups in finite metacyclic groups

In this section, the collection of Hall subgroups of metacyclic group is investigated.

Following is the definition of a metacyclic group, see [2].

Definition 2.1 [2]. A finite group G is a metacyclic if it contains a cyclic normal
subgroup N such that G

N is also cyclic.

It is observed that a metacyclic group can be written G = SN with S ≤ G
and N ⊴ G such that both S and N are cyclic. Such a product is a metacyclic
factorization of G.

Note that, Hall subgroups of a metacyclic group G are obtained with the
help of its metacyclic factorization. and so we have the following result which is
a Lemma 5.3 of [7].
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Lemma 2.2 [7]. Let G be a finite group with a metacyclic factorization G = SN ,
to each set π of primes, the subgroup H = SπNπ is the unique Hall π-subgroup
of G such that Sπ = H ∩ S, Nπ = N ∩H and so H = (H ∩ S)(H ∩N).

As observed, the collection of Hall subgroups of a finite group need not form a
lattice in general but in case of metacyclic group it forms a lattice as the following
result shows.

Theorem 2.3. If G is a finite metacyclic group, then LH(G) is a lattice. How-
ever, it is not necessarily a sublattice of L(G).

Proof. Let G be a finite metacyclic group, in order to show that LH(G) is a
lattice, we prove that given two Hall subgroups H and K of G, H ∧LH K and
H ∨LH K exist.

Case I. Let H and K be two distinct Hall π1 and π2-subgroups respectively
corresponding to metacyclic factorization SN of G.

In view of Lemma 2.2, the subgroups H = Sπ1Nπ1 and K = Sπ2Nπ2 are the
unique Hall π1 and π2-subgroups of G such that Sπ1 = H∩S, Nπ1 = H∩N , Sπ2 =
K ∩S, Nπ2 = K ∩N . Therefore, H = (H ∩S)(H ∩N) and K = (K ∩S)(K ∩N).
Now, for the set π = π1 ∩ π2 of primes, there is the unique Hall π-subgroup say
T = SπNπ = (T ∩S)(T ∩N). Note that, T is the unique largest Hall subgroup of
G which is contained in both H and K. Consequently, H ∧LH K = T . Similarly,
for the set π′ = π1 ∪ π2 of primes there is the unique Hall π′-subgroup say
R = Sπ′Nπ′ = (R∩S)(R∩N). Note that, R is the unique smallest Hall subgroup
of G which contains both H and K. Therefore, H ∨LH K = R.

Case II. Let H and K be two distinct Hall π1 and π2-subgroups respectively
corresponding to two different metacyclic factorizations SN and S′N ′.

In view of the Lemma 2.2, H = (H ∩ S)(H ∩ N) = Sπ1Nπ1 and K =
(K ∩ S′)(K ∩ N ′) = S′

π2
N ′

π2
. Furthermore, each one of H and K is an unique

Hall π1 and π2-subgroups corresponding to two metacyclic factorizations SN and
S′N ′ respectively. Now, corresponding to each prime pi ∈ π1 there is the unique
Sylow pi-subgroup say Pi, corresponding to factorization SN of G and similarly,
corresponding to each prime pj ∈ π2 there is the unique Sylow pj-subgroup say
Qj , corresponding to factorization S′N ′ of G.

Note that, the subgroup H ′ = Sπ1∩π2Nπ1∩π2 then H ′ is a subgroup of H.
If H ′ is also a subgroup of K then H ′ is the largest Hall subgroup of G which
is contained in both H and K. Consequently, H ∧LH K = H ′. If H ′ is not a
subgroup of K, then choose the set π of primes of pi ∈ π1 ∩ π2 such that each
Sylow pi-subgroup Pi of G contained in both H and K. Note that, if P is a Hall
π-subgroup of H then P ⊇ ∨Pi. Since every non-trivial Hall subgroup is join of
Sylow subgroups we have P = ∨Pi. And so, it is contained in both H and K.
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As such P is the unique largest Hall subgroup of G corresponding to metacyclic
factorization SN as well as S′N ′ and so, H ∧LH K = ∨pi∈πPi.

Similarly, choose the subgroup H ′ = Sπ1∪π2Nπ1∪π2 then H is the subgroup
of H ′. If K is also a subgroup of H ′ then H ′ is the smallest Hall subgroup of
G which contains both H and K and therefore H ∨LH K = H ′. If K is not a
subgroup of H ′, choose the least set π′ of primes π′ with π1 ∪ π2 ⊆ π′ such that
H, K ⊆ ∨pi∈π′Pi. Let R be a Hall subgroup of G such that ∨pi∈π′Pi ⊆ R is the
unique Hall π′-subgroup corresponding to metacyclic factorizations SN as well
as S′N ′. Note that, R is the least Hall subgroup which contains H and K and
so, H ∨LH K = R.

Hence LH(G) is a lattice whenever G is metacyclic.
Consider a dihedral group Dn, which is metacyclic group. In [9] it is noted

that LH(Dn) is a lattice but not necessarily a sublattice of L(Dn).

Remark 2.4. Note that, a metacyclic group G may not have a unique metacyclic
factorization, e.g., Dn. However, if G has unique meatcyclic factorization then
LH(G) is a sublattice of L(G), e.g. Zpq. Also, for every finite group G whose
order is square-free, LH(G) is a sublattice of L(G).

We note that,dihedral groups are metacyclic and so LH(Dn) is a lattice.
However, LH(Dn) is a lattice is proved independently in [9] using the classification
of the subgroups given in [3] as follows;

Theorem 2.5 [3]. Every subgroup of Dn is cyclic or dihedral. A complete listing
of the subgroups is as follows:

(1) ⟨ad⟩, where d|n, with index 2d,

(2) ⟨ak, aib⟩, where k|n and 0 ≤ i ≤ k − 1, with index k.

Every subgroup of Dn occurs exactly once in this listing.

Remark 2.6. 1. A subgroup of Dn is said to be of Type (1) if it is cyclic subgroup
as stated in (1) of Theorem 2.5.

2. A subgroup of Dn is said to be of Type (2) if it is dihedral subgroup as
stated in (2) of Theorem 2.5.

A study of collection of Hall subgroups of Dn namely LH(Dn) is carried out
by Mitkari et. al. in [9], where the binary operations ∧LH and ∨LH in LH(Dn)
are defined as per the classification of subgroups of Dn as follows.

Let n = 2α
∏m

i=1 p
αi
i .

1. If T = ⟨at⟩ for some s, t ∈ N and S = ⟨as⟩ are Hall subgroups of Type
(1), then T ∨LH S = ⟨ag⟩ where g = (s, t) and T ∧LH S = ⟨al⟩, where l = [s, t].

2. If T = ⟨at⟩ is a Hall subgroup of Type (1) and S = ⟨as, aib⟩ is a Hall
subgroups of Type (2) for some s, t ∈ N, then T ∨LHS = ⟨ag, aib⟩ where g = (s, t)
and T ∧LH S = ⟨al⟩, where l = [s, t].
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3. If T = ⟨at, aib⟩ and S = ⟨as, ajb⟩ are Hall subgroups of Type (2) for some

s, t ∈ N, then T ∨LHS = ⟨ag, aib⟩ where g = g1
r and g1 = (t, s, i−j), r =

(
2n
g1
, g1

)
and

T ∧LH S =



⟨as⟩, if tx+ sy = k − j has no integer solution

where s = 2α+1n
(|T |,|S|)

⟨ad, ak−n1x0b⟩, if tx+ sy = k − j has an integer solution

where d = 2n
(|T |,|S|)

where (x0, y0) is an integer solution of an equation tx+ sy = k − j.

Now, we establish some lattice theoretic property such as lower semimodular-
ity, complementation, atomic covering condition and Mac-lanes exchange prop-
erty in the subgroup lattice LH(Dn).

Definition 2.7 [13]. A lattice L is said to be lower semimodular, for every
T, S ∈ L, if T ≺ T ∨ S, then T ∧ S ≺ S.

Theorem 2.8. The lattice LH(Dn) is lower semimodular.

Proof. Let T and S ∈ LH(Dn) be such that T ≺ T ∨ S.

Claim. T ∧ S ≺ S.

Consider n = 2α
∏m

i=1 p
αi
i where each pi is an odd prime. Note that, if a

Type (1) subgroup H of Dn generated by ah is also a Hall subgroup, then it is
necessary that h = 2α

∏
x∈M pαx

x for some subset M ⊆ {1, 2, . . . ,m}. Moreover,
if a Type (2) subgroup H of Dn generated by {ah, aib} is also a Hall subgroup,
then it is necessary that h =

∏
x∈N pαx

x for some subset N ⊆ {1, 2, . . . ,m}.

Case I. Let T = ⟨at⟩, where t = 2α
∏

x∈U⊆{1,2,...,m} p
αx
x .

Subcase I(i). If S = ⟨as⟩ where s = 2α
∏

y∈V⊆{1,2,...,m} p
αy
y then T ∨ S = ⟨ag⟩

where g = (s, t). In view of T ≺ T ∨ S, Note that,⟨at⟩ ≺ ⟨ag⟩ if and only if

g = t
pα∗
∗

=
2α

∏
x∈U pαx

x

pα∗
∗

and p∗ is an odd prime dividing n with largest power α∗.

We have g|s (say gk = s where k ∈ Z) and pα∗
∗ ∤ s since T ̸⊆ S.

Now S ∧ T = ⟨al⟩, where l = [s, t] = [gk, gpα∗
∗ ] = gkpα∗

∗ = spα∗
∗ (p∗ ∤ s).

Consequently, T ∧ S = ⟨asp
α∗
∗ ⟩ ≺ ⟨as⟩.

Subcase II(ii). Let S = ⟨as′ , aib⟩ for some subset M ⊆ {1, 2, . . . ,m} where
s′ =

∏
y∈W⊆{1,2,...,m} p

αy
y such that T ≺ T ∨ S. Note that, T ∨ S = ⟨ag, aib⟩

where g = (s′, t). Since T ≺ T ∨ S we have ⟨at⟩ ≺ ⟨ag, aib⟩ if and only if
g = t

2α =
∏

x∈U pαx
x . As g|s′ ((say gk = s′ where k ∈ Z), i.e.,

∏
x∈U pαx

x |
∏

y∈W p
αy
y

and so
∏

x∈U pαx
x

∏
q∈X⊆W p

αq
q =

∏
y∈W p

αy
y . Now consider T ∧ S = ⟨al⟩ where
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l = [s′, t] = [gk, 2αg] = 2αgk = 2αs′ (2 ∤ s′). Consequently, T ∧ S = ⟨a2αs′⟩ ≺
⟨as′ , aib⟩ = S, as |S|

|S∧T | = 2α+1.

Case II. Let T = ⟨at, aib⟩ where t =
∏

x∈U pαx
x .

Subcase II(i). Let S = ⟨as⟩ where s = 2α
∏

y∈V p
αy
y such that T ≺ T ∨S. We

have T ∨ S = ⟨ag, aib⟩ where g = (s, t). Since T ≺ T ∨ S, we have ⟨at, aib⟩ ≺
⟨ag, aib⟩ if and only if g = t

pα∗
∗

=
∏

x∈U pαx
x

pα∗
∗

. Note that, g|s ((say gk = s where

k ∈ Z) and T ̸⊂ S which implies pα∗
∗ ∤ s.

Now consider S ∧ T = ⟨al⟩ where l = [s, t] = [gq, gpα∗
∗ ] = gqpα∗

∗ = spα∗
∗

(pα∗
∗ ∤ s). Consequently, T ∧ S = ⟨asp

α∗
∗ ⟩ ≺ ⟨as⟩ = S.

Subcase II(ii). Let S be a dihedral subgroup with |S| = |T | and T ≺ T ∨ S.
Then S = ⟨at, ajb⟩. Note that,S ∨ T = ⟨ag, aib⟩ = ⟨ag, ajb⟩. Since T ≺ T ∨ S, we

have ⟨at, aib⟩ ≺ ⟨ag, aib⟩ if and only if g = t
pα∗
∗

=
∏

x∈Upαx
x

pα∗
∗

. Note that, i, j ≤ t
and so i− j ≤ t. Consider the equation tx1 + tx2 = i− j for x1, x2 ∈ Z and this
equation does not have a solution as i − j ≤ t, t ∤ i − j. Therefore, T ∧ S is a

cyclic subgroup, suppose that T ∧ S = ⟨al⟩ where l = 2α+1n
(|T |,|S|) = 2α+1n

( 2n
t
, 2n

t
)
= t2α.

Therefore, S ∧T = ⟨at2α⟩. Note that, |S|
|S∧T |= 2α+1 and hence T ∧S ≺ S for such

choice of S and T .

Now suppose S be a dihedral subgroup such that |T | ̸= |S| and T ≺ T ∨ S,
say S = ⟨as′ , ajb⟩ where s′ =

∏
y∈V p

αy
y for some y ∈ V ⊆ {1, 2, . . . ,m}. Note

that, S ∨ T = ⟨ag, aib⟩ where g = g1
r and g1 = (t, s, i − j), r =

(
2n
g1
, g1

)
. Since

T ≺ T ∨S we have ⟨at, aib⟩ ≺ ⟨ag, aib⟩ if and only if g = t
pα∗
∗

=
∏

x∈U pαx
x

pα∗
∗

. Now as

g|s′ and g|i−j there exists α, β ∈ Z we have αg = i−j and βg = s′. Consider the
equation tx1+sx2 = i− j, i.e., g(pα∗

∗ )x1+g(β)x2 = gα, i.e., (pα∗
∗ )x1+(β)x2 = α.

We have two cases: pα∗
∗ ∤ β and pα∗

∗ |β and we contend that in each case
T ∧ S ≺ S.

Suppose that, pα∗
∗ ∤ β, then (pα∗

∗ , β) = 1. Therefore, the equation (pα∗
∗ )x1 +

βx2 = α will always have a solution. In this case T ∧ S = ⟨ad, azb⟩, where

d = 2n(
2n∏

x∈Up
αx
x

,
2n.p

α∗∗∏
x∈Up

αx
x β

) = β
∏

x∈Up
αx
x . Note that, |S|

|S∧T | = pα∗
∗ . Consequently,

T ∧ S ≺ S.

Now suppose that pα∗
∗ |β. If the equation (pα∗

∗ )x1 + βx2 = α for x1, x2 ∈ Z
has a solution, then pα∗

∗ |α. Now as
(∏

x∈Upαx
x

pα∗
∗

, pα∗
∗

)
= 1 implies

∏
x∈Up

αx
x |i − j

and also
∏

x∈Up
αx
x |s′. Consequently, T ∨ S = ⟨ag, aib⟩ = ⟨at, aib⟩ = T (as g1 =

(t, s′, i − j) = t and r =
(
2n
g1
, g1

)
= 1 then g = g1

r = g1 = t) which is not

true since T ≺ T ∨ S. Therefore pα∗
∗ ∤ α and so the equation does not have

a solution. As such S ∧ T is not a Type (2) subgroup of Dn and we must
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have S ∧ T = ⟨al⟩, for l = 2α+1n(
2n∏

x∈Up
αx
x

,
2n.p

α∗∗∏
x∈Up

αx
x

∏
p
αq
q

) =
2α.

∏
x∈Upαx

x
∏

p
αq
q

pα∗
∗

= 2αs′.

Therefore, ⟨al⟩ = ⟨a2αs′⟩ ≺ ⟨as′ , ajb⟩ = S. Note that, |S|
|T∧S|= 2α+1 and hence

T ∧ S ≺ S for such choice of S and T .

A lattice is said to be complemented if every element has a complement. In
what follows, we have a Theorem about LH(Dn).

Theorem 2.9. Let Dn be the dihedral group with 2n elements where n =
2α

∏m
i=1 p

αi
i . Then, the lattice LH(Dn) is complemented.

Proof. In order to show that LH(Dn) is complemented, it is sufficient to show
that every cyclic Hall subgroup has a complement in LH(Dn).

Note that, if a cyclic subgroup ⟨ah⟩ is also a Hall subgroup, then it is necessary
that h = 2α

∏
M pαx

x such that x ∈ M ⊆ {1, 2, . . . ,m}. Moreover, if a dihedral
subgroup ⟨ah, aib⟩ is also a Hall subgroup, then it is necessary that h =

∏
N pαx

x

such that x ∈ N ⊆ {1, 2, . . . ,m}.
Let A = ⟨ak⟩ be a cyclic Hall subgroup, then k = 2α

∏
U pαx

x such that
x ∈ U ⊆ {1, 2, . . . ,m}. Choose the subgroup B = ⟨at, aib⟩ where t = n

k . But
then g = (k, t) = 1 and so A ∨ B = ⟨ag, aib⟩ = Dn. Moreover l = [k, t] = n
this implies A ∧ B = ⟨al⟩ = ⟨an⟩ = I. Therefore, every cyclic Hall subgroup has
complement and so every dihedral Hall subgroup has a complement.

It is known that the number of subgroups of Dn for n ≥ 3 is |L(Dn)| =
Number of divisors of n + Sum of divisors of n. Along the same line, we have
the following formula for the number of Hall subgroups of Dn, i.e., |LH(Dn)|.

Theorem 2.10. For any n ≥ 3, |LH(Dn)| = 2z +
∏z

m=1 (1 + pαm
m ) where n =

2α
∏z

m=1 p
αm
m , where p is prime and z is the number of odd primes dividing n.

Proof. Let n = 2α
∏z

m=1 p
αm
m , p being prime. If H is a cyclic Hall subgroup

of Dn, then |H| =
∏

x∈S⊆{1,2,...,z} p
αx
x and |H| is not a multiple of 2. Note

that, number of subgroups whose order is divisible by single odd prime is given
by

(
z
1

)
. Similarly, number of subgroups whose order contains exactly two odd

prime factors is given by
(
z
2

)
. Consequently, number of cyclic Hall subgroups=(

z
0

)
+
(
z
1

)
+
(
z
2

)
+
(
z
3

)
+ · · ·+

(
z
z

)
= 2z.

Now consider a dihedral Hall subgroupH then |H| = 2α+1
∏

x∈S⊆{1,2,...,z} p
αx
x .

If H1 be a dihedral Hall subgroup whose order is divisible by single odd prime say

p1, then H1=
〈
a
∏z

m=2 p
αm
m , aib

〉
and number of subgroups whose order is equal to

order of H1 is
∏z

m=2 p
αm
m . Consequently, the number of all such subgroups whose

order is divisible by exactly single odd prime is equal to
∑

x∈S⊂{1,2,...,z}
∏

pαx
x such
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that |S| = z−1. Similarly, if H2 is a dihedral Hall subgroup whose order is divis-

ible by exactly two odd prime factors, say p1 and p2, then H2 =
〈
a
∏z

m=3 p
αm
m , aib

〉
and the number of subgroups whose order is equal to order of H2 is

∏z
m=3 p

αm
m .

Consequently, number of all such subgroups whose order contains exactly two
odd primes is equal to

∑
x∈S⊂{1,2,...,z}

∏
pαx
x such that |S| = z−2. As such, num-

ber of all such dihedral Hall subgroups considering the number of prime divisors
involved is given by

∑z
m=1 p

αm
m +

∑
x∈S1⊂{1,2,...,z}

∏
pαx
x +

∑
x∈S2⊂{1,2,...,z}

∏
pαx
x +∑

x∈S⊂{1,2,...,z}
∏

pαx
x +· · ·+

∑
x∈Sz−1⊂{1,2,...,z}

∏
pαx
x +1 =

∏z
m=1

(
1+pαm

m

)
, where

|Si| = z − i for i = 1, 2, . . . , z − 1.
Therefore, number of Hall subgroups ofDn= |LH(Dn)| = 2z+

∏z
m=1 (1 + pαm

m ),
whenever n = 2α

∏z
m=1 p

αm
m .

3. Hall subgroups of finite nilpotent groups

In this section, properties of collection of Hall subgroups of finite nilpotent groups
are investigated.

We recall the following characterization, see Grätzer [5].

Theorem 3.1. A modular lattice is distributive if and only if it does not a sub-
lattice isomorphic to diamond (M3).

Remark. For every Hall subgroup K of G, LH(K) is a sublattice of LH(G)
whenever LH(G) is a lattice.

Theorem 3.2. Let G be a finite group. Then LH(G) is a distributive lattice if
and only if G is a nilpotent group.

Proof. Let G be a finite nilpotent group, we first show that LH(G) is a sublattice
of L(G). Let |G| =

∏m
i=1 p

αi
i and the subgroups H, K are Hall subgroups of G.

Note that, G is nilpotent if and only if it is direct product of its Sylow p-subgroups,
i.e., G = G1×G2×· · ·×Gm =

∏m
i=1Gi, where each Gi is the Sylow pi-subgroup of

G. Also, Note that,each Gi is unique being part of direct product and so normal
in G.

Claim I. H ∧K is a Hall subgroup.

Let H =
∏

i∈S1
Gi and K =

∏
i∈S2

Gi such that S1, S2 ⊆ {1, 2, . . . ,m} are
unique of its order being normal in G. But then the subgroup H ∩ K = T =∏

i∈S1∩S2
Gi is the Hall subgroup of G and so H ∩K is a Hall subgroup.

Claim II. H ∨K is a Hall subgroup.

Let H =
∏

i∈S1
Gi and K =

∏
i∈S2

Gi such that S1, S2 ⊆ {1, 2, . . . ,m} are
unique of its order being normal in G. But then the subgroup ⟨H,K⟩ = T =
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∏
i∈S1∪S2

Gi is the Hall subgroup of G and so ⟨H,K⟩ is a Hall subgroup. This
proves that LH(G) is a sublattice of L(G).

Note that, each Hall subgroup is normal as it is join of Sylow p-subgroups
and every Sylow p-subgroup is unique as G is direct product of its Sylow p-
subgroups being nilpotent. Consequently, LH(G) is a sublattice of LN(G) which
implies that LH(G) is modular since LN(G) is a modular lattice and sublattice
of modular lattice is modular. We show that LH(G) does not contain diamond
(M3) as its sublattice.

Suppose LH(G) contains a diamond as its sublattice. Note that,the five
subgroups Hi, i ∈ {1, 2, . . . , 5} in M3 as depicted in Figure 3.1. The each one of
the five subgroups are of different orders these are of different orders.

H1

H2 H3 H4

H5

Figure 3.1. Figure M3.

Now H2∨H3 = H2H3 = H4∨H3 = H4H3 = H2∨H4 = H4H2. Consequently,
|H4H3| = |H4H2| = |H2H3| = |H5|, but then |H4H3| = |H4||H3|

|H4∩H3| = |H4H2| =
|H4||H2|
|H4∩H2| which implies |H2| = |H3|, a contradiction.

Conversely, suppose that LH(G) is a distributive lattice. We contend that,
G is direct product of its Sylow p-subgroups. If not, then there exists a prime p
such that p||G| and a Sylow p-subgroup of G is not normal. Let P1 and P2 be
two Sylow p-subgroups of G, then these are also Hall subgroups.

Note that, |G| is divisible by at least two primes since every finite group with
prime power order is nilpotent.

Case I. Let |G| = pαqβ where p, q are distinct primes. Choose a subgroup
Q of G such that Q is a Sylow q-subgroup, which is also a Hall subgroup. Note
that,P1 ∧LH Q = P2 ∧LH Q = P1 ∧LH P2 = {e} and P1 ∨LH Q = P2 ∨LH

Q = P1 ∨LH P2 = G. Moreover P1, P2, Q Hall subgroup. Consequently, LH(G)
contains sublattice S = {{e}, P1, P2, Q,G} isomorphic to M3, a contradiction to
the fact that LH(G) is distributive.

Case II. Let |G| = pαqβ1
1 · · · qβm

m where p, qi’s are distinct primes. Since

LH(G) is a lattice, P1 ∨LH P2 = T is a Hall subgroup of G, let |T | = pα
∏

i∈X qβi
i
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for a subset X ⊆ {1, 2, . . . ,m}. Note that, if there exists a Hall subgroup Q of

order
∏

i∈X qβi
i then this subgroup is such that p ∤ |Q| is a co-atom in LH(T ). If

not, then consider a subgroup Q which is Hall subgroup with order
∏

i∈Y⊂X qβi
i .

SuchQ exists, since at least we have a Sylow qi-subgroup which is a Hall subgroup.
Also, such Q is co-atom in LH(T ) and p ∤ |Q|.

Now, consider the subset {{e}, P1, P2, Q, T} with P1 ∧LH Q = P2 ∧LH Q =
P1 ∧LH P2 = {e} and P1 ∨LH Q = P2 ∨LH Q = P1 ∨LH P2 = T , which forms a
sublattice isomorphic to M3 of LH(T ) and so, LH(T ) is not distributive. Con-
sequently, LH(G) is not distributive, a contradiction.

Therefore, G is direct product of its Sylow p-subgroups and so nilpotent.

In the next Lemma the number of Hall subgroups of finite nilpotent groups
is obtained.

Lemma 3.3. Let G be a finite nilpotent group and |G| =
∏m

i=1 p
αi
i , then |LH(G)|

= 2m.

Proof. Note that, if G is a finite nilpotent group and π is any set of primes, then
G has a Hall π-subgroup. Moreover, by Theorem 3.2, we have the unique Hall
π-subgroup for each set π of primes. Consequently, the number of distinct Hall
subgroups of G is

(
m
0

)
+
(
m
1

)
+
(
m
2

)
+
(
m
3

)
+ · · ·+

(
m
m

)
= 2m.

References

[1] G. Birkhoff, Lattice Theory, Amer. Math. Soc. 25 (Providence, R.I., 1967).

[2] H. Chen, Y. Xiong and Z. Zhu, Automorphisms of metacycylic groups, Czechoslov.
Math. J. 68(3) (2018) 803–815.
https://doi.org/10.21136/CMJ.2017.0656-16

[3] K. Conrad, Dihedral Groups II.
https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral2.pdf

[4] U. Faigle, Geometries on partially ordered sets, J. Combin. Theory, Ser. B 28 (1980)
26–51.
https://doi.org/10.1016/0095-8956(80)90054-4

[5] G. Grätzer, General Lattice Theory, Academic press (New York, 1978).

[6] P. Hall, Theorems like Sylow’s, Proc. London Math. Soc. 22(6) (1956) 286–304.
https://doi.org/10.1112/plms/s3-6.2.286

[7] Hyo-Seob Sim, Metacyclic groups of odd order, Proc. London Math. Soc. s3–69
(1994) 47–71.

[8] I.S. Luthar and I.B.S. Passi, Algebra Volume 1: Groups, Narosa Publishing House
Pvt. Ltd. (New Delhi, 1999).

https://doi.org/10.21136/CMJ.2017.0656-16
https://doi.org/10.1016/0095-8956(80)90054-4
https://doi.org/10.1112/plms/s3-6.2.286


70 S. Mitkari and V. Kharat

[9] S. Mitkari, V. Kharat and S. Ballal, On some subgroup lattices of dihedral, alter-
nating and symmetric groups, Discuss. Math. Gen. Algebra Appl. 43(2) (2023)
309–326.
https://doi.org/10.7151/dmgaa.1425

[10] P.P. Pálfy, Groups and lattices, London. Math. Soc. Lecture Note Ser. 305 (2003)
428–454.

[11] G. Richter and M. Stern, Strongness in (semimodular) lattices of finite length, Wiss.
Z. Univ. Halle. 33 (1984) 73–77.

[12] R. Schmidt, Subgroup Lattices of Groups, de Gruyter Expositions in Mathematics
14 de Gruyter (Berlin, 1994).

[13] M. Stern, Semimodular Lattices (Cambridge University Press, 1999).

[14] M. Suzuki, Structure of a Group and Structure of its Lattice of Subgroups (Springer
Verlag, Berlin, 1956).

[15] P.M. Whitman, Groups with a cyclic group as a lattice homomorph Ann. Math.
49(2) (1948) 347–351.
https://doi.org/10.2307/1969283

Received 3 August 2023
Revised 23 February 2024

Accepted 23 February 2024

This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License https://creativecommons.org/licenses/by/4.0/

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.7151/dmgaa.1425
https://doi.org/10.2307/1969283
https://creativecommons.org/licenses/by/4.0/
http://www.tcpdf.org

